热力学统计物理习题

合集下载

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中 是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是 函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。

解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。

1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。

线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

热力学统计训练题.doc

热力学统计训练题.doc

一、填空题1.热力学与统计物理的研究任务是。

2.热力学的研究方法是。

3.统计物理认为,热现象是,而实际观测到的宏观热力学量则是。

4.描写热力学系统平衡状态参量按与系统的扩展性关系分有、二大类,而是热力学系统特有的状态参量。

5.对于一个P、V、T系统,其α,β,κT之间存在关系。

6.1摩尔范德瓦耳斯气体的状态方程是,其压强系数为。

7.对于简单系统(,,)0f p V T=,则这三个变量的领导数之间存在一个循环关系是。

8.理想气体的压强系数为, 等温压缩系数κ=。

T9.对于表面张力系数为σ液体表面系统,当表面积增加dA时,外界所做的功为。

10.一对于电介质系统,使其极化,外界所作的功是。

11.般情况下,准静态过程中,外界对系统做功为。

12.一个单间的固体或液体系统,其状态方程可表为。

13.热力学第一定律的数学表达式是其实质是。

14.对于平衡热辐射,斯特藩-玻耳兹曼定律的表达式为。

15.对于一个普遍的循环过程,克芝修斯的等式和不等式为。

16.热力学第二定律的数学表达式是。

17.热力学第二定律的开氏表述为、第二定律的实质是指出。

18.卡诺定理的表述是。

19. 麦氏关系 TS p ⎛⎫∂= ⎪∂⎝⎭ ,S T V ∂⎛⎫= ⎪∂⎝⎭ 。

20. 已知系统的特征函数F(T,V),则系统的S = ,系统的压强p= 。

21. 对于孤立系统,以S ,p 为独立变量,其特征函数的全微分是 。

22. 对一个均匀系,选S 、V 作为独立变量时,其特征函数是 ,选T 、p 作为独立变量时,其特征函数是 。

23. 取T 、V 为状态参量,已知系统的状态方程,则()T U V∂=∂ 。

24. T, p 为独立变量,温度不变时焓随压强的变化率与物态方程的关系是TH P ∂⎛⎫= ⎪∂⎝⎭ 。

25. 对于简单系统,定压热容量与定容热容量之差与物态方程的关系式是p V C C -= 。

26. 熵增加原理的表述是: 。

27. 气体节流膨胀,其焦汤系数μ的定义是 ,在T 、P 图上μ 的区域是致冷区。

热力学统计物理-基础题库

热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。

B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。

C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。

D . 热力学研究的对象是单个的微观粒子。

答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。

热力学与统计物理试题

热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。

若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。

若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。

在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。

对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。

2. 理想气体的内能只与温度有关,与体积和压力________。

3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。

4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。

5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。

热力学统计物理练习题及答案

热力学统计物理练习题及答案

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。

11.循环关系的表达式为 。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指 的永动机。

17.内能是 函数,内能的改变决定于 和 。

18.焓是 函数,在等压过程中,焓的变化等于 的热量。

19.理想气体内能 温度有关,而与体积 。

20.理想气体的焓 温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。

22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。

热力学与统计物理 - 习题课一 2024-11-18

热力学与统计物理 - 习题课一 2024-11-18

第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《热力学统计物理2》教学大纲
课程名称(英文):热力学统计物理2(Thermodynamics and Statistical Mechanics Ⅱ)
课程代码:0612933
课程类别:提高拓宽课程
学时:34学时
学分:2学分
考核办法:考查
适用对象:物理学本科专业
一、课程简介
《热力学统计物理2》课程是高等学校物理学专业本科选修的课程。

是在《热力学统计物理1》的基础上进一步掌握热力学统计物理的基本概念和原理,加深与扩展热力学统计物理的内容,使学生对热力学统计物理的概念、原理与基本理论有更透彻的理解与掌握。

同时掌握用热力学统计物理解决实际问题的方法,进一步提高学生的解题技巧与能力。

为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。

二、教学目的及要求
1、掌握多元系热力学函数的一般性质和多元系的热力学方程,了解多元系的化学平衡条件。

2、系综理论可以应用于有相互作用粒子组成的系统。

掌握系综理论的基本概念,以及微正则系综、正则系综和巨正则系综。

3、进一步提高学生的解题技巧与能力。

为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。

三、教学重点和难点
教学重点和难点:多元系的热力学方程及复相平衡条件,热力学第三定律;相空间,刘维定理,微正则系综,正则系综,巨正则系综。

四、与其它课程的关系
1、前期课程:力学、热学、原子物理、量子力学、高等数学,《热力学统计物理(1)》。

2、材料物理和固体物理等课程的先行课。

五、教学内容
第四章多元系的复相平衡和化学平衡(10学时)
本章主要教学内容:
4.1 多元系的热力学函数和热力学方程:
(1)多元单相系的热力学函数:欧勒定律偏摩尔量;
(2)多元单相系的热力学基本方程:多元方程吉布斯关系;
(3)多元复相的系热力学函数与基本方程。

4.2 多元系的复相平衡条件:
力学平衡条件:Pα=Pβ;热平衡条件:Tα=Tβ;相平衡条件:μα i=μβi
(i=1,2,3,...)
4.3 吉布斯相律:证明吉布斯相律
*4.5 化学平衡条件:
化学反应式一般表达式;化学反平衡条件。

4.6 混合理想气体的性质:
混合理想气体的物态方程;混合理想气体的热力学基本方程。

4.8 热力学第三定律:
能斯脱定理与热力学第三定律;由能斯脱定理推导热学第三定律;绝
对熵。

本章的教学目的及要求:掌握多元系热力学函数的一般性质和多元系的热力学方程,了解多元系的化学平衡条件。

本章的教学重点和难点:多元系的热力学方程及复相平衡条件,热力学第三定律。

第九章系统理论(10学时)
本章主要教学内容:
9.1 系统, 相空间,列维定理:
(1)系统,系统法与几率法,μ空间与r空间;
(2)系统微观状态的描述;
(3)列维定理。

9.2 微正则分布:
(1)微正则系综;
(2)微正则分布(等几率原理):①经典表达式,②量子表达式,③能量
在E-E+dE壳层内的微观状态数公式。

9.3 微正则分布的热力学公式:
(1)求内能,广义力,熵的公式;
(2)求能量的相对涨落。

9.10 巨正则分布:开放系统,配分函数,巨正则分布。

9.11巨正则分布的热力学函公式:
(1)求内能、广义力、熵的公式;
(2)求粒子数涨落和相对涨落。

本章的教学目的及要求:系综理论可以应用于有相互作用粒子组成的系统。

掌握系综理论的基本概念,以及微正则系综、正则系综和巨正则系综。

本章的教学重点和难点:相空间,刘维定理,微正则系综,正则系综,巨正则系综
习题讲解(14学时)
1、关于麦氏关系应用(2学时)
2、有关多元复相系平衡的计算(2学时)
2、量子态的计算(或微观状态数的计算)(2学时)
3、能量均分定理的应用:(2学时)
4、关于光子气和电子气的计算(2学时)
5、系综理论的计算(4学时)
本讲的教学目的及要求:加深与扩展热力学统计物理内容,使学生对热力
学统计物理的概念、原理与基本理论有更透彻的理解与掌握,掌握用热力学统计物理解决实际问题的方法,提高学生的解题技巧与能力。

六、教材及参考书目
1、教材:
①《热力学.统计物理》(第三版),汪志诚,高等教育出版社,2003
②自编讲义
2、教学参考书:
①《热力学简程》(第二版),王竹溪,高等教育出版社,1978
②《统计物理学导论》(第二版),王竹溪,人民教育出版社,1964
③《热力学与统计物理学》(第一版),马本、高尚惠、孙煜,人民教育出版社,2003
④《热力学》(第三版),熊吟涛,高等学校出版社,1979
⑤《统计物理学》,熊吟涛,高等学校出版社,1981
⑥《相对论物理.统计物理》(统计物理部分),张家铝、曹烈兆、陈兆甲,中国科学技术大学出版社,1991
⑦Fundamentals of statishical and Thermal physics ,Kdif F, Mc Graw-Hill Book company.
⑧《统计物理学基础》(第一版),朱文浩、顾毓沁,清华大学出版社,1983
七、教学方法与建议
主要采用讲授课,注意培养学生思维和独立思考能力,注意各章之间的联系。

相关文档
最新文档