热力学统计物理试题
(完整版)热力学与统计物理_试题及答案

6! 1 4!1!1!
30;
6!
C
1 3! 3!
20
所有分布总的微观态数为: A B C 6 30 20 56
pA A / 6 / 56 0.107; 各分布对应的概率为: pB B / 30 / 56 0.536;
pC C / 20 / 56 0.357;
;
处于激发态的粒子数为: N2
N Z1
e2
N
e0 e0 e0
;
温度为 T 时处于激发态的粒子数与处于基态的粒子数之为:
N2 N1
e0 e0
0
e kT 0
e kT
极端高温时:ε0《kT, N2 1 , 即处于激发态的粒子数与处于基 N1
态的粒子数基本相同;
极端低温时:ε0》kT, N2 0 , 即粒子几乎全部处于基态。 N1
5.
l
l
给出内能变化的两个原因,其中( ldal )
l
项描述传热,( aldl )项描述做功。
l
6.对粒子数守恒的玻色系统,温度下降会使粒子的化学势( 升高 ); 如果温度足够低,则会发生( 玻色——爱因斯坦凝聚 )。这时系统的 能量 U0=(0),压强 p0=(0),熵 S0=(0)。
7.已知粒子遵从经典玻尔兹曼分布,其能量表达式为
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似 f0 与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量 均正比于 e 。
解:费米气体分布函数为:
f
1 e
1
(1)
f
e
1
1 e
e (1 e ) e
e2 2
热力学与统计物理题库

热力学与统计物理题库《热力学与统计物理》练习题一简答题1.单元复相系的平衡条件;2.熵增原理3.能量均分定理4.热力学第一定律; 5.节流过程6.热力学第二定律的克氏表述计算题1. 1 mol 理想气体,在C 027的恒温下体积发生膨胀,由20大气压准静态地变到1大气压。
求气体所作的功和所吸的热。
2.求证(a )0<H P S ; (b) 0>??? ????UV S3.试证明在相变中物质摩尔内能的变化为 (1)p dTu L T dp=-如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式简化。
4. 1 mol 范氏气体,在准静态等温过程中体积由1V 膨胀至2V ,求气体在过程中所作的功。
5.试证明,在相同的压力降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落。
6.蒸汽与液相达到平衡。
设蒸汽可看作理想气体,液相的比容比气相的比容小得多,可以略而不计。
以dvdT表在维持两相平衡的条件下,蒸汽体积随温度的变化率。
试证明蒸汽的两相平衡膨胀系数为111dv L v dT T RT=- ? ?????7. 在C 025下,压力在0至1000atm 之间,测得水的体积为:3623118.0660.715100.04610V p p cm mol ---=-?+??,如果保持温度不变,将1 mol 的水从1 atm 加压至1000 atm ,求外界所作的功。
8.试讨论以平衡辐射为工作物质的卡诺循环,计算其效率。
9.在三相点附近,固态氨的饱和蒸汽压(单位为大气压)方程为3754ln 18.70p T =- 液态的蒸汽压方程为 3063ln 15.16p T=-试求三相点的温度和压力,氨的气化热和升华热,在三相点的熔解热10. 在C 00和1atm 下,空气的密度为300129.0-?cm g 。
空气的定压比热11238.0--??=K g cal C p ,41.1=γ。
今有327cm 的空气,(i)若维持体积不变,将空气由C 00加热至C 020,试计算所需的热量。
完整版热力学统计物理试题

简述题1.写出系统处在平衡态的自由能判据。
一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。
即F0 。
2.写出系统处在平衡态的吉布斯函数判据。
一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。
即G0 。
3.写出系统处在平衡态的熵判据。
一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。
即S 04.熵的统计讲解。
由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。
而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。
故,熵是系统内部凌乱度的量度。
5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。
在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。
6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。
7.能量均分定理。
对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。
8等概率原理。
对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。
9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。
(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。
热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。
B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。
C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。
D . 热力学研究的对象是单个的微观粒子。
答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。
热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
高考物理热力学与统计力学题目训练卷

高考物理热力学与统计力学题目训练卷在高考物理中,热力学与统计力学是重要的知识点板块。
为了帮助同学们更好地掌握这部分内容,提高解题能力,以下为大家精心准备了一份题目训练卷。
一、选择题1、一定质量的理想气体,在保持温度不变的情况下,体积增大,则()A 气体分子的平均动能增大B 气体分子的平均动能减小C 单位时间内气体分子对器壁单位面积的碰撞次数减少D 单位时间内气体分子对器壁单位面积的碰撞次数增加答案:C解析:温度是分子平均动能的标志,温度不变,分子平均动能不变,A、B 选项错误。
理想气体体积增大,单位体积内分子数减少,单位时间内气体分子对器壁单位面积的碰撞次数减少,C 选项正确,D 选项错误。
2、对于一定质量的理想气体,下列说法正确的是()A 若气体的压强和体积都不变,其内能也一定不变B 若气体的温度不断升高,其压强也一定不断增大C 若气体从外界吸收了热量,其内能一定增加D 若气体对外做功,其内能一定减少答案:A解析:对于一定质量的理想气体,若压强和体积都不变,则温度也不变,内能不变,A 选项正确。
气体的温度不断升高,若体积同时增大,压强不一定增大,B 选项错误。
气体从外界吸收热量,若同时对外做功,内能不一定增加,C 选项错误。
气体对外做功,若同时吸收热量,内能不一定减少,D 选项错误。
3、下列过程中,可能发生的是()A 某工作物质从高温热源吸收 20kJ 的热量,全部转化为机械能,而没有产生其他任何影响B 打开一高压密闭容器,其内气体自发溢出后又自发跑回容器,恢复原状C 利用其他手段,使低温物体温度更低,高温物体的温度更高D 将两瓶不同液体自发混合,然后又自发地各自分开答案:C解析:根据热力学第二定律,不可能从单一热源吸收热量全部转化为机械能而不产生其他影响,A 选项错误。
气体自发溢出后不能自发跑回容器恢复原状,B 选项错误。
利用其他手段,可以使低温物体温度更低,高温物体温度更高,C 选项正确。
热力学与统计物理 - 习题课一 2024-11-18

第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。
热力学与统计物理期末题库

热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 写出系统处在平衡态的自由能判据。
一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。
即0F ∆>。
2. 写出系统处在平衡态的吉布斯函数判据。
一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。
即0G ∆>。
3. 写出系统处在平衡态的熵判据。
一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。
即 0S ∆< 4. 熵的统计解释。
由波耳兹曼关系ln S k =Ω 可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。
而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。
故,熵是系统内部混乱度的量度。
5. 为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精细结构时,原子内的电子激发态与基态的能量差为1~10eV ,相应的特征温度为45K 10~10。
在常温或低温下,电子通过热运动获得如此大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。
6. 为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略因为双原子分子的振动特征温度3K θ~10v ,在常温或低温下 kT <<k θv ,振子通过热运动获得能量k θv ω= 从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。
7. 能量均分定理。
对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量ε 的表达式中的每一个独立平方项的平均值为1k T2。
8等概率原理。
对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。
9. 概率密度(,,)q p t ρ的物理意义、代表点密度(,,)D q p t 的物理意义及两者的关系。
(,,):q p t ρ 在t 时刻,系统的微观运动状态代表点出现在相点(,)q p 邻域,单位相空间体积内的概率。
(,,):D q p t 在t 时刻,在相点(,)q p 邻域单位相空间体积内,系统的微观运动状态代表点数。
它们的关系是:(,,)(,,)D q p t q p t ρ=。
其中, 是系综中系统总数填空题1. 玻色分布表为1ae αβεω+=- ;费米分布表为1ae αβεω+=+ ;玻耳兹曼分布表为a e αβεω--= 。
当满足条件 e 1α-<< 时,玻色分布和费米分布均过渡到玻耳兹曼分布。
2 玻色系统和费米系统粒子配分函数用Ξ表示,系统平均粒子数为ln N α∂Ξ=-∂ ,内能表为ln U β∂Ξ=-∂ ,广义力表为1ln Y y Ξβ∂=-∂ , 熵表为ln ln (ln )S k ΞΞΞαβαβ∂∂=--∂∂ 。
3. 均匀系的平衡条件是0T T = 且P P = ;平衡稳定性条件是VC > 且 ()0TPV∂<∂ 。
4. 均匀开系的克劳修斯方程组包含如下四个微分方程:dU TdS pdV dn μ=-+ , dH TdS Vdp dn μ=++ ,dG SdT Vdp dn μ=-++ , dF SdT pdV dn μ=--+ 。
5. 对于含N 个分子的双原子分子理想气体,在一般温度下,原子内部电子的运动对热容量 无贡献 ;温度大大于振动特征温度时,72V C Nk =;温度小小于转动特征温度时,32V C Nk =。
温度大大于转动特征温度而小小于动特征温度时,52V C Nk =。
6 准静态过程是指 过程进行中的每一个中间态均可视为平衡态 的过程;无摩擦准静态过程的特点是 外界对系综的作用力,可用系统的状态参量表示出来。
7 绝热过程是指,系统状态的改变,完全是机械或电磁作用的结果,而没有受到其他任何影响 的过程。
在绝热过程中,外界对系统所做的功 与具体的过程 无关,仅由 初终两态 决定。
8. 费米分布是指,处在 平衡态 、 孤立 的费米系统,粒子在 能级上 的 最概然 分布。
9. 弱简并理想玻色气体分子间存在 统计吸引作用 ;弱简并理想费米气体分子间存在 统计排斥作用 。
10 玻色分布是指,处在 平衡态 、 孤立 的玻色系统,粒子在 能级上 的 最概然 分布。
11. 对于一单元复相系,未达到热平衡时,热量从 高温相 传至 低温相 ;未达到相变平衡时,物质从 高化学势相向低化学势相 作宏观迁移。
12. 微正则系综是 大量的结构完全相同的且处于平衡态的故里系统的集合 ; 微正则分布是指 在微正则系综中,系统按可能的微观态的分布 ; 微正则分布是 平衡态统计物理学 的基本假设,它与 等概率原理 等价。
13. 玻耳兹曼系统粒子配分函数用1Z 表示,内能统计表达式为1ln Z U Nβ∂=-∂ ,广义力统计表达式为1ln Z N Y yβ∂=-∂ ,熵的统计表达式为11ln (ln )Z S Nk Z ββ∂=-∂ ,自由能的统计表达式为 1ln F NkT Z =- 。
14. 与分布{}a 相应的,玻色系统微观状态数为()()1!!1!.B E a a ωω+-Ω=-∏;费米系统的微观状态数()!!!.B E a a ωωΩ=-∏;玻耳兹曼系统微观状态数为!!.B E aN a ωΩ=∏∏ 。
当满足条件经典近似条件时,三种微观状态数之间的关系为 1!...B E F D M EN Ω=Ω=Ω 。
15. 热力学系统的四个状态量V P T S 、、、所满足的麦克斯韦关系为()()TVSP VT∂∂∂∂=,()()PSV T SP∂∂∂∂=,()()TPS V PT∂∂∂∂=-,()()VSP T SV∂∂∂∂=-。
16. 设一多元复相系有个ϕ相,每相有个k 组元,组元之间不起化学反应。
此系统平 衡时必同时满足条件: T T T αβϕ=== 、 P P P αβϕ=== 、(,)ii i1,2i k αβϕμμμ==== 。
选择题1.系综理论所涉及三种系综有:微正则系综、正则系综、巨正则系综,它们分别适合的系统是(A )孤立系、闭系、开系 (B )闭系、孤立系、开系 (C )孤立系、开系、闭系 (D )开系、孤立系、闭系 2.封闭系统指(A )与外界无物质和能量交换的系统 (B )能量守衡的系统 (C )与外界无物质交换但可能有能量交换的系统 (D )孤立的系统 3.有关系统与系综关系的表述是正确的是(A )系综是大量的结构相同,外界条件相同,且彼此独立的系统的集合。
(B )系综是大量的结构不同,外界条件相同,且彼此独立的系统的集合。
(C )系综是大量的结构相同,外界条件不同,且彼此独立的系统的集合。
(D )系综是大量的结构不同,外界也条件不同的系统的集合。
4.气体的非简并条件是(A )气体分子平均动能远远大于kT(B )气体分子间平均距离远远大于分子德布罗意波的平均热波长 (C )气体分子数密度远远小于1(D )气体分子间平均距离极大于它的尺度5.由热力学基本方程dG SdT Vdp =-+可得麦克斯韦关系 (A )V T p S T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (B )p S T V p S ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (C )S V T p V S ∂∂⎛⎫⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭ (D )p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 6.孤立系统指(A )与外界有能量交换但无物质交换的系统 (B )与外界既无物质交换也无能量交换的系统 (C )能量守恒的系统(D )温度和体积均保持不变的任意系统 7.吉布斯函数作为特性函数应选取的独立态参量是 (A )温度和体积 (B )温度和压强 (C )熵和体积 (D )熵和压强 8.自由能作为特性函数应选取的独立态参量是 (A )温度和体积 (B )温度和压强 (C )熵和体积 (D )熵和压强 9.下列各式中不正确的是 (A ),S P H n μ∂⎛⎫= ⎪∂⎝⎭ (B ),T VF n μ∂⎛⎫= ⎪∂⎝⎭(C ),P V U n μ∂⎛⎫=⎪∂⎝⎭ (D ),T PG n μ∂⎛⎫= ⎪∂⎝⎭10.当经典极限条件成立时,玻色分布和费米分布均过渡到 (A )麦克斯韦分布 (B )微正则分布 (C )正则分布 (D )玻尔兹曼分布 11.下列说法正确的是(A )一切与热现象有关的实际宏观物理过程都是不可逆的。
(B )热力学第二定律的表述只有克氏和开氏两种说法。
(C )第一类永动机违背热力学第二定律。
(D )第二类永动机不违背热力学第二定律。
12.由热力学方程dF SdT pdV =--可得麦克斯韦关系 (A )V S S p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ (B )pS S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ (C )Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ (D )T V V S T p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 13.已知粒子能量表达式为bx ax p p p mz y x ++++=2222)(21ε 其中a 、b 为常量,则依据能量均分定理粒子的平均能量为(A )kT 23 (B )kT 2 (C )a b kT 422- (D )kT 2514.具有确定的粒子数、确定的体积、确定的能量的系统满足(A )微正则分布 (B )正则分布 (C )巨正则分布 (D )以上都不对 15.玻耳兹曼统计中用粒子配分函数Z 1表示的内能是 (A )11ln Z U Z β∂=-∂ (B )1ln Z U N β∂=-∂ (C )1ln 1Z U ββ∂=-∂ (D )1ln Z N U ββ∂=-∂16.不考虑粒子自旋,在长度L 内,动量处在~x x x p p dp +范围的一维自由粒子的可能的量子态数为 (A )L dp h (B )x L dp h (C )2L dp h (D )x 2L dp h17.均匀开系的热力学基本方程是(A )dF SdT pdV dn μ=--+ (B )dG SdT Vdp dn μ=-++ (C )dU TdS pdV dn μ=-+ (D )dH TdS Vdp dn μ=++ 推导与证明1. 证明: P V V PP V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ 证:P V P V S S C C T T T T ∂∂⎛⎫⎛⎫-=-⎪ ⎪∂∂⎝⎭⎝⎭(1)∵ (,)(,(,))S T p S T V T p =P V T PS S S V T T V T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2)(2)代入(1)P V V PS V C C T V T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)将麦氏关系:T V S P V T ∂∂⎛⎫⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭代入(3)得 P V V PP V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.证明,0K 时电子气体中电子的平均速率为34F P mv =(F P 为费米动量 )。