山东枣庄市2014届高三期中考试文科数学

合集下载

山东省枣庄市第八中学2014届高三高考模拟训练(五)数学(文)试题

山东省枣庄市第八中学2014届高三高考模拟训练(五)数学(文)试题

山东省枣庄市第八中学2014届高三高考模拟训练(五)数学(文)试题本试卷分第I 卷和第II 卷两部分,共5页,满分为150分,考试用时120分钟,考试结束后将答题卡交回。

注意事项:1.答卷前,考生必须用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案,不得使用涂改液,胶带纸、修正带和其他笔。

4.不按以上要求作答以及将答案写在试题卷上的,答案无效。

第I 卷(选择题,共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数2a ib i i-=+(,,a b R i ∈为虚数单位),则2a b -= A.1B.2C.3D.42.已知集合{}{2,0,x M y y x N y y ==>==,则M N ⋂等于A. ∅B. {}1C.{}1y y >D. {}1y y ≥3.已知命题p :“存在正实数a ,b 使得()lg lg lg a b a b +=+”;命题q :“异面直线是不同在任何一个平面内的两条直线”,则下列命题为真命题的是A. ()p q ∧⌝B. ()p q ⌝∧C.()()p q ⌝∨⌝D. p q ∧4.若执行如右图所示的程序框图,那么输出a 的值是 A.1- B.2 C.12- D.125.若0,04a b a b >>+=且,则下列不等式恒成立的是 A.112ab > B.111a b +≤2≥D.22118a b ≤+ 6.已知在360,ABC AB A A ∆=∠=∠中,的平分线AD 交边于点D ,且()13AD AC AB R λλ=+∈,则AD 的长为A.B.C. 1D.37.若关于x 的方程24xkx x =+有四个不同的实数解,则k 的取值范围为A. ()0,1B. 1,14⎛⎫⎪⎝⎭C. 1,4⎛⎫+∞⎪⎝⎭D. ()1,+∞8.已知m n l 、、是三条不同的直线,αβγ、、是三个不同的平面,给出以下命题: ①若////m n m n αα⊂,,则; ②若m n m n αβαβ⊂⊂⊥⊥,,,则; ③若////n m αα⊂,m ,则n ;④若////αγβγαβ,//,则.其中正确命题的序号是A.②④B.②③C.③④D.①③9.在区间若[][]1526,和,内分别取一个数,记为若a b 和,则方程若()22221x y a b a b-=<表示离心率小于若A.12B.1532C.1732D.313210.定义在R 上的函数()f x 满足()()()101x f x y f x '-≤=+,且为偶函数,当1211x x -<-时,有 A. ()()1222f x f x -≥- B. ()()1222f x f x -=- C. ()()1222f x f x -<-D. ()()1222f x f x -≤-第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,满分25分.11.2204y x y +-=+=戴圆所得的弦长是__________.12.设变量,x y 满足约束条件2224231x y x y z x y x y +≥⎧⎪+≤=-⎨⎪-≥-⎩,则的取值范围是____________.13.一个几何体的三视图如图所示,则这个几何体的体积为__________.14.设正实数22,,340x y z x xy y z -+-=满足.则当z xy取得最小值时,2x y z +-的最大值为___________. 15.给出以下四个结论: ①函数()121x f x x -=+的对称中心是11,22⎛⎫-- ⎪⎝⎭; ②若不等式210mx mx -+>对任意的x R ∈都成立,则04m <<;③已知点()(),10P a b Q 与点,在直线2310x y -+=两侧,则213a b +<; ④若将函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图像向右平移Φ(Φ>0)个单位后变为偶函数,则Φ的最小值是12π.其中正确的结论是;____ _______.三、解答题:本大题共6小题,共75分.解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数()()2212cos sin 1,2f x x x x x R =---∈,将函数()f x 向左平移6π个单位后得函数()g x ,设三角形ABC ∆三个角A 、B 、C 的对边分别为a b c 、、.(I )若()0,sin 3sin c f C B A a b ===,求、的值;(II )若()()()0cos ,cos ,1,sin cos tan g B m A B n A A B m n ===-⋅且,求的取值范围.17.(本小题满分12分)从某学校的男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,…,第八组[]190,195,右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(I )求第七组的频率;(II )估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数;(III )若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为{},5x y E x y =-≤事件,事件{}()15F x y P E F =->⋃,求.18.(本小题满分12分)如图,四边形ABCD 为矩形,DA ⊥平面ABE ,AE=BE=BC=2BF ⊥平面ACE 于点F ,且点F 在CE 上. (I )求证ED ⊥BE ;(II )求四棱锥E —ABCD 的体积;(III )设点M 在线段AB 上,且AM=MB ,试在线段CE 上确定一点N ,使得MN//平面DAE. 19.(本小题满分12分)已知数列{}()*n a n N ∈是首项为a ,公比为0q ≠的等比数列,n S 是数列{}n a 的前n 项和,已知3612612S S S S -,,成等比数列.(I )当公比q 取何值时,使得17423a a a ,,成等差数列; (II )在(I )的条件下,求1473223n n T a a a na -=+++⋅⋅⋅+.20.(本小题满分13分)已知函数()()21ln f x a x x =++. (I )讨论函数()f x 的单调性;(II )若对任意的()[]4,21,3a x ∈--∈及时,恒有()2ma f x a ->成立,求实数m 的取值范围.21.(本小题满分14分)在平面直角坐标系xoy 中,已知点()()1,0,1,0A B -,动点C 满足:ABC ∆的周长为2+,记动点C 的轨迹为曲线W. (I )求W 的方程;(II )曲线W 上是否存在这样的点P :它到直线1x =-的距离恰好等于它到点B 的距离?若存在,求出点P 的坐标,若不存在,请说明理由;(III )设E 曲线W 上的一动点,()()0,,0M m m >,求E 和M 两点之间的最大距离.。

2014年全国高考山东省数学(文)试卷及答案【精校版】

2014年全国高考山东省数学(文)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。

满分150分,考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。

3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i + (C) 43i -(D) 43i +(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是(A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根(5) 已知实数,x y 满足(01)xya a a <<<, 则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ (6) 已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是(A) 0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<(7) 已知向量(1,3),(3,)a b m ==. 若向量,a b 的夹角为6π,则实数m =(A)(B)(C) 0(D)(8) 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图。

2014-2015年山东省枣庄一中高三上学期期末数学试卷(文科)及答案解析

2014-2015年山东省枣庄一中高三上学期期末数学试卷(文科)及答案解析

2014-2015学年山东省枣庄一中高三上学期数学期末试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M 的个数是()A.1B.2C.3D.42.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.33.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=2x﹣4,则不等式f(x﹣2)>0的解集为()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}4.(5分)已知两点M(﹣2,0),N(2,0),点P满足•=12,则点P的轨迹方程为()A.+y2=1B.x2+y2=16C.y2﹣x2=8D.x2+y2=85.(5分)已知命题p“任意x>0,lnx≤x﹣1”,则¬p为()A.存在x>0,lnx≤x﹣1B.存在x>0,lnx>x﹣1C.任意x≤0,lnx>x﹣1D.任意x>0,lnx>x﹣16.(5分)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1B.1C.3D.77.(5分)定义在R上的函数f(x)满足f(x)=,则f(2017)的值为()A.﹣1B.0C.1D.28.(5分)已知f(x)=a x﹣2,g(x)=log a|x|,(a>0且a≠1),若f(4)•g(﹣4)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是()A.B.C.D.9.(5分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=﹣1C.x=2D.x=﹣2 10.(5分)已知m>0,n>0,向量,向量,且,则的最小值为()A.9B.16C.18D.8二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)直线l1:x+3y﹣7=0、l2:kx﹣y﹣2=0,若这两条直线互相垂直,则k 的值等于.12.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的表面积为.13.(5分)定义运算,若函数在(﹣∞,m)上单调递减,则实数m的取值范围是.14.(5分)已知x,y满足,则目标函数z=x﹣3y的最小值是.15.(5分)给出下列命题:①若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;③若log m3<log n3<0,则0<m<n<1;④若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.其中正确命题的序号是.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.16.(12分)已知函数(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.求y=g(x)在区间[0,10π]上零点的个数.17.(12分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为DD1、DB的中点.(Ⅰ)求证:EF∥平面ABC1D1;(Ⅱ)求证:EF⊥B1C.18.(12分)参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.19.(12分)在数列{a n}中,,2a n=a n﹣1﹣n﹣1(n≥2,n∈N*),设b n=a n+n.(Ⅰ)证明:数列{b n}是等比数列;(Ⅱ)求数列{nb n}的前n项和T n;(Ⅲ)若,P n为数列的前n项和,求不超过P2014的最大的整数.20.(13分)已知椭圆C:的离心率为,右焦点F2到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A 为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.21.(14分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2(e≈2.71,a∈R).(Ⅰ)判断曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)的公共点个数;(Ⅱ)当时,若函数y=f(x)﹣g(x)有两个零点,求a的取值范围.2014-2015学年山东省枣庄一中高三上学期数学期末试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M 的个数是()A.1B.2C.3D.4【解答】解:∵M∩{a1,a2,a3}={a1,a2}∴a1,a2是M中的元素,a3不是M中的元素∵M⊆{a1,a2,a3,a4}∴M={a1,a2}或M={a1,a2,a4},故选:B.2.(5分)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.3.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=2x﹣4,则不等式f(x﹣2)>0的解集为()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}【解答】解:由于当x≥0时,f(x)=2x﹣4,则f(2)=0,且x≥0为增函数,函数f(x)是偶函数,则f(x)=f(|x|),则不等式f(x﹣2)>0即为f(|x﹣2|)>f(2),即有|x﹣2|>2,解得,x>4或x<0,故选:B.4.(5分)已知两点M(﹣2,0),N(2,0),点P满足•=12,则点P的轨迹方程为()A.+y2=1B.x2+y2=16C.y2﹣x2=8D.x2+y2=8【解答】解:设P(x,y),则=(﹣2﹣x,﹣y),=(2﹣x,﹣y)∴•=(2﹣x)(﹣2﹣x)+y2=12整理可得x2+y2=16.故选:B.5.(5分)已知命题p“任意x>0,lnx≤x﹣1”,则¬p为()A.存在x>0,lnx≤x﹣1B.存在x>0,lnx>x﹣1C.任意x≤0,lnx>x﹣1D.任意x>0,lnx>x﹣1【解答】解:∵命题p是全称命题,∴利用全称命题的否定是特称命题可得:¬p:存在x>0,lnx>x﹣1.故选:B.6.(5分)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1B.1C.3D.7【解答】解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选:B.7.(5分)定义在R上的函数f(x)满足f(x)=,则f(2017)的值为()A.﹣1B.0C.1D.2【解答】解:∵定义在R上的函数f(x)满足f(x)=,∴f(﹣1)=1,f(0)=0,f(1)=f(0)﹣f(﹣1)=﹣1,f(2)=f(1)﹣f(0)=﹣1,f(3)=f(2)﹣f(1)=0,f(4)=f(3)﹣f(2)=1,f(5)=f(4)﹣f(3)=1,f(6)=f(5)﹣f(4)=0,f(7)=f(6)﹣f(5)=﹣1,故当x∈N时,函数值以6为周期,呈现周期性变化,故f(2017)=f(1)=﹣1,故选:A.8.(5分)已知f(x)=a x﹣2,g(x)=log a|x|,(a>0且a≠1),若f(4)•g(﹣4)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是()A.B.C.D.【解答】解:由题意f(x)=a x﹣2是指数型的,g(x)=log a|x|是对数型的且是一个偶函数,由f(4)•g(﹣4)<0,可得出g(﹣4)<0,由此特征可以确定C、D两选项不正确,A,B两选项中,在(0,+∞)上,函数是减函数,故其底数a∈(0,1)由此知f(x)=a x﹣2,是一个减函数,由此知A不对,B选项是正确答案故选:B.9.(5分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=﹣1C.x=2D.x=﹣2【解答】解:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,两式相减得:(y1﹣y2)(y1+y2)=2p(x1﹣x2),又因为直线的斜率为1,所以=1,所以有y1+y2=2p,又线段AB的中点的纵坐标为2,即y1+y2=4,所以p=2,所以抛物线的准线方程为x=﹣=﹣1.故选:B.10.(5分)已知m>0,n>0,向量,向量,且,则的最小值为()A.9B.16C.18D.8【解答】解:∵向量,向量,∴=(m+1,n﹣2).∵,∴m+1+n﹣2=0,化为m+n=1.∵m>0,n>0,∴=(m+n)=5+=9.当且仅当n=2m=时取等号.∴的最小值为9.故选:A.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)直线l1:x+3y﹣7=0、l2:kx﹣y﹣2=0,若这两条直线互相垂直,则k 的值等于3.【解答】解:直线l1:x+3y﹣7=0、l2:kx﹣y﹣2=0,分别化为:l1:,l2:y=kx﹣2.∵这两条直线互相垂直, ∴,解得k=3.故答案为:3.12.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的表面积为+1+.【解答】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC ⊥面ABC ,△PAC 是边长为2的正三角形,△ABC 是边AC=2,边AC 上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S △PAC +S △ABC +2S △PAB =××2+×2×1+2×××=+1+.故答案为:+1+13.(5分)定义运算,若函数在(﹣∞,m )上单调递减,则实数m 的取值范围是 (﹣∞,﹣2] .【解答】解:由题意可得函数=(x ﹣1)(x +3)﹣2(﹣x )=x 2+4x﹣3的对称轴为x=﹣2,且函数f (x ) 在(﹣∞,m )上单调递减,故有m ≤﹣2,故答案为(﹣∞,﹣2].14.(5分)已知x,y满足,则目标函数z=x﹣3y的最小值是﹣7.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣3y得y=,平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最小,由,解得,即A(2,3),此时z=2﹣3×3=﹣7,故答案为:﹣715.(5分)给出下列命题:①若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;③若log m3<log n3<0,则0<m<n<1;④若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.其中正确命题的序号是①②④.【解答】解:①若y=f(x)是奇函数,则f(﹣x)=﹣f(x),∴|f(﹣x)|=|﹣f (x)|=|f(x)|,即|f(x)|为偶函数,∴图象关于y轴对称;正确.②若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则f(x)≠0,∴f(x)•f(x+4)=f(x+4)•f(x+8)=1,即f(x+8)=f(x),则8是函数f(x)的一个周期;正确.③若log m3<log n3<0,则,即log3n<log3m<0,即0<n<m<1,∴③错误.④设t=|x﹣a|,则函数y=e t单调递增,t=|x﹣a|在[a,+∞)上也单调递增,∴若f(x)=e|x﹣a|在[1,+∞)上是增函数,则a≤1.正确.∴正确的是①②④.故答案为:①②④.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.16.(12分)已知函数(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.求y=g(x)在区间[0,10π]上零点的个数.【解答】解:(Ⅰ)由题意,可得f(x)==.∵函数的最小正周期为π,∴=π,解之得ω=1.由此可得函数的解析式为.令,解之得∴函数f(x)的单调增区间是.(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,可得函数y=f(x+)+1的图象,∵∴g(x)=+1=2sin2x+1,可得y=g(x)的解析式为g(x)=2sin2x+1.令g(x)=0,得sin2x=﹣,可得2x=或2x=解之得或∴函数g(x)在每个周期上恰有两个零点,∵函数y=g(x)在[0,10π]恰好有10个周期,∴g(x)在[0,10π]上有20个零点.17.(12分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为DD1、DB的中点.(Ⅰ)求证:EF∥平面ABC1D1;(Ⅱ)求证:EF⊥B1C.【解答】证明:(Ⅰ)连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则⇒EF∥平面ABC1D1;(Ⅱ)根据题意可知:⇒⇒⇒EF⊥B1C.18.(12分)参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[80,90),[90,100]内的人数;(Ⅱ)若从分数在[80,100]内的学生中任选两人进行调研谈话,求恰好有一人分数在[90,100]内的概率.【解答】解:(Ⅰ)分数在[50,60)内的频数为2,由频率分布直方图可以看出,分数在[90,100]内同样有2人.由,得n=25,茎叶图可知抽测成绩的中位数为73.分数在[80,90)之间的人数为25﹣(2+7+10+2)=4参加数学竞赛人数n=25,中位数为73,分数在[80,90)、[90,100]内的人数分别为4人、2人.(Ⅱ)设“在[80,100]内的学生中任选两人,恰好有一人分数在[90,100]内”为事件M,将[80,90)内的4人编号为a,b,c,d;[90,100]内的2人编号为A,B在[80,100]内的任取两人的基本事件为:ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15个其中,恰好有一人分数在[90,100]内的基本事件有aA,aB,bA,bB,cA,cB,dA,dB,共8个故所求的概率得答:恰好有一人分数在[90,100]内的概率为19.(12分)在数列{a n}中,,2a n=a n﹣1﹣n﹣1(n≥2,n∈N*),设b n=a n+n.(Ⅰ)证明:数列{b n}是等比数列;(Ⅱ)求数列{nb n}的前n项和T n;(Ⅲ)若,P n为数列的前n项和,求不超过P2014的最大的整数.【解答】(Ⅰ)证明:由2a n=a n﹣1﹣n﹣1两边加2n得,2(a n+n)=a n﹣1+n﹣1,∴,即,∴数列{b n}是公比为2的等比数列,其首项为,;(Ⅱ)解:由(Ⅰ)知,,则①,②,①﹣②得,∴;(Ⅲ)解:由(Ⅰ)得,∴c n=n,,=,∴不超过P2014的最大的整数是2014.20.(13分)已知椭圆C:的离心率为,右焦点F2到直线l1:3x+4y=0的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A 为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.【解答】(Ⅰ)解:由题意得,,∴c=1,a=2,∴所求椭圆方程为;(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x﹣1),再设点E(x1,y1),点F(x2,y2),将直线l方程y=k(x﹣1)代入椭圆,整理得:(4k2+3)x2﹣8k2x+4k2﹣12=0.∵点P在椭圆内,∴直线l和椭圆都相交,△>0恒成立,且,直线AE的方程为:,直线AF的方程为:.令x=3,得点,,∴点P的坐标,直线PF2的斜率为=,将代入上式,得:∴k•k'为定值.21.(14分)已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2(e≈2.71,a∈R).(Ⅰ)判断曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)的公共点个数;(Ⅱ)当时,若函数y=f(x)﹣g(x)有两个零点,求a的取值范围.【解答】解:(Ⅰ)f'(x)=lnx+1,所以斜率k=f'(1)=1…(2分)又f(1)=0,曲线在点(1,0)处的切线方程为y=x﹣1…(3分)由…(4分)由△=(1﹣a)2﹣4=a2﹣2a﹣3可知:当△>0时,即a<﹣1或a>3时,有两个公共点;当△=0时,即a=﹣1或a=3时,有一个公共点;当△<0时,即﹣1<a<3时,没有公共点…(7分)(Ⅱ)y=f(x)﹣g(x)=x2﹣ax+2+xlnx,由y=0得…(8分)令,则当,由h'(x)=0得x=1…(10分)所以,h(x)在上单调递减,在[1,e]上单调递增因此,h min(x)=h(1)=3…(11分)由,,比较可知所以,当3<a≤时,函数y=f(x)﹣g(x)有两个零点.…(14分)。

山东省枣庄市2014届高三3月模拟考试数学(文)试题(word版)(有答案)

山东省枣庄市2014届高三3月模拟考试数学(文)试题(word版)(有答案)

山东省枣庄市2014届高三3月高考模拟数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.考试结束后,监考人员将答题卡和第Ⅱ卷的答题纸一并收回一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数z 满足iz=1+iA .1+iB .1-iC .-1+iD .-1-i2.设集合A={1,2},则满足{1,2,3}A B =的集合B 的个数是A .1B .3C .4D .63.函数2()1(41)x f x og =+的值域为A .[0,)+∞B .(0,)+∞C .[1,)+∞D .(1,)+∞4.已知函数()f x 为偶函数,当0,()sin cos ,()4x f x x x f π<=+=时则 A .0 B .2 C .-2 D .15.某企业2014年2月份生产A 、B 、C 三种产品共6000件,根据分层拍样的结果,该企业统计员制作了如产品类别 A B C产品数量 2600样本容量 260B 产品的样本容量比C 产品的样本容量多20,根据以上信息,可得C 的产品数量是A .160B .180C .1600D .18006.圆2222(2)42210x y x y x y ++=+--+=与圆A .内切B .相切C . 外切D .相离7.关于x 的不等式20()x ax a a R -+>∈在R 上恒成立的充分不必要条件是A .04a a <>或B .02a <<C .04a <<D .08a << 8.函数cos()x y xπ=的图象大致为9.如图为长方体与圆柱构成的组合体的三视图,则该几何体的体积为A .6432π+B .64+64πC .256+64πD .256+128π10.已知△ABC 是边长为4的等边三角形,点D 、E分别满足DC AC =-、BE EC =,.AB DE =则A .8B .4C .-8D .-4第Ⅱ卷(非选择题 共100分)说明:第Ⅱ卷的答案必须用0.5mm 黑色签字笔答在答题纸的指定位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.若实数x ,y 满足不等式组1,1,25,x y x y ≥⎧⎪≥⎨⎪+≤⎩则y x 的最大值是 。

2014年普通高等学校招生全国统一考试(山东卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(山东卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I卷和第II 卷两部分,共4页。

满分150分,考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如果改动,用橡皮擦干净后,再选涂其他答案标号、答案写在试卷上无效。

3. 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=(A) 34i -(B) 34i +(C) 43i -(D) 43i +1.【答案】A【解析】1,2,2-==∴-=+b a bi i a Θ,1,2==∴b a i i i i bi a 4344)2()(222-=+-=-=+∴.(2) 设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =I(A) (0,2](B) (1,2)(C) [1,2)(D) (1,4)2.【答案】C【解析】.20,022<<∴<-x x x Θ[]4,1)20(==B A ,,,数轴上表示出来得到=B A I [1,2) .(3)函数()f x =(A) (0,2)(B) (0,2](C) (2,)+∞(D) [2,)+∞3.【答案】C【解析】01log 2>-x 故2>x .(4) 用反证法证明命题:“设,a b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是 (A) 方程30x ax b ++=没有实根(B) 方程30x ax b ++=至多有一个实根(C) 方程30x ax b ++=至多有两个实根 (D) 方程30x ax b ++=恰好有两个实根4.【答案】A【解析】“至少有一个”的对立面应是“没有”,故选A(5) 已知实数,x y 满足(01)xya a a <<<,则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ 5.【答案】A【解析】由)10(<<<a a a yx得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。

(完整word版)2014年山东省高考文科数学真题及答案,推荐文档

(完整word版)2014年山东省高考文科数学真题及答案,推荐文档

2014年山东省高考数学试卷(文科)一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1 7.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.189.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)函数y=sin2x+cos2x的最小正周期为.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.三.解答题共6小题,共75分16.(12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区A B C数量50150100(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.2014年山东省高考数学试卷(文科)参考答案与试题解析一.选择题每小题5分,共50分1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i【分析】利用两个复数相等的充要条件求得a、b的值,再利用两个复数代数形式的乘法法则求得(a+bi)2的值.【解答】解:∵a+i=2﹣bi,∴a=2、b=﹣1,则(a+bi)2=(2﹣i)2=3﹣4i,故选:A.2.(5分)(2014•山东)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)【分析】分别解出集合A和B,再根据交集的定义计算即可.【解答】解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)【分析】分析可知,,解出x即可.【解答】解:由题意可得,,解得,即x>2.∴所求定义域为(2,+∞).故选:C.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x >y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.6.(5分)(2014•山东)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.7.(5分)(2014•山东)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣【分析】由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.【解答】解:由题意可得cos===,解得m=,故选:B.8.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.9.(5分)(2014•山东)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)【分析】由题意判断f(x)为准偶函数的对称轴,然后判断选项即可.【解答】解:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.故选:D.10.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.二.填空题每小题5分,共25分11.(5分)(2014•山东)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.12.(5分)(2014•山东)函数y=sin2x+cos2x的最小正周期为π.【分析】利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期【解答】解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.13.(5分)(2014•山东)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.【分析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.【解答】解:∵一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,∴h=1,棱锥的斜高为:==2,该六棱锥的侧面积为:=12.故答案为:12.14.(5分)(2014•山东)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.【分析】由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.15.(5分)(2014•山东)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为y=±x.【分析】求出双曲线的右顶点A(a,0),拋物线x2=2py(p>0)的焦点及准线方程,根据已知条件得出及,求出a=b,得双曲线的渐近线方程为:y=±x.【解答】解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,由①②,得=2c,即c2=2a2,∵c2=a2+b2,∴a=b,∴双曲线的渐近线方程为:y=±x,故答案为:y=±x.三.解答题共6小题,共75分16.(12分)(2014•山东)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区A B C数量50150100(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【分析】(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A,B,C各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)A,B,C三个地区商品的总数量为50+150+100=300,故抽样比k==,故A地区抽取的商品的数量为:×50=1;B地区抽取的商品的数量为:×150=3;C地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A,则这2件商品可能都来自B地区或C地区,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.17.(12分)(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.18.(12分)(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.【分析】(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.【解答】证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.19.(12分)(2014•山东)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.【分析】(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).对n分奇偶讨论即可得出.【解答】解:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n﹣1)d=2+(n﹣1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).当n=2k(k∈N*)时,b2k﹣b2k﹣1=2k(2k+1)﹣(2k﹣1)(2k﹣1+1)=4kT n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣b2k﹣1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k﹣1(k∈N*)时,T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣2﹣b2k﹣3)﹣b2k﹣1=n(n+1)=﹣.故T n=.20.(13分)(2014•山东)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.【分析】(Ⅰ)根据导数的几何意义,曲线y=f(x)在x=1处的切线方程为y﹣f (1)=f′(1)(x﹣1),代入计算即可.(Ⅱ)先对其进行求导,即,考虑函数g(x)=ax2+(2a+2)x+a,分成a≥0,﹣<a<0,a≤﹣三种情况分别讨论即可.【解答】解:,(Ⅰ)当a=0时,,f′(1)=,f(1)=0∴曲线y=f(x)在点(1,f(1))处的切线方程为y=(x﹣1).(Ⅱ)(1)当a≥0时,由x>0知f′(x)>0,即f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)>0,则>0,整理得,ax2+(2a+2)x+a >0,令f′(x)<0,则<0,整理得,ax2+(2a+2)x+a<0.以下考虑函数g(x)=ax2+(2a+2)x+a,g(0)=a<0.,对称轴方程.①当a≤﹣时,△≤0,∴g(x)<0恒成立.(x>0)②当﹣<a<0时,此时,对称轴方程>0,∴g(x)=0的两根一正一负,计算得当0<x<时,g(x)>0;当x>时,g(x)<0.综合(1)(2)可知,当a≤﹣时,f(x)在(0,+∞)上单调递减;当﹣<a<0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减;当a>0时,f(x)在(0,+∞)上单调递增.21.(14分)(2014•山东)在平面直角坐标系xOy中,椭圆C:+=1(a>b >0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.【分析】(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b 的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.【解答】解:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2.将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2﹣4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S==.当且仅当时等号成立.∴△OMN面积的最大值为.。

2014年山东省枣庄市中考数学试卷附详细答案(原版+解析版)

2014年山东省枣庄市中考数学试卷附详细答案(原版+解析版)

2014年山东省枣庄市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()±2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是()6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()9.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()11.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:则该二次函数图象的对称轴为()x=12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为cm2.17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB 交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2014年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)±的算术平方根是2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()个数据,平均数=,方差5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决)7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则xy=x+29.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列1=±>2则该二次函数图象的对称轴为()x=x==.12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()BG=,二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.,,代入②得=5,)=故答案为:.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为..故答案为:16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.BEAF=kCF=3AD=3AE=BEAF=k=,即=,CF=3k的比值是=故答案为18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.CD==6cmBE=CD=3=33+33+3三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.=.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.=144°=221.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)OE=,DE=,+=30BD=22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.OD=OD=AC,OD=23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.,所以.=,即=,,.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB 交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.AOE=,y=的图象过y=,的图象上,n=,解得,+25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.=,•HD•HB=4===,,),时,线段.。

2014-2015年山东省枣庄一中高三上学期期末数学试卷(文科)和答案

2014-2015年山东省枣庄一中高三上学期期末数学试卷(文科)和答案

D.{x|x<﹣2 或 x>2} • =12,则点 P 的轨
4. (5 分)已知两点 M(﹣2,0) ,N(2,0) ,点 P 满足 迹方程为( A. +y2=1 ) B.x2+y2=16 C.y2﹣x2=8
D.x2+y2=8 )
5. (5 分)已知命题 p“任意 x>0,lnx≤x﹣1”,则¬p 为( A.存在 x>0,lnx≤x﹣1 C.任意 x≤0,lnx>x﹣1
=b+i(a,b∈R) ,其中 i 为虚数单位,则 a+b=( B.1 C.2 D.3
3. (5 分)设函数 f(x)是偶函数,当 x≥0 时,f(x)=2x﹣4,则不等式 f(x﹣ 2)>0 的解集为( A.{x|x<﹣2 或 x>4} >6} ) B.{x|x<0 或 x>4} C. {x|x<0 或 x
10. (5 分)已知 m>0,n>0,向量 则 A.9 的最小值为( B.16 )
C.18
D.8
二.填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在答题卡的相应 位置. 11. (5 分)直线 l1:x+3y﹣7=0、l2:kx﹣y﹣2=0,若这两条直线互相垂直,则 k 的值等于 .
第 3 页(共 19 页)
分数在[90,100]内的概率.
19. (12 分) 在数列{an}中,
, 2an=an﹣1﹣n﹣1 (n≥2, n∈N*) , 设 bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列; (Ⅱ)求数列{nbn}的前 n 项和 Tn; (Ⅲ)若 最大的整数. 20. (13 分)已知椭圆 C: l1:3x+4y=0 的距离为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)过椭圆右焦点 F2 斜率为 k(k≠0)的直线 l 与椭圆 C 相交于 E、F 两点,A 为椭圆的右顶点,直线 AE,AF 分别交直线 x=3 于点 M,N,线段 MN 的中点 为 P,记直线 PF2 的斜率为 k′,求证:k•k′为定值. 21. (14 分)已知函数 f(x)=xlnx,g(x)=﹣x2+ax﹣2(e≈2.71,a∈R) . (Ⅰ)判断曲线 y=f(x)在点(1,f(1) )处的切线与曲线 y=g(x)的公共点个 数; (Ⅱ)当 时,若函数 y=f(x)﹣g(x)有两个零点,求 a 的取值范围. 的离心率为 ,右焦点 F2 到直线 ,Pn 为数列 的前 n 项和,求不超过 P2014 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东枣庄市2014届高三期中考试文科数学
一、选择题:本大题共12个小月,每小月5分,共60分 1已知全集U ={1,2,3,4,5,6),集合A ={2,4,5),B ={1,3,5),则
A. {1}
B. {3}
C. {1,3,5,6}
D. {1,3} 2.“
”是“
”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件 3. 函数
的值域是
A.[0,+∞)
B.[0,4]
C.[0,4)
D.(0,4) 4.在等差数列
中,
的前5项和
A.15
B.7
C.20
D.25
5.已知命题p :俩函数的图象关于Y 轴对称,命题q :正数的对数都是正数,则下列命题中 为真命题的是
7、函数y =sin(2x +ϕ),(0,
)2
π
ϕ∈的部分图象如图,则ϕ的值为
8.如图是张大爷离开家晨练过程中离家距离y 与行走时间x 之间函教关
系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是
9、化简的结果是
A 、-1
B 、1
C 、tan α
D 、-tan α 10、若1,3为函数
的两个极值点,则曲线y =f (x )在点(-
1,f (-1))处的切线的斜率为
A 、8
B 、6
C 、4
D 、0 11.如图,
分别为x ,y 非负半轴上的单位向量,点C 在x 轴上且在点A 的右侧,D 、
E 分别为△ABC 的边AB 、BC 上的点.若

共线.
共线,则

值为
A 、-1
B 、0
C 、1
D 、2
11.己知f (x )是定义在(0.+∞)上的单调函数,且对任意的
总在函数y =f (x )的图象上,则方程的解所在的区间为
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
第II 卷(非选择题共90分)
说明:第II 卷的答案必须用0.5mm 黑色签字笔答在答题纸的指定位置上. 二、填空题.本大题共4个小题,每小题4分,共16分 13、不等式
的解_________
14.已知向量
15.已知函数
单调递减.则的取值范围是____ 16.写出一个满足的非常数函数:f (x)=______
三、解答题(共74分) 17.(本小题满分12分) 已知函数
且y =f(x)图象的一个对称
中心到最近的对称轴的距离为4
π· (1)求ω的值. (2)求f(x)在与上的最大值和最小值及取最大值、最小值时相应的x 的值.
18.(本小题满分12分)
已知函数
(1)用单调函数的定义探索函数f(x)的单调性:
(2)求实数a使函数f(x)为奇函数.
19.(本小题满分12分)
已知向量
求证:为正三角形·
20.(本小题满分12分)
如图,在△ABC中,∠ABC=900,AB,BC=1, P为△ABC内一点,
∠BPC=900.
(1)若PC.求PA.
(2)若∠ABC=1200,求tan∠P AB的值
21.(本小题满分12分)
已知数列满足:.,数列满足.(1)证明数列是等比数列,并求其通项公式:
(2)求数列的前n项和
22.(本小题满分14分)
已知定义在R上的函数f (x)总有导函数'()
f x,定义
x R,e=2.71828一是自然对数的底数.
(1)若f(x)>0,且f(x)+'()
f x<0,试分别判断函数F(x)和G(x)的单调性:
(2)若f(x)=x2一3x+3,.
①求函数F(x)的最小值:
②比较F(t)与3
4
et的大小。

相关文档
最新文档