热力学统计物理第五版答案
第五版物理化学课后习题答案

第五版物理化学课后习题答案第五版物理化学课后习题答案物理化学是一门综合性的学科,涉及到物理学和化学的交叉领域,对于学习者来说,掌握习题的解答方法是非常重要的。
本文将为大家提供第五版物理化学课后习题的答案,帮助大家更好地理解和掌握物理化学知识。
第一章:热力学1. 根据热力学第一定律,ΔU = q + w,其中ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外界做的功。
2. 热容量C = q/ΔT,其中C表示热容量,q表示系统吸收的热量,ΔT表示温度变化。
3. 热力学第二定律表明,热量不会自发地从低温物体传递到高温物体,热量的传递总是从高温物体向低温物体传递。
4. 熵的变化ΔS = q/T,其中ΔS表示熵的变化,q表示吸收的热量,T表示温度。
5. 熵是一个系统无序程度的度量,熵的增加意味着系统的无序程度增加。
第二章:量子力学1. 波粒二象性是指粒子既可以表现出波动性质,也可以表现出粒子性质。
2. 波函数描述了量子力学系统的状态,波函数的平方表示在某个位置上找到粒子的概率。
3. 薛定谔方程描述了量子力学系统的演化。
4. 波函数的归一化要求波函数的平方在整个空间上的积分等于1。
5. 量子力学中的不确定性原理表明,无法同时精确测量粒子的位置和动量,精确测量其中一个属性,另一个属性的测量结果就会变得模糊。
第三章:电化学1. 电化学反应可以分为两类:氧化还原反应和非氧化还原反应。
2. 氧化还原反应中,氧化剂接受电子,被还原,而还原剂失去电子,被氧化。
3. 电解质溶液中的电解质会在电解过程中分解成离子。
4. 电解过程中,阳极是发生氧化反应的电极,阴极是发生还原反应的电极。
5. 电解质溶液中的电导率与电解质浓度成正比,与温度成反比。
第四章:动力学1. 反应速率可以通过反应物浓度的变化率来表示。
2. 反应速率与反应物浓度的关系可以由速率方程来描述。
3. 反应级数表示反应速率与反应物浓度的关系,可以是零级、一级或二级反应。
热力学_统计物理学答案第四章

习题 4.4 理想溶液中各组元的化学势为:
答 案
其中 g 1 ' 是蒸汽的摩尔吉布斯函数,g1 是纯溶剂的摩尔吉布斯函数,x 是溶质在溶 液中的摩尔分数。 (2) 求证:在一定温度下,溶剂的饱和蒸汽压随溶液浓度的变化率为
(3) 将上式积分,得
w.
(2) 由 ∂g =v⇒ ∂p
ww
其中 p0 是该温度下溶剂的饱和蒸汽压, px 是溶质浓度为 x 时的饱和蒸汽压。该 公式称为拉乌定律。 解:(1) 设“1”为溶剂, g '1 = µ 1 = g1 (T , P ) + RT ln( 1 − x)
当发生化学变化时, 原来有 n0v1 mol 的气体 A1, 反应 了 n0v1ε mol , 未反 应 (1- ε) n0v1 mol, n0v2 mol 的气体 A2,反应了 εn0 v2 mol ,未反应 (1- ε) n0v2 mol, 生成 εn0 v3 mol A3 和εn0v4 mol A4,有
ww
习题 4.9 试证明,在 NH3 分解为 N2 和 H2 的反应中 1 3 N 2 + H 2 − NH3 = 0 2 2
w.
∆S = S 2 − S1 ∆S = ( n1 + n 2 ) R ln
(3)如果两种气体是相同的,混合后的熵变
S1 = ( n1 + n2 )CV ln T + n1 R ln V1 + n2 R ln V2 − n1 R ln n1 − n2 R ln n2 + ( n1 + n2 ) S 0
kh da
后
∑n
j
µ1 = g 1 (T , p ) + RT ln x1 µ 2 = g 2 (T , p ) + RT ln x2
热力学_统计物理学答案第二章

F (T . x) = F (T ,0) + S (T , x ) = S (T ,0) −
1 2 Ax 2
案 网
习题 2.14 一弹簧在恒温下的恢复力 X 与其伸长 x 成正比, 即.X= - Ax;今忽略弹簧
课
1 dA 2 U (T , x) = U (T .0) + ( A − T )x 2 dT
.c o
∂T ⎞ ⋅⎛ ⎜ ⎟ 。 ⎝ ∂V ⎠ p
m
∂U ∂(U , T ) )T = ∂V ∂ (V , T )
=
∂ (U , T ) ∂( p, T ) ∂U ∂p =0= ( )T ( )T ∂ ( p ,T ) ∂ (V , T ) ∂p ∂V
联立(1),( 2)式得: ⎛ ∂H ⎞ ⎛ ∂H ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂p ⎟ ⎛ ∂T ⎞ ⎛ ∂T ⎞ ⎛ ∂T ⎞ ⎛ ∂H ⎞ ⎝ ∂p ⎠ S ⎜ ⎝ ⎠S ⎜ ⎟ = = ⎟ ⎜ ⎜ ∂p ⎟ ⎟ -⎜ ⎜ ∂p ⎟ ⎟ =⎜ ⎜ ⎟ ∂H ⎞ Cp ⎝ ⎠ S ⎝ ⎠ H ⎝ ∂H ⎠ p ⎝ ∂p ⎠ S ⎛ ⎜ ⎟ ⎝ ∂T ⎠ p 据: dU = TdS − pdV 熵不变时, (dS=0),
CV dT − R ln v − Ts 0 T
m
∆f 1 = u − Ts = ∫ CV dT + u 0 − T ∫ 过程Ⅱ: ∆ u = 0 ∆f 2 = ∆u − Ts = −T ⋅ ∆Q = −∆Q T
CV dT − Ts 0 T
∆u = 0 ,根据热力学第一定律 ∆Q = ∫ pdV = RT
w.
T = T ( p, S)
Cp ∂S ⎞ ⎛ ∂S ⎞ 由关系 C p = T ⎛ ⎜ ⎟ ;⇒ ⎜ ⎟ = T ⎝ ∂T ⎠ p ⎝ ∂V ⎠ p
热力学与统计物理答案第三章.(DOC)

第三章 单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1) 式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有0,đ0.S W δ==根据式(1),在虚变动中必有0.U δ< (2) 如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有0,đ0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为()()22222222δδ2δδδ0.S S S S U U V V U U V V ⎡⎤⎛⎫⎛⎫∂∂∂=++<⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎣⎦ (1)将2δS 改写为2δδδδδδδ.S S S S S U V U U V V U U V U U V V V ⎡∂∂∂∂⎤⎡∂∂∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ (2)但由热力学基本方程TdS dU pdV =+可得 1,,V U S S p U T V T∂∂⎛⎫⎛⎫== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 代入式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T ⎡∂∂⎤⎡∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1δδδδ0.p U V T T ⎡⎤⎛⎫⎛⎫=+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4) 以,T V 为自变量,有δδδV TU U U T V T V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ δδ,V V p C T T p V T ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦(5) 111δδδV TT V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 21δ,T T =- (6) δδδV Tp p p T V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 211δδ.V T p p T p T V T T T V ⎡⎤∂∂⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦(7) 将式(5)—(7)代入式(4),即得 ()()22221δδδ0,V TC p S T V T T V ∂⎛⎫=-+< ⎪∂⎝⎭ (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V ∂⎛⎫< ⎪∂⎝⎭证明0p C >及0.S p V ∂⎛⎫< ⎪∂⎝⎭ 解:式(2.2.12)给出 2.p V TVT C C ακ-= (1) 稳定性条件(3.1.14)给出 0,0,V Tp C V ∂⎛⎫>< ⎪∂⎝⎭(2) 其中第二个不等式也可表为 10,T TV V p κ⎛⎫∂=-> ⎪∂⎝⎭(3) 故式(1)右方不可能取负值. 由此可知0,p V C C ≥>(4) 第二步用了式(2)的第一式.根据式(2.2.14),有 .S SV T pTVpC C Vp κκ⎛⎫∂ ⎪∂⎝⎭==⎛⎫∂ ⎪∂⎝⎭(5) 因为Vp C C 恒正,且1VpC C ≤,故 0,S TV V p p ⎛⎫⎛⎫∂∂≤< ⎪ ⎪∂∂⎝⎭⎝⎭(6)第二步用了式(2)的第二式.3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪⎪∂∂⎝⎭⎝⎭ (b ),,.T pt n V p n μ⎛⎫∂∂⎛⎫=⎪⎪∂∂⎝⎭⎝⎭解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(b ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T p T n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ 解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有 ,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1) 但由自由能的全微分dF SdT pdV dn μ=--+可得 ,,,,,T VT V V n F n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.6 两相共存时,两相系统的定压热容量p pS C T T ∂⎛⎫= ⎪∂⎝⎭,体胀系数1p V V T α∂⎛⎫= ⎪∂⎝⎭和等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭均趋于无穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变. 两相系统吸取热量而温度不变表明它的(定压)热容量p C 趋于无穷. 在上述过程中两相系统的体积也将发生变化而温度保持不变,说明两相系统的体胀系 数1pV V T α∂⎛⎫= ⎪∂⎝⎭也趋于无穷. 如果在平衡温度下,以略高(相差无穷小)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积发生改变. 无穷小的压强导致有限的体 积变化说明,两相系统的等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭也趋于无穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭ 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,m dp L dT T V =∆ (3) 即 .m L dT V T dp∆= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp Lp dT RT = (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭ (7)3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T=- 液态氨的蒸气压力方程为 3063ln 24.38.p T =-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1) 由此解出195.2.t T K = 将t T 代入所给蒸气压方程,可得5934Pa.t p =将所给蒸气压方程与式(3.4.8)In L p A RT =-+ (2) 比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=⨯溶升汽3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p L C C Tββα=- 并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为 .m m m p TdS S S dp C T T T dT T p dT ββββα⎛⎫⎛⎫⎛⎫∂∂==+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出 ,.m p p m m T p S T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得 .m p p V dp C C T T dT βββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,m m V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为 .p L C C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C T β<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为 .m m m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出 ,,p pp T H C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dTβαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦ 将式中的dp dT用克拉珀龙方程(3.4.6)代入,可得 ,m m p p m m p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4)这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利用上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不大,定压热容量可以看作常量,试证明蒸气压方程可以表为ln ln .Bp A C T T=-+ 解: 式(3.4.7)给出了蒸气与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1) 一般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2) 在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代入式(1),得021,p pC C L dL p dT RT RTβα-=+ (4) 积分,即有ln ln ,Bp A C T T=-+ (5) 其中0,,p pC L B C A R C βα==是积分常数.3.12 蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积随温度的变化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV LV dT T RT⎛⎫=-⎪⎝⎭解:蒸气的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦(1) 将蒸气看作理想气体,m pV RT =,则有11,11.m p m m m T V V T T V V p p∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭ (2)在克拉珀龙方程中略去液相的摩尔体积,因而有2.m dp L LpdT TV RT== (3) 将式(2)和式(3)代入式(1),即有111.m m dV L V dT T RT⎛⎫=-⎪⎝⎭(4)3.13 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为2.m mRT ap V b V =-- (1) 求偏导数得()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭ 即()232,mm RTa V Vb =- 或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表示肥皂泡外气体的压强,p γ表示泡内气体的压强,p α表示肥皂液的压强,根据曲面分界的力学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表面张力系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表面的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义 ,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱氏对相变的分类,二级相变在相变点的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变. 因此,二级相变没有相变潜热和体积突变,在相变点两相的比熵和比体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的比熵和比体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)但v v v v .p Td υdT dp T p dT dp ακ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3) 同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭=- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出二级相变点压强随温度变化的斜率,称为爱伦费斯特方程.3.17 试根据朗道自由能式(3.9.1)导出单轴铁磁体的熵函数在无序相和有序相的表达式,并证明熵函数在临界点是连续的。
工程热力学(第五版_)课后习题答案

⼯程热⼒学(第五版_)课后习题答案GAGGAGAGGAFFFFAFAF2-2.已知2N 的M =28,求(1)2N 的⽓体常数;(2)标准状态下2N 的⽐容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的⽓体常数2883140==M R R =296.9)/(K kg J ? (2)标准状态下2N 的⽐容和密度1013252739.296?==p RT v =0.8kg m /3v1=ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv=pTR 0=64.27kmol m /32-3.把CO 2压送到容积3m 3的储⽓罐⾥,起始表压⼒301=g p kPa ,终了表压⼒3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压⼊的CO 2的质量。
当地⼤⽓压B =101.325 kPa 。
解:热⼒系:储⽓罐。
应⽤理想⽓体状态⽅程。
压送前储⽓罐中CO 2的质量GAGGAGAGGAFFFFAFAF1111RT v p m =压送后储⽓罐中CO 2的质量2222RT v p m =根据题意容积体积不变;R =188.9B p p g +=11 (1) B p p g +=22(2) 27311+=t T(3) 27322+=t T(4)压⼊的CO 2的质量GAGGAGAGGAFFFFAFAF)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代⼊(5)式得 m=12.02kg2-5当外界为标准状态时,⼀⿎风机每⼩时可送300 m 3的空⽓,如外界的温度增⾼到27℃,⼤⽓压降低到99.3kPa ,⽽⿎风机每⼩时的送风量仍为300 m 3,问⿎风机送风量的质量改变多少?解:同上题1000)273325.1013003.99(287300)1122(21?-=-=-=T p T p R v m m m =41.97kg2-6 空⽓压缩机每分钟⾃外界吸⼊温度为15℃、压⼒为0.1MPa 的空⽓3 m 3,充⼊容积8.5 m 3的储⽓罐内。
物理化学上册第五版天津大学出版社第二章 热力学第一定律习题答案

物理化学上册第五版天津大学出版社第二章 热力学第一定律习题答案2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。
解:J T nR nRT nRT pV pV V V p W am b 314.8)(121212-=∆-=+-=+-=--=2-2 1mol 水蒸气(H 2O ,g )在100℃,101.325 kPa 下全部凝结成液态水。
求过程的功。
解: )(g l am b V V p W --=≈kJ RT p nRT p V p gam b 102.315.3733145.8)/(=⨯===2-3 在25℃及恒定压力下,电解1mol 水(H 2O ,l ),求过程的体积功。
)(21)()(222g O g H l O H +=解:1mol 水(H 2O ,l )完全电解为1mol H 2(g )和0.50 mol O 2(g ),即气体混合物的总的物质的量为1.50 mol ,则有)()(2l O H g am b V V p W --=≈)/(p nRT p V p g am b -=-kJ nRT 718.315.2983145.850.1-=⨯⨯-=-= 2-4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。
求W b 。
解:因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-5 始态为25℃,200kPa 的5 mol 某理想气体,经a ,b 两不同途径到达相同的末态。
途径a 先经绝热膨胀到 – 28.57℃,100kPa ,步骤的功W a = - 5.57kJ ;在恒容加热到压力200 kPa 的末态,步骤的热Q a = 25.42kJ 。
热力学统计物理(A参考答案)

宝鸡文理学院试题课程名称中学物理教育理论适用时间2011年7月与实践研究试卷类别 A 适用专业、年级、班专升本一. 填空题(本题共7 题,每空3 分,总共21 分)1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。
2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。
3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。
4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。
5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。
6. 温度时,粒子热运动的热波长可以估算为:。
7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。
假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。
二. 简答题(本题共3 题,总共30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。
(10分)2. 请说说你对玻耳兹曼分布的理解。
(10分)3. 等概率原理以及在统计物理学中的地位。
(10分)三. 计算题(本题共4 题,总共49 分)1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。
(你可能要用到的积分公式为)(10分)2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。
(10分)3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。
请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。
热力学统计物理圈题及答案

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT =(1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln TV =αdT κdp -⎰如果11,T Tpακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1)全式除以V ,有11.p TdV V V dT dp VV T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dV dT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .TV dT dp ακ=-⎰ (3)若11,T Tpακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p),相应地体积由0V 最终变到V ,有ln =lnln,V T p V T p -即000p V pV CTT ==(常量),或.p V C T=(5)式(5)就是由所给11,T Tpακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.12 假设理想气体的pV CC γ和之比是温度的函数,试求在准静态绝热过程中T V 和的关系,该关系式中要用到一个函数()F T ,其表达式为()ln ()1dTF T Tγ=⎰-解:根据式(1.8.1),理想气体在准静态绝热过程中满足0.V C dT pdV += (1)用物态方程pVnRT=除上式,第一项用nR T 除,第二项用pV 除,可得0.V C dT dV nR TV+=(2)利用式(1.7.8)和(1.7.9),,,p V p VC C nR C C γ-==可将式(2)改定为10.1dTdV TVγ+=- (3)将上式积分,如果γ是温度的函数,定义1ln (),1dTF T Tγ=-⎰ (4)可得1ln ()ln F T V C +=(常量), (5)或()F T V C=(常量)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学统计物理第五版答案【篇一:热力学与统计物理答案第四章】ass=txt>4.1 若将u看作独立变量t,v,n1,?,nk的函数,试证明:(a)u??nii?u?u?v; ?ni?v(b)ui??u?u?ui. ?ni?v解:(a)多元系的内能u?u?t,v,n1,?,nk?是变量v,n1,?,nk的一次齐函数. 根据欧勒定理(式(4.1.4)),有??u??uu??ni??v,(1) ??vi??ni?t,v,nj式中偏导数的下标ni指全部k个组元,nj指除i组元外的其他全部组元.(b)式(4.1.7)已给出v??nivi,i其中vi??u??niui,(2)i??v???u?偏摩尔体积和偏摩尔内能. 将式(2),u????i??ni?t,p,nj??ni?t,p,nj代入式(1),有??u???u?(3) nu?nv?n????iiii?i????v?t,nii??ni?t,v,njii上式对ni的任意取值都成立,故有4.2 证明?i?t,p,n1,?,nk?是n1,?,nk的零次齐函数???i?ni???0. ??ni?i???u???u?ui?vi??.(4) ?????v?t,ni??ni?t,v,nj解:根据式(4.1.9),化学势?i是i组元的偏摩尔吉布斯函数 ?i????g?.(1) ???ni?t,p,njg是广延量,是n1,?,nk的一次齐函数,即g?t,p,?n1,?,?nk???g?t,p,n1,?,nk?.(2)将上式对?求导,有左方??g?t,p,?n1,?,?nk???????g?t,p,?n1,?,?nk???ni???i??ni??nii???nig?t,p,?n1,?,?nk???ni?i?t,p,?n1,?,?nk?,(3)i右边????g?t,p,n1,?,nk??? ????g?t,p,n1,?,nk???ni?i?t,p,n1,?,nk?.(4)i令式(3)与式(4)相等,比较可知?i?t,p,?n1,?,?nk???i?t,p,n1,?,nk?. (5)???i?n??0. (6) ?j?j??ni?上式说明?i是n1,?,nk的零次齐函数. 根据欧勒定理(式(4.1.4)),有4.3 二元理想溶液具有下列形式的化学势:?1?g1?t,p??rtlnx1,?2?g2?t,p??rtlnx2,xi是溶液中i组元的摩尔分数. 当物其中gi?t,p?为纯i组元的化学势,质的量分别为n1,n2的两种纯液体在等温等压下合成理想溶液时,试证明混合前后(a)吉布斯函数的变化为?g?rt?n1lnx1?n2lnx2?.(b)体积不变,即?v?0.(c)熵变?s??r?n1lnx1?n2lnx2?. (d)焓变?h?0, 因而没有混合热. (e)内能变化为多少?解:(a)吉布斯函数是广延量,具有相加性. 混合前两纯液体的吉布斯函数为g0?t,p??n1g1?t,p??n2g2?t,p?.(1)根据式(4.1.8),混合后理想溶液的吉布斯函数为g?t,p??n1?1?t,p??n2?2?t,p??n1g1?t,p??n1rtinx1?n2g2?t,p??n2rtinx2.(2)混合前后吉布斯函数的变化为?g?g?t,p??g0?t,p?其中x1??rt?n1lnx1?n2lnx2?, (3)n1n2,x2?分别是溶液中组元1,2的摩尔分数. n1?n2n1?n2(b)根据式(4.1.10),混合前后体积的变化为????v???g??0. (4)?p??t,n1,n2(c)根据式(4.1.10),混合前后熵的变化为????s????g???t?p,n1,n2??r?n1lnx1?n2lnx2?. (5)注意x1和x2都小于1,故?s?0, 混合后熵增加了.(d)根据焓的定义h?g?ts, 将式(3)和式(5)代入,知混合前后焓的变化为?h??g?t?s?0.(6)混合是在恒温恒压下进行的.在等压过程中系统吸收的热量等于焓的增加值,式(6)表明混合过程没有混合热.(e)内能u?h?pv. 将式(6)和式(4)代入,知混合前后内能的变化为?u??h?p?v?0.(7)4.4 理想溶液中各组元的化学势为?i?gi?t,p??rtlnxi.(a)假设溶质是非挥发性的. 试证明,当溶液与溶剂的蒸气达到平衡时,相平衡条件为g1??g1?rtln?1?x?,其中g1?是蒸气的摩尔吉布斯函数,g1是纯溶剂的摩尔吉布斯函数,x是溶质在溶液中的摩尔分数.(b)求证:在一定温度下,溶剂的饱和蒸气压随溶质浓度的变化率为p??p???. ??1?x??x?t(c)将上式积分,得px?p0?1?x?,其中p0是该温度下纯溶剂的饱和蒸气压,px是溶质浓度为x时的饱和蒸气压. 上式表明,溶剂饱和蒸气压的降低与溶质的摩尔分数成正比. 该公式称为拉乌定律.解:(a)溶液只含一种溶质. 以x表示溶质在液相的摩尔分数,则溶剂在液相的摩尔分数为1?x. 根据式(4.6.17),溶剂在液相的化学势?1为?1?t,p,x??g1?t,p??rtln?1?x?.(1)??t,p?. (2) ?1??t,p??g1在溶质是非挥发性的情形下,气相只含溶剂的蒸气,其化学势为平衡时溶剂在气液两相的化学势应相等,即?1?t,p,x???1??t,p?.(3)??t,p?, (4) g1?t,p??rtln?1?x??g1将式(1)和式(2)代入,得式中已根据热学平衡和力学平衡条件令两相具有相同的温度t和压强p. 式(4)表明,在t,p,x三个变量中只有两个独立变量,这是符合吉布斯相律的.(b)令t保持不变,对式(4)求微分,得????g1???g1rtdp?dx?????dp. (5) 1?x??p?t??p?t??g???vm,所以式(5)可以表示为 ?p??t根据式(3.2.1),?rtdx, (6) 1?x?和vm分别是溶剂气相和液相的摩尔体积. 由于vm???vm,略去其中vm?vm??vm?dp??vm,并假设溶剂蒸气是理想气体,pvm??rt,可得rtp??p?????. (7) ????x?t?1?x?vm?1?x(c)将上式改写为dpdx??.(8) p1?x在固定温度下对上式积分,可得px?p0?1?x?, (9)式中p0是该温度下纯溶剂的饱和蒸气压,px是溶质浓度为x时溶剂的饱和蒸气压. 式(9)表明,溶剂饱和蒸气压的降低与溶质浓度成正比.4.5 承4.4题:(a)试证明,在一定压强下溶剂沸点随溶质浓度的变化率为rt??t??, ????x?pl1?x2其中l为纯溶剂的汽化热.(b)假设x??1. 试证明,溶液沸点升高与溶质在溶液中的浓度成正比,即rt2?t?x.l解:(a)习题4.4式(4)给出溶液与溶剂蒸气达到平衡的平衡【篇二:热力学统计物理_答案】程可由实验测得的体胀系数?及等温压缩系数??,根据下述积分求得:如果??,?t?1t1,试求物态方程。
p解:以t,p为自变量,物质的物态方程为v?v?t,p?,其全微分为??v???v?dv??dt???dp. (1) ??t?p??p??t全式除以v,有dv1??v?1??v???dt???dp. ?vv??t?pv??p?t根据体胀系数?和等温压缩系数?t的定义,可将上式改写为dv??dt??tdp. (2) v上式是以t,p为自变量的完整微分,沿一任意的积分路线积分,有 lnv????dt??tdp?.(3)若??,?t?,式(3)可表为?11?lnv???dt?dp?. (4)p??t1t1p选择图示的积分路线,从(t0,p0)积分到?t,p0?,再积分到(t,p),相应地体1 / 16积由v0最终变到v,有lnvtp=ln?ln, v0t0p0即pvp0v0, ??c(常量)tt0或pv?1t1pc. t (5)式(5)就是由所给??,?t?求得的物态方程。
确定常量c需要进一步的实验数据。
1.10 声波在气体中的传播速度为?? 假设气体是理想气体,其定压和定容热容量是常量,试证明气体单位质量的内能u和焓h可由声速及?给出:a2u??u,???10a2h ??h ?-10其中u0,h0为常量。
解:根据式(1.8.9),声速a的平方为a2??pv, (1)2 / 16其中v是单位质量的气体体积。
理想气体的物态方程可表为pv?mrt, ?m1rt, (2) ?m式中m是气体的质量,m?是气体的摩尔质量。
对于单位质量的气体,有pv?代入式(1)得a2??m?rt. (3)以u,h表示理想气体的比内能和比焓(单位质量的内能和焓)。
由式(1.7.10)—(1.7.12)知m?u?rt?m?u0, ??1m?h??rt?m?h0. (4) ??1将式(3)代入,即有a2u??u, ?(??1)0a2h??h0. (5) ??1式(5)表明,如果气体可以看作理想气体,测定气体中的声速和?即可确定气体的比内能和比焓。
1.16 理想气体分别经等压过程和等容过程,温度由t1升至t2。
假设?是常数,试证明前者的熵增加值为后者的?倍。
解:根据式(1.15.8),理想气体的熵函数可表达为s?cplnt?nrlnp?s0.(1)在等压过程中温度由t1升到t2时,熵增加值?sp为?sp?cplnt2.(2) t1根据式(1.15.8),理想气体的熵函数也可表达为s?cvlnt?nrlnv?s0.(3)在等容过程中温度由t1升到t2时,熵增加值?sv为3 / 16?sv?cvlnt2. (4) t1所以?sp?sv?cpcv??.(5)1.21 物体的初温t1,高于热源的温度t2,有一热机在此物体与热源之间工作,直到将物体的温度降低到t2为止,若热机从物体吸取的热量为q,试根据熵增加原理证明,此热机所能输出的最大功为wmax?q?t2(s1?s2)其中s1?s2是物体的熵减少量。
解:以?sa,?sb和?sc分别表示物体、热机和热源在过程前后的熵变。
由熵的相加性知,整个系统的熵变为?s??sa??sb??sc.由于整个系统与外界是绝热的,熵增加原理要求?s??sa??sb??sc?0. (1)以s1,s2分别表示物体在开始和终结状态的熵,则物体的熵变为 ?sa?s2?s1. (2)热机经历的是循环过程,经循环过程后热机回到初始状态,熵变为零,即?sb?0.(3)以q表示热机从物体吸取的热量,q?表示热机在热源放出的热量,w表示热机对外所做的功。
根据热力学第一定律,有q?q??w,所以热源的熵变为?sc?q?q?w?. (4) t2t2将式(2)—(4)代入式(1),即有s2?s1?q?w?0. (5) t2上式取等号时,热机输出的功最大,故wmax?q?t2?s1?s2?. (6)4 / 16式(6)相应于所经历的过程是可逆过程。