苏教版苏州市吴中区八年级下期中数学试卷及答案

合集下载

2020-2021学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期中数学试卷(附答案详解)

2020-2021学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期中数学试卷(附答案详解)

2020-2021学年江苏省苏州市吴中区、吴江区、相城区八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若式子√x+1在实数范围内有意义,则实数x的取值范围是()A. x<−1B. x≥−1C. x≥0D. x≥12.我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A. 条形图B. 扇形图C. 折线图D. 频数分布直方图3.下列图形中,是中心对称图形但不是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个4.若式子x+3x−3+x+5x−4有意义,则x满足的条件是()A. x≠3且x≠−3B. x≠3且x≠4C. x≠4且x≠−5D. x≠−3且x≠−55.反比例函数y=3x的图象向下平移1个单位,与x轴交点的坐标是()A. (−3,0)B. (−2,0)C. (2,0)D. (3,0)6.一个不透明的袋子里有4个红球和若干个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,记好颜色后放回,经过大量的摸球实验,摸到白球的频率在0.75附近摆动,则袋中白球的个数是()A. 3B. 8C. 12D. 167.下列整数中,与√13−2最接近的是()A. 1B. 2C. 3D. 48.五星红旗是中华人民共和国国旗,旗上的五颗五角星及其相互关系象征着中国共产党领导下的革命人民大团结.五角星是由五个每个顶角为36°的等腰三角形组成,既美观又蕴含名数学知识,如图将五角星绕其旋转中心按顺时针旋转一定角度,线段AB恰好与线段CD重合,则该旋转角的度数是()A. 144°B. 108°C. 72°D. 36°9.如图在矩形纸片ABCD中,AB=6,BC=8,将矩形纸片折叠,使点B与点D重合,则折痕EF的长是()A. 254B. 2√10C. 152D. 2√1310.如图,在平面直角坐标系中,正方形ABCD的顶点A,C分别在x轴和y轴上,点A(1,0),点C(0,6),反比例函数y=kx(k>0,x>0)的图象经过点B,则k的值为()A. 354B. 9C. 12D. 494二、填空题(本大题共8小题,共24.0分)11.计算1a −13a的结果是______ .12.在2020年年末我国完成了农村贫困人口全部脱贫.为了统计农村贫困人口的数量,国家统计局采取的调查方式是______ (填“普查”或“抽样调查”).13.顺次连接矩形各边中点,形成的四边形是______ .14.若反比例函数y=2−kx的图象位于第一、第三象限,则k的取值范围是______ .15.实数a在数轴上的位置如图所示,则化简√(a−5)2−√(a−10)2=______ .16.如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B′O′C,若AC=4,AB′=10,则菱形ABCD的边长是______ .17.如图,一次函数y=2x+2与反比例函数y=mx(m≠0)交于点A,点B,与坐标轴于点C,点D,若AC=CD,则△AOB的面积为______ .18.如图,在矩形ABCD中,AB=3,AD=6,E是AD上一点,AE=1,P是BC上一动点,连接AP,取AP的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是______ .三、解答题(本大题共10小题,共76.0分)19.计算:|−12|+√12−(√22)2.20.解方程:x2x−1=1−31−2x.21. (1)先化简,再求值:(1−2x+1)÷x−1x 2+2x+1,其中x =√3−1.(2)已知m 是√3的小数部分,求√m 2+1m 2−2的值.22. 为积极响应教育部“停课不停学”的号召,某中学组织本校教师开展线上教学,为了解学生线上教学的学习效果,决定随机抽取八年级学生部分学生进行质量测评,以下是根据测试的数学成绩绘制的统计表和频数分布直方图:请根据所给信息,解答下列问题: (1)a = ______ ,b = ______ ;(2)此次抽样的样本容量是______ ,并补全频数分布直方图;(3)某同学测试的数学成绩为76分,这次测试中,数学分数高于76分的至少有______ 人,至多有______ 人;(4)已知该年级有800名学生参加测试,请估计该年级数学成绩为优秀(80分及以上)的人数.23.正比例函数y1=2x的图象与反比例函数y2=k的图象有一个交点的横坐标是2.x(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1>y2>0的解集______ .24.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中画出与△ABC成中心对称的三角形A′B′C,对称中心是点C;(2)在图②中找一格点D,使得以A,B,C,D为顶点的四边形是中心对称图形.25. 如图,在▱ABCD 中,点E ,F 分别在BC ,AD 上,AC 与EF 交于点O ,且AO =CO .(1)求证:AF =EC ;(2)连接AE ,CF ,若AC =8,EF =6,且EF ⊥AC ,求四边形AECF 的周长.26. 我们知道,一次函数y =x +1的图象可以由正比例函数y =x 的图象向上平移一个长度单位得到,也可以由正比例函数y =x 的图象向左平移一个长度单位得到. (1)函数y =2x+1的图象与反比例函数y =2x 有什么关系? (2)请根据图象,直接写出2x+1<0的x 的取值范围;(3)已知点P(x1,y1)、Q(x2,y2)在反比例函数y=2的图象上,且x1<x2.试比较y1与x+1y2的大小关系.27.定义:有两组邻边相等的四边形叫做筝形.(1)[理解]菱形______ 筝形(填“是”或“不是”);(2)[证明]如图1,在正方形ABCD中,E是对角线BD延长线上一点,连接AE,CE.求证:四边形ABCE是筝形;(3)[探究]如图2,在筝形ABCD中,AB=BC,AD=CD,对角线AC,BD交于点O.①请写出两条筝形ABCD对角线的性质(不要说明理由);②若AC=8,AD=5,且∠ADC=2∠ABC,求AB的长.(x>0)的图象在第一象限交于M,28.如图,一次函数y=−x+4与反比例函数y=1xN两点,P是MN上一个动点(点P不与点M,N重合),过点P作PA⊥y轴,PB⊥x 轴,垂足为A,B,交反比例函数于点D,点C.(1)当AP=3AO时,求点D的坐标;(2)连接AB,CD,若D是AP的中点,试判断AB与CD的位置关系,并说明理由;(3)点P在运动过程中,AB是否具有最小值,若有,求出最小值;若没有,请说明理由.答案和解析1.【答案】B【解析】解:∵式子√x+1在实数范围内有意义,∴x+1≥0,解得:x≥−1,故选:B.根据二次根式有意义的条件得出不等式,求出不等式的解集即可.本题考查了二次根式有意义的条件和解一元一次不等式,能根据二次根式有意义的条件得出不等式是解此题的关键,注意:√a中a≥0.2.【答案】B【解析】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.根据统计图的特点判定即可.本题考查了统计图的选择,熟练掌握各统计图的特点是解题的关键.3.【答案】A【解析】解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形但不是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.符合题意的有B选项.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】B【解析】解:∵分式x+3x−3+x+5x−4有意义,∴x−3≠0,x−4≠0,∴x≠3且x≠4,故选:B.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.5.【答案】D【解析】解:∵反比例函数y=3x的图象向下平移1个单位,∴平移后的解析式为:y=3x−1,∴令y=0,则3x−1=0,解得:x=3,∴所得图象的与x轴的交点坐标是:(3,0).故选:D.根据平移的规律得到平移后的解析式,再根据求图象的与x轴的交点坐标,即y=0,求出x即可.此题主要考查了反比例函数的平移以及图象与x轴交点坐标的求法,题目比较典型,得出平移后的解析式是解决问题的关键.6.【答案】C【解析】解:设袋子中白球的个数为x,根据题意,得:xx+4=0.75,解得:x=12,经检验:x=12是分式方程的解,所以袋子中白球的个数是12,故选:C.设袋子中白球的个数为x,用白球的个数除以球的总个数等于摸到白球的频率列出方程,解之可得.此题考查了利用频率估计概率,解答此题的关键是了解白球的频率稳定在0.6附近即为概率约为0.75.7.【答案】B【解析】解:∵9<13<16,∴3<√13<4.∵3.52=12.25<13,∴3.5<√13<4.∴1.5<√13−2<2.∴与√13−2最接近的数是2.故选:B.用夹逼法即可进行无理数大小估计.本题考查了无理数的大小,估算无理数大小要用逼近法.8.【答案】A【解析】解:如图,∵五角星为轴对称图形,∴∠OBD=12×36°=18°,∠ODB=12×36°=18°,∴∠BOD=180°−18°−18°=144°,∵将五角星绕其旋转中心按顺时针旋转一定角度,线段AB恰好与线段CD重合,∴∠BOD为旋转角,即旋转角为144°.故选:A.如图,利用五角星为轴对称图形得到∠OBD=ODB=12×36°=18°,再利用三角形内角和计算出∠BOD=144°,然后利用旋转的性质可判断旋转角为144°.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.9.【答案】C【解析】解:连接BE,BD,设EF与BD相交于点O,如图,∵矩形ABCD纸片折叠,使点D与点B重合,∴EF垂直平分BD,∠BFE=∠DFE,∴ED=EB,FD=FB,EF⊥BD,∴∠EDB=∠EBD,∵AD//BC,∴∠DEF=∠BFE,∴∠DEF=∠DFE,∴DF=DE,∴DE=EB=BF=FD,∴四边形DEBF为菱形,在Rt△ABD中,BD=√AB2+AD2=√36+64=10,设BE=x,则DE=x,AE=8−x,在Rt△ABE中,AB2+AE2=DE2,∴62+(8−x)2=x2,解得x=254,∴BE=254,∵12S菱形DEBF=S三角形DEB∴12×12EF⋅DB=12DE⋅AB,∴12×EF×10=6×254,∴EF=152,故选:C.由折叠的性质可得EF垂直平分BD,∠BFE=∠DFE,可证DE=EB=BF=FD,可得四边形DEBF为菱形,由勾股定理可求BD,DE的长,由菱形的面积公式可求解.本题主要考查了折叠问题,矩形的性质以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时注意方程思想的运用.10.【答案】D【解析】解:过B作BE⊥x轴于E,BF⊥y轴于F,则∠EBF=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE和△CBF中,{∠ABE=∠CBF∠AEB=∠CFB=90°AB=BC,∴△ABE≌△CBF(AAS),∴BE=BF,AE=CF,∴四边形OEBF是正方形,设正方形OEBF的边长为m,∵点A(1,0),点C(0,6),∴OA=1,OC=6,∴AE=m−1,CF=6−m,∴m−1=6−m,∴m=72,∴B(72,72 ),∵反比例函数y=kx(k>0,x>0)的图象经过点B,∴k=72×72=494,故选:D.过B作BE⊥x轴于E,BF⊥y轴于F,则∠EBF=90°,根据正方形的性质得到AB=BC,∠ABC=90°,根据全等三角形的性质得到BE=BF,AE=CF,从而证得四边形OEBF 是正方形,设正方形OEBF的边长为m,则AE=m−1,CF=6−m,由m−1=6−m,求得m的值,求得B的坐标,即可得到结论.本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,正确的作出辅助线是解题的关键.11.【答案】23a【解析】解:原式=33a −13a=23a.故答案为:23a.原式通分并利用同分母分式的减法法则计算即可.本题考查了分式的加减运算,正确掌握相关运算法则,关键在于通分,通分关键在于找出最简公分母.12.【答案】普查【解析】解:为了得到较为全面、可靠的信息,所以国家统计局采取的调查方式是普查,故答案为:普查.根据全面调查和抽样调查的概念判断即可.本题考查的是全面调查和抽样调查,通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.13.【答案】菱形【解析】解:连接AC、BD,∵四边形ABCD为矩形,∴AC=BD,∵AH=HD,AE=EB,∴EH是△ABD的中位线,∴EH=12BD,同理,FG=12BD,HG=12AC,EF=12AC,∴EH=HG=GF=FE,∴四边形EFGH为菱形,故答案为:菱形.连接AC、BD,根据矩形的性质得到AC=BD,根据三角形中位线定理、菱形的判定定理解答即可.本题考查的是矩形的性质、菱形的判定、三角形中位线定理的应用,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.14.【答案】k<2【解析】解:∵反比例函数y=2−kx的图象位于第一、第三象限,∴2−k>0,解得k<2,故答案为:k<2.根据反比例函数y=2−kx的图象位于第一、第三象限,可知2−k>0,从而可以求得k 的取值范围.本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是知道:当反比例函数图象位于第一、第三象限时,k>0.15.【答案】2a−15【解析】解:由数轴可得:a−5>0,a−10<0,则原式=a−5−(10−a)=a−5−10+a=2a−15.故答案为:2a−15.直接利用数轴得出各式符号,进而化简得出答案.此题主要考查了实数运算以及实数与数轴,正确掌握二次根式的性质是解题关键.16.【答案】2√17【解析】解:∵菱形ABCD的对角线AC、BD交于点O,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,AC=2,∴O′C=OC=OA=12∴AO′=6,∵AB′=10,在Rt△AO′B′中,根据勾股定理,得O′B′=√102−62=8,∴OB=8,∴BC=√82+22=2√17.∴菱形的边长是2√17.故答案为:2√17.根据菱形的性质可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AB′=10,AC=6,再根据勾股定理即可求出边长.本题考查了中心对称、旋转的性质,解决本题的关键是掌握旋转的性质.17.【答案】3【解析】解:过点A作AE⊥CO于点E,过点B作BF⊥CO于点F,由一次函数y =2x +2得C 点坐标(0,2),D 点坐标为(−1,0),∵△CAE 和△CDO 中,{∠AEC =∠DOC ∠ACE =∠OCD AC =CD,∴△ACE≌△DCO(AAS)∴AE =DO =1,CE =CO =2,∴点A 的坐标为(1,4),∴反比例函数关系式为y =4x ,方程组{y =2x +2y =4x 的解是{x =1y =4或{x =−2y =−2, 所以点B 的坐标为(−2,−2),∴S △AOB =S △ACO +S △BCO =12×2×1+12×2×2=3. 故答案为:3.先由一次函数y =2x +2得C 点坐标(0,2),D 点坐标为(−1,0),过点A 作AE ⊥CO 于点E ,先证明△ACE≌△DCO ,即可求出A 点坐标,求出反比例函数关系式,再利用方程组求出交点B 的坐标,△AOB 面积即可求解.本题考查了反比例函数解析式求法,反比例函数与一次函数交点坐标问题,三角形的面积公式,属于简答题.18.【答案】5【解析】解:过点P 作PM//FE 交AD 于M ,如图,∵F 为AP 的中点,PM//FE ,∴FE 为△APM 的中位线,∴AM =2AE =2,PM =2EF ,当EF 取最小值时,即PM 最短,当PM ⊥AD 时,PM 最短,此时PM =AB =3,∵MD=AD−AM=4,在Rt△PMD中,PD=√MD2+PM2=5,∴当线段EF取得最小值时,线段PD的长度是5,故答案为:5.过点P作PM//FE交AD于M,则FE为△APM的中位线,PM=2EF,当PM⊥AD时,PM最短,EF最短,在Rt△PMD中可求得PD的长度.本题考查了矩形的性质,垂线段的性质和三角形中位线定理,构造三角形中位线,利用垂线段最短是解决本题的关键.19.【答案】解:原式=12+2√3−12=2√3.【解析】直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.【答案】解:去分母得:x=2x−1+3,移项得:x−2x=−1+3,合并得:−x=2,解得:x=−2,检验:把x=−2代入得:2x−1=−4−1=−5≠0,则分式方程的解为x=−2.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【答案】解:(1)原式=x−1x+1⋅(x+1)2x−1=x+1,当x=√3−1时,原式=√3.(2)原式=√(m−1m)2=|m−1m|,由题意可知:m=√3−1,原式=1m−m,=1√3−1−(√3−1)=√3+12−2√3−22=3−√32.【解析】(1)根据分式的运算法则进行化简,然后将x的值代入原式即可求出答案.(2)先根据二次根式的性质进行化简,然后将m的值代入原式即可求出答案.本题考查实数运算以及分式的运算,解题的关键是熟练运用实数的运算法则以及分式的运算法则,本题属于基础题型.22.【答案】18 0.1850 33 41【解析】解:(1)本次调查的人数为:2÷0.04=50,a=50×0.36=18,b=9÷50=0.18,故答案为:18,0.18;(2)此次抽样的样本容量是2÷0.04=50,故答案为:50,由(1)知,a=18,补全的频数分布直方图如右图所示;(3)这次测试中,数学分数高于76分的至少有:18+15=33(人),至多有:18+15+ (9−1)=41(人),故答案为:33,41;(4)800×18+1550=528(人),即估计该年级数学成绩为优秀(80分及以上)的有528人.(1)根据频数分布表中的数据,可以计算出本次调查的人数,然后即可计算出a、b的值;(2)根据频数分布表中的数据,可以得到样本容量,再根据频数分布直方图中的数据,可以计算出80≤x<90这一段的频数,然后即可将频数分布直方图补充完整;(3)根据频数分布直方图中的数据,可以得到数学分数高于76分的至少和至多分别为多少人;(4)根据直方图中的数据,可以计算出该年级数学成绩为优秀(80分及以上)的人数.本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】x>2【解析】解:(1)在y1=2x中令x=2得y=4,∴正比例函数y1=2x的图象与反比例函数y2=k的图象交点的横坐标是2的交点为(2,4),x∴4=k,解得k=8,2∵正比例函数的图象与反比例函数的图象都关于原点对称,∴它们的交点也关于原点对称,∴另一个交点为(−2,−4);(2)函数图象如图:∴y1>y2>0的解集是:x>2.故答案为:x>2.(1)求出横坐标为2的交点的纵坐标,再代入反比例函数y2=k即可求k,由正比例函数x与反比例函数对称性可得另一个交点坐标;(2)画出图象观察即可得到答案.本题考查正比例函数与反比例函数图象交点及大小比较,解题的关键是要掌握二者的对称性和数形结合比较大小的方法.24.【答案】解:(1)如图①,△A′B′C为所作;(2)如图②,四边形ACBD为所作.【解析】(1)作A点和B点关于C点的对称点得到A′、B′;(2)把B点向上平移2个单位得到D点,则四边形ACBD为平行四边形.本他考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.【答案】(1)证明:连接AE,CF,∵四边形ABCD是平行四边形,∴AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠OAF=∠OCE AO=CO∠AOF=∠COE,∴△AOF≌△COE(ASA)∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形,∴AF=EC;(2)解∵四边形AECF是平行四边形,AC=8,EF=6,∴OA=OC=4,OE=OF=3,∵EF⊥AC,∴AE=EC=CF=FA=√32+42=5,∴四边形AECF的周长为4×5=20.【解析】(1)先由ASA证明△AOF≌△COE,得出FO=EO,再由AO=CO,即可得出结论;(2)根据平行四边形的对角线互相平分确定OE=3,OA=4,然后求得AE=5,从而求得答案.本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.26.【答案】解:(1)函数y=2的图象可以看成是由反x+1的图象向左平移1个单位长度得到;比例函数y=2x<0的x的取值范围是x<−1;(2)如图,2x+1(3)∵反比例函数y=2的图象的每一条曲线都是单调x+1递减,当x1<x2<−1或−1<x1<x2时,y1>y2;当x1<−1<x2时,y1<y2.【解析】(1)根据函数图象平移的规律可得答案.(2)根据图象即可求得;(3)根据反比例函数的增减习惯,即可得出结论.本题考查了反比例函数的图象和性质、反比例函数图象上点的坐标特征、坐标与图形的变化−平移,熟练掌握图象平移的规律是解题的关键.27.【答案】是【解析】解:(1)∵菱形有两组邻边相等,故菱形是筝形,故答案为:是;(2)∵BD是正方形的对角线,故∠EBA=∠EBC=45°,∵AB=BC,BA=BE,∴△EBC≌△EBA(SAS),∴EC=EA,∵AB=BC,∴四边形ABCE是筝形;(3)①由筝形的定义,可知其性质:筝形对角线互相垂直;筝形ABCD是轴对称图形,直线BD是其一条对称轴(答案不唯一);②如图,过点C作CH⊥AB于点H,由①知,筝形对角线互相垂直,故∠DOC=90°,∵AC=8,则OC=4,而AD=CD=5,由①知,直线BD是筝形的一条对称轴,则∠ADB=∠CDB=12∠ADC,∵∠ADC=2∠ABC,∴∠ODC=∠ABC,∵∠DOC=∠BHC=90°,∴△ODC∽△HBC,∴HBOD =HCOC=BCCD,即HB3=HC4=BC5,设HB=3x,则HC=4x,BC=5x,则AH=AB−BH=BC−BH=5x−3x=2x,在Rt△AHC中,AC2=AH2+CH2,即82=(2x)2+(4x)2,解得x=4√55,则AB=BC=5x=4√5.(1)菱形有两组邻边相等,故菱形是筝形,即可求解;(2)证明△EBC≌△EBA(SAS),进而求解;(3)①由筝形的定义,可知其性质:筝形对角线互相垂直;筝形ABCD 是轴对称图形,直线BD 是其一条对称轴(答案不唯一);②证明△ODC∽△HBC ,则设HB =3x ,则HC =4x ,BC =5x ,在Rt △AHC 中,AC 2=AH 2+CH 2,即82=(2x)2+(4x)2,即可求解.本题是四边形综合题,主要考查了特殊四边形的性质、新定义、三角形全等和相似、勾股定理的运用等,有一定的综合性,难度适中.28.【答案】解:设点P 的坐标为(m,−m +4),则点A 、B 的坐标分别为(0,−m +4)、(m,0).(1)当AP =3AO 时,即m =3(−m +4),解得m =3,故点A 的坐标为(0,1),当y =1时,即1=1 x ,解得x =1,故点D 的坐标为(1,1);(2)∵D 是AP 的中点,故点D 的坐标为(12m,−m +4),将点D 的坐标代入反比例函数表达式并整理得:4−m =2 m ,设直线AB 的表达式为y =kx +b ,则{−m +4=b 0=mk +b ,解得{k =−m+4−m =−2m 2b =−m +4, 即直线AB 表达式中的k 值为−2 m 2;同理可得,直线CD 表达式中的k 值为−2 m 2,故直线AB//CD ;(3)有,理由:由题意得,四边形OAPB 为矩形,则AB =OP =√m 2+(−m +4)2=√2m 2−8m +16=√2(m −2)2+8≥2√2, 故AB 有最小值为2√2.【解析】(1)当AP =3AO 时,即m =3(−m +4),求出点A 的坐标为(0,1),进而求解;(2)求出直线AB 、CD 的表达式,即可求解;(3)由题意得,四边形OAPB为矩形,则AB=OP=√m2+(−m+4)2=√2m2−8m+16=√2(m−2)2+8≥2√2,即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、矩形的性质、函数的最值等,有一定的综合性,难度适中.。

【苏教版】八年级下学期数学《期中考试试卷》及答案解析

【苏教版】八年级下学期数学《期中考试试卷》及答案解析

2020-2021学年第二学期期中测试苏教版八年级试题一.选择题(共6小题,满分12分,每小题2分)1.(2分)要使代数式√2x −3有意义,则x 的取值范围是( ) A .x >32 B .x <32C .x ≥32D .x ≤322.(2分)若分式x−22x+1的值为零,则x 的值等于( ) A .﹣3B .0C .2D .33.(2分)反比例函数y =−1x,下列说法不正确的是( ) A .图象经过点(1,﹣1) B .图象位于第二、四象限C .图象关于直线y =﹣x 对称D .y 随x 的增大而增大4.(2分)下列计算正确的是( ) A .√9=±3B .√−83=2C .(√5)2=√5D .√22=25.(2分)暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是( ) A .600x =800x−40B .600x−40=800xC .600x=800x+40D .600x+40=800x6.(2分)函数y =kx +k 与y =kx (k ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .二.填空题(共10小题,满分30分,每小题3分) 7.(3分)计算:√3−2√27= .8.(3分)如图是一个可以自由转动的转盘,转盘分成四个扇形,标号分别为Ⅰ,Ⅱ,Ⅲ,Ⅳ四个数字.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形区域).指针指向扇形Ⅰ的概率是 .9.(3分)在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么该镇在日常生活中会进行垃圾分类的人数大约为 人.10.(3分)已知反比例函数y =k−1x 的图象经过点(2,﹣4),则k 的值为 .11.(3分)若关于x 的分式方程x x−3+2a 3−x=2a 无解,则a 的值为 .12.(3分)如果方程kx+2+x 2x+4=0不会产生增根,那么k 的取值范围是 .13.(3分)如果最简二次根式√3a −8与√17−2a 可以合并,那么使√4a −2x 有意义的x 的取值范围是 .14.(3分)观察下列等式: ①√3+1=√3−1(√3+1)(√3−1)=√3−12;②√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3+√3+√5+√5+√7+⋯+3√11+√101= .15.(3分)如图是三个反比例函数y =k1x ,y =k2x ,y =k3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为 .16.(3分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,BC ∥x 轴,点A 、B 都在反比例函数y =10x 上,点C在反比例函数y=4x 上,则AB = .三.解答题(共10小题,满分78分)17.(8分)计算题:(1)(√6−√2)×3√2−6√13;(2)(√5+1)(√5−1)﹣(√3−√2)2.18.(8分)解方程:(1)1x−2=4x2−4;(2)xx+1=2x3x+3+1.19.(7分)先化简,再求值:(5m−3+13−m)÷4mm2−6m+9,其中m=9.20.(6分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生? 并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?21.(8分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B两种型号,乙品牌有C、D、E三种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)下列事件是不可能事件的是.A.选购乙品牌的D型号B.既选购甲品牌也选购乙品牌C.选购甲品牌的A型号和乙品牌的D型号D.只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少? 22.(8分)如图,一次函数y1=ax+b与反比例函数y2=kx的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=45S△AOB时,请直接写出点P的坐标为.23.(8分)为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?24.(8分)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用符号表示为S =√14[a 2b 2−(a 2+b 2−c 22)2](其中a ,b ,c 为三角形的三边长,S 为三角形的面积).请利用这个公式求出当a =√5,b =3,c =2√5时的三角形的面积.25.(8分)我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1; 2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+(−5x+1). (1)下列分式中,属于真分式的是: (填序号) ①a−2a+1;②x 2x+1;③2bb +3;④a 2+3a −1.(2)将假分式4a+32a−1化成整式与真分式的和的形式为:4a+32a−1= + ;(3)将假分式a 2+3a−1化成整式与真分式的和的形式:a 2+3a−1= + .26.(9分)已知一次函数y =kx +b 与反比例函数y =mx的图象交于A (﹣3,2)、B (1,n )两点. (1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)点P 在x 轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.答案与解析一.选择题(共6小题,满分12分,每小题2分)1.(2分)要使代数式√2x−3有意义,则x的取值范围是()A.x>32B.x<32C.x≥32D.x≤32【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:根据题意知2x﹣3≥0,解得x≥3 2,故选:C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.(2分)若分式x−22x+1的值为零,则x的值等于()A.﹣3B.0C.2D.3【分析】根据分式值为零的条件列出x﹣2=0,2x+1≠0,解方程和不等式得到答案.【解答】解:要使分式x−22x+1的值为零,必须x﹣2=0,2x+1≠0,解得,x=2,故选:C.【点评】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.3.(2分)反比例函数y=−1x,下列说法不正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.图象关于直线y=﹣x对称D.y随x的增大而增大【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【解答】解:A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=﹣x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,【点评】本题考查了反比例函数图象的性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析. 4.(2分)下列计算正确的是( ) A .√9=±3B .√−83=2C .(√5)2=√5D .√22=2【分析】根据算术平方根、立方根以及实数的平方的计算方法,逐项判断即可. 【解答】解:∵√9=3, ∴选项A 不符合题意;∵√−83=−2, ∴选项B 不符合题意;∵(√5)2=5∴选项C 不符合题意;∵√22=2,∴选项D 符合题意. 故选:D .【点评】此题主要考查了实数的运算,算术平方根、立方根的含义和求法,要熟练掌握.5.(2分)暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是( ) A .600x =800x−40 B .600x−40=800xC .600x=800x+40D .600x+40=800x【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【解答】解:若设书店第一次购进该科幻小说x 套, 由题意列方程正确的是600x=800x+40,【点评】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系.6.(2分)函数y=kx+k与y=kx(k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx+k过一、二、三象限;y=kx(k≠0)过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=k x(k≠0)过二、四象限.观察图形可知,只有B选项符合题意.故选:B.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k的符号对函数图象的影响是解题的关键.二.填空题(共10小题,满分30分,每小题3分)7.(3分)计算:√3−2√27=﹣5√3.【分析】先分母有理化,再把√27化简,然后合并即可.【解答】解:原式=√3−6√3=﹣5√3.故答案为﹣5√3.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.(3分)如图是一个可以自由转动的转盘,转盘分成四个扇形,标号分别为Ⅰ,Ⅱ,Ⅲ,Ⅳ四个数字.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形区域).指针指向扇形Ⅰ的概率是38.【分析】首先计算出扇形Ⅰ的圆心角,再求扇形I 的面积与圆的面积比即可. 【解答】解:扇形Ⅰ的圆心角:360°﹣60°﹣120°﹣45°=135°, 设圆的半径为r ,则指针指向扇形Ⅰ的概率是:135π⋅r 2360⋅π⋅r 2=38,故答案为:38.【点评】此题主要考查了概率,关键是掌握概率公式.9.(3分)在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么该镇在日常生活中会进行垃圾分类的人数大约为 30000 人.【分析】先求出样本中会进行垃圾分类的人数所占的百分比,再乘以小镇的总人数即可. 【解答】解:由题意可得,该镇在日常生活中会进行垃圾分类的人数大约为: 150000×2001000=30000(人). 故答案为:30000.【点评】本题考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确. 10.(3分)已知反比例函数y =k−1x的图象经过点(2,﹣4),则k 的值为 ﹣7 . 【分析】将已知点的坐标代入解析式,构造方程进而求解. 【解答】解:∵反比例函数y =k−1x 的图象经过点(2,﹣4), ∴k ﹣1=2×(﹣4)=﹣8, 解得k =﹣7. 故答案为﹣7.【点评】题主要考查了反比例函数图象上点的坐标特征,反比例函数图象上的点(x ,y )的横纵坐标的积是定值k,即xy=k.11.(3分)若关于x的分式方程xx−3+2a3−x=2a无解,则a的值为0.5或1.5.【分析】直接解分式方程,再分类讨论当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:xx−3+2a3−x=2a,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=4a2a−1=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.12.(3分)如果方程kx+2+x2x+4=0不会产生增根,那么k的取值范围是k≠1.【分析】先解方程,再根据不会产生增根,即可得出k的取值范围.【解答】解:kx+2+x2x+4=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程kx+2+x2x+4=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.【点评】本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.13.(3分)如果最简二次根式√3a−8与√17−2a可以合并,那么使√4a−2x有意义的x的取值范围是x ≤10.【分析】根据二次根式可合并,可得同类二次根式,根据同类二次根式,可得a的值,根据被开方数是非负数,可得答案.【解答】解:由最简二次根式√3a−8与√17−2a可以合并,得3a﹣8=17﹣2a.解得a =5.由√4a −2x 有意义,得 20﹣2x ≥0,解得x ≤10, 故答案为:x ≤10.【点评】本题考查了同类二次根式,利用同类二次根式得出关于a 的方程是解题关键. 14.(3分)观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3+√3+√5+√5+√7+⋯+3√11+√101= √101−12.【分析】先分母有理化,然后合并即可. 【解答】解:原式=√3−12+√5−√32+√7−√52+⋯+√101−√992=√101−12.故答案为√101−12. 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3分)如图是三个反比例函数y =k 1x ,y =k 2x ,y =k3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为 k 1<k 2<k 3 .【分析】本题考查反比例函数与的图象特点.【解答】解:读图可知:三个反比例函数y =k 1x 的图象在第二象限;故k 1<0;y =k 2x ,y =k3x 在第一象限;且y =k3x 的图象距原点较远,故有:k 1<k 2<k 3;综合可得:k 1<k 2<k 3.故填k 1<k 2<k 3.【点评】反比例函数y =kx的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.且图象距原点越远,k 的绝对值越大.16.(3分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,BC ∥x 轴,点A 、B 都在反比例函数y =10x 上,点C 在反比例函数y =4x 上,则AB = 3√2 .【分析】设C (a ,4a),AC =BC =m ,则A (a ,4a+m ),B (a +m ,4a),根据反比例函数系数k 的几何意义得到a (4a+m )=(a +m )•4a=10,解得m =3,利用勾股定理求得AB =3√2.【解答】解:设C (a ,4a),AC =BC =m ,∴A (a ,4a+m ),B (a +m ,4a),∵点A 、B 都在反比例函数y =10x上, ∴a (4a+m )=(a +m )•4a=10,解得m =3, ∴AC =BC =3,在Rt △ABC 中,AB =√AC 2+BC 2=3√2, 故答案为3√2.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数k 的几何意义,等腰直角三角形的性质,表示出点的坐标是关键. 三.解答题(共10小题,满分78分) 17.(8分)计算题:(1)(√6−√2)×3√2−6√13;(2)(√5+1)(√5−1)﹣(√3−√2)2.【分析】(1)直接利用二次根式的混合运算法则进而计算得出答案;(2)直接利用乘法公式计算得出答案.【解答】解:(1)(√6−√2)×3√2−6√1 3=√6×3√2−√2×3√2−√363=6√3−6−2√3=4√3−6;(2)(√5+1)(√5−1)−(√3−√2)2=(√5)2−12−[(√3)2−2×√3×√2+(√2)2]=5−1−(3−2√6+2)=2√6−1.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.18.(8分)解方程:(1)1x−2=4x2−4;(2)xx+1=2x3x+3+1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=−3 2,经检验x=−32是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:(5m−3+13−m)÷4mm2−6m+9,其中m=9.【分析】根据分式的混合运算顺序进行化简,再代入值即可.【解答】解:原式=5−1m−3×(m−3)24m=m−3m, 当m =9时, 原式=9−39=23.【点评】本题考查了分式的化简求值,解决本题的关键是分式的混合运算.20.(6分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生? 并补全条形统计图; (2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名? 【分析】(1)根据统计图中的数据可以求得本次抽取的学生数;补全条形统计图即可; (2)根据统计图中的数据可以求得“理解”所占扇形的圆心角为120400×360°=108°;(3)由8000×(40%+120400)=5600(名)即可. 【解答】解:(1)本次调查共抽取学生为:205%=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名), 补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120400×360°=108°;(3)8000×(40%+120400)=5600(名), 所以“理解”和“了解”的共有学生5600名.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(8分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A 、B 两种型号,乙品牌有C 、D 、E 三种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠. (1)下列事件是不可能事件的是 D . A .选购乙品牌的D 型号 B .既选购甲品牌也选购乙品牌C .选购甲品牌的A 型号和乙品牌的D 型号 D .只选购甲品牌的A 型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A 型器材被选中的概率是多少? 【分析】(1)根据不可能事件和随机随机的定义进行判断; (2)根据题意画出树状图得出所有等可能的情况数即可; (3)找出A 型器材被选中的结果数,然后根据概率公式求解. 【解答】解:(1)只选购甲品牌的A 型号为不可能事件. 故答案为D ;(2)画树状图为:共有6种等可能的结果数,分别是AC,AD,AE,BC,BD,BE;(3)A型器材被选中的结果数为3,所以A型器材被选中的概率=36=12.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,一次函数y1=ax+b与反比例函数y2=kx的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为x>8或0<x<2;(3)点P是x轴上一点,当S△P AC=45S△AOB时,请直接写出点P的坐标为P(3,0)或P(﹣3,0).【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)先求得D的坐标,然后根据S△AOB=S△AOD﹣S△BOD求得△AOB的面积,即可求得S△P AC=45S△AOB=24,根据中心对称的性质得出OA=OC,即可得到S△APC=2S△AOP,从而得到2×12OP×8=24,求得OP,即可求得P的坐标.【解答】解:(1)将A (2,8),B (8,2)代入y =ax +b 得{2a +b =88a +b =2,解得{a =−1b =10,∴一次函数为y =﹣x +10,将A (2,8)代入y 2=kx 得8=k2,解得k =16, ∴反比例函数的解析式为y =16x ;(2)由图象可知,当y 1<y 2时,自变量x 的取值范围为:x >8或0<x <2, 故答案为x >8或0<x <2;(3)由题意可知OA =OC , ∴S △APC =2S △AOP ,把y =0代入y 1=﹣x +10得,0=﹣x +10,解得x =10, ∴D (10,0),∴S △AOB =S △AOD ﹣S △BOD =12×10×8−12×10×2=30, ∵S △P AC =45S △AOB =45×30=24, ∴2S △AOP =24,∴2×12OP ×y A =24,即2×12OP ×8=24, ∴OP =3,∴P (3,0)或P (﹣3,0), 故答案为P (3,0)或P (﹣3,0).【点评】本题考查了一次函数与反比例函数的交点问题,三角形的面积的计算,待定系数法求函数的解析式,数形结合是解题的关键.23.(8分)为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x +0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x +0.5)元, 依题意,得:2500x+0.5=2×1000x, 解得:x =2,经检验,x =2是原方程的解,且符合题意. 答:第一批口罩每只的进价是2元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(8分)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用符号表示为S =√14[a 2b 2−(a 2+b 2−c 22)2](其中a ,b ,c 为三角形的三边长,S 为三角形的面积).请利用这个公式求出当a =√5,b =3,c =2√5时的三角形的面积. 【分析】根据二次根式的混合计算解答即可. 【解答】解:∵a =√5,b =3,c =2√5, ∴a 2=5,b 2=9,c 2=20,∴三角形的面积S =√14[a 2b 2−(a 2+b 2−c 22)2]=√14[45−(5+9−202)2]=√14(45−9)=3. 【点评】此题考查二次根式的应用,关键是根据二次根式的混合计算解答.25.(8分)我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1;2x−3x+1=2x+2−5x+1=2x+2x+1+−5x+1=2+(−5x+1).(1)下列分式中,属于真分式的是: ③ (填序号) ①a−2a+1;②x 2x+1;③2bb 2+3;④a 2+3a 2−1.(2)将假分式4a+32a−1化成整式与真分式的和的形式为:4a+32a−1= 2 +52a−1 ;(3)将假分式a 2+3a−1化成整式与真分式的和的形式:a 2+3a−1= a +1 + 4a−1.【分析】(1)利用题中的新定义判断即可; (2)将原式分子变形后,化简即可得到真分式; (3)将原式分子变形后,化简即可得到真分式. 【解答】解:(1)根据题意得:2b b +3属于真分式;(2)4a+32a−1=2(2a−1)+52a−1=2+52a−1;(3)a 2+3a−1=a 2−1+4a−1=a +1+4a−1.故答案为:(1)③;(2)2,52a−1;(3)a +1,4a−1.【点评】此题考查了分式的混合运算,整式,以及分式的定义,熟练掌握运算法则是解本题的关键. 26.(9分)已知一次函数y =kx +b 与反比例函数y =mx 的图象交于A (﹣3,2)、B (1,n )两点. (1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)点P 在x 轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.【分析】(1)利用待定系数法求解即可.(2)如图设直线AB 交y 轴于C ,则C (0,﹣4),根据S △AOB =S △OCA +S △OCB 求解即可. (3)分三种情形:①AO =AP ,②OA =OP ,③P A =PO 分别求解即可.【解答】解:(1)∵反比例函数y =mx经过点A (﹣3,2), ∴m =﹣6,∵点B (1,n )在反比例函数图象上, ∴n =﹣6. ∴B (1,﹣6),把A ,B 的坐标代入y =kx +b , 则有{−3k +b =2k +b =−6,解得{k =−2b =−4,∴一次函数的解析式为y =﹣2x ﹣4,反比例函数的解析式为y =−6x.(2)如图设直线AB 交y 轴于C ,则C (0,﹣4), ∴S △AOB =S △OCA +S △OCB =12×4×3+12×4×1=8.(3)由题意OA =√22+32=√13, 当AO =AP 时,可得P 1(﹣6,0),当OA =OP 时,可得P 2(−√13,0),P 4(√13,0), 当P A =PO 时,过点A 作AJ ⊥x 轴于J .设OP 3=P 3A =x , 在Rt △AJP 3中,则有x 2=22+(3﹣x )2, 解得x =136, ∴P 3(−136,0), 综上所述,满足条件的点P 的坐标为(﹣6,0)或(−√13,0)或(√13,0)或(−136,0).【点评】本题属于反比例函数综合题,考查了反比例函数的性质,一次函数的性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。

苏教版八年级数学下册期中试卷及答案【完整版】

苏教版八年级数学下册期中试卷及答案【完整版】

苏教版八年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为__________.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数A-,并说明理由.图象是否经过点(5,9)4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、B6、D7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、-153、32或424、425、30°.6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、12x x +-,55+3、(1)见解析;(2)经过,理由见解析4、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。

苏科版江苏省苏州市吴中区2018-2019学年八年级(下)期中教学调研数学试卷(含答案)

苏科版江苏省苏州市吴中区2018-2019学年八年级(下)期中教学调研数学试卷(含答案)

2018~2019学年第二学期期中教学质量调研测试初二数学 2019.4注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的把正确选项前的字母填涂在答题卷相应位置上.)1.下列图案中既是轴对称图形,又是中心对称图形的是2.为纪念中国人民抗日战争的胜利,9月3日被确定为“抗日战争胜利纪念日”.某校为了了解学生对“抗日战争”的知晓情况,从全校6 000名学生中随机抽取了120名学生进行调查.在这次调查中,样本是A. 6 000B.所抽取的120名学生对“抗日战争”的知晓情况C. 120名学生D. 6 000学生对“抗日战争”的知晓情况 3.下列事件中,是不可能事件的是A.抛掷2枚正方体骰子,都是6点朝上B.抛掷2枚硬币,朝上的都是反面C.从仅装有红球的袋子中摸出白球D.从仅装有红、蓝球的袋子中摸出蓝球 4.反比例函数3y x=的图像位于 A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限 5.已知四边形ABCD 是平行四边形,下列结论不正确的是A.当AB BC =时,它是菱形B.当AC BD ⊥时,它是菱形C.当90ABC ∠=︒时,它是矩形D.当AC BD =时,它是正方形6.下列各式:1(1)2x -,43xπ-,222x y -,1a b+,25x y ,其中分式共有A. 2个B. 3个C. 4个D. 5个7.已知111(,)P x y 、222(,)P x y 是反比例函数2y x=的图像上的两点,且120x x <<,则1y 、 2y 的大小关系是A.120y y <<B. 210y y <<C. 210y y <<D. 120y y <<8.如果2ab=,那么2222a ab b a b -++等于 A.45 B. 1 C. 35D. 2 9.设函数2y x =与1y x =-的图像的交点坐标为(,)a b ,则11a b -的值为A. 45B.32C. 35-D.12-10.如图,矩形ABCD 中,3AB =,4BC =,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记PA x =,点D 到直线PA 的距离为y ,则y 关于x 的函数图像大致是二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.) 11.当x 时,分式23x x +-有意义. 12.反比例函数ky x=的图像经过点(2,1)P -,则k = . 13.若菱形的两条对角线长分别为2和3,则此菱形的面积是 .14.在扇形统计图中,其中一个扇形的圆心角是216º,则这个扇形所表示的部分占总体的百分数是 .15.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球试验后发现,摸到黄球的频率稳定在40%,则a = .16.若分式方程244x ax x =+--有增根,则a 的值为 . 17.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点,A B 的坐标分别为(3,0)-,(2,0),点D 在y 轴上,则点C 的坐标是 .18.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点1A 、2A 、3A 、4A 、5A 分别作x 轴的垂线与反比例函数4y x=(0x ≠)的图像相交于点1P 、2P 、3P 、4P 、5P ,得直角三角形11OP A 、122A P A 、233A P A 、344A P A 、455A P A ,并设其面积分别为1S 、2S 、3S 、4S 、5S ,则5S 的值 .三、解答题(本大题共1 0小题,共76分.解答时应写出文字说明、证明过程或演算步骤.) 19.(本题满分4分)解方程: 321x x =-.20.(本题满分6分)先化简,再求值:221(1)211x x x x ÷+-+-的值,其中x =.21.(本题满分8分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2 000名学生中“家长和学生都未参与”的人数.22.(本题满分6分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗的移植成活情况进行调查统计,并绘制了如图所示的统计图.根据统计图提供的信息,解决下列问题:(1)这种树苗成活的频率在附近摆动,成活的概率的估计值为; (精确到0.1)(2)该地区已经移植这种树苗5万棵.①试估计这种树苗成活多少万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?23.(本题满分6分)吴中区开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做3天,剩下的工程再由甲、乙两队合作8天可以完成.求甲、乙两队单独完成这项工程各需要多少天?24.(本题满分8分)如图,在四边形ABCD 中,//AD BC ,AD BC ≠,//AB DE ,//AF DC ,E 、F 两点在BC 边上,且3BC AD =. (1)求证:四边形AEFD 是平行四边形.(2)当AB DC =时,求证:AEFD Y 是矩形.25.(本题满分8分)如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,AB CD =、EF 与GH 有什么位置关系?请说明理由.26.(本题满分10分)阅读材料:关于x 的方程: 11x c x c +=+的解是121,x c x c==; 11x c x c -=-(即11x c x c --+=+)的解是121,x c x c ==-;22x c x c +=+的解是122,x c x c ==;33x c x c +=+的解是123,x c x c==;……(1)请观察上述方程与解的特征,比较关于x 的方程m mx a x a+=+ (0m ≠)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解下面关于x 的方程(直接写出答案):①33415x x +=++ ; ②4411x a x a +=+-- .27.(本题满分10分)如图所示,矩形ABCO 的顶点,A C 分别在,x y 轴的正半轴上,点D 为对角线OB 的中点,点(8,)E n 在边AB 上,反比例函数k(0)y k x=≠在第一象限内的图像经过点,D E ,且2OA AB =. (1)AB 的长是 ;(2)求反比例函数的表达式和n 的值;(3)若反比例函数的图像与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与,x y 轴正半轴交于点,H G ,求线段OG 的长.28.(本题满分10分)如图,将一三角板放在边长为4的正方形ABCD 上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.设点P从A向C运动的速度为每秒2个单位长度,运动时间为x秒.探究:(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;x=时,四边形PBCQ的面积是;(2)当点Q在边CD上且1∆是否可能成为等腰三角形?如果可能,指出所有(3)当点P在线段AC上滑动时,PCQ∆成为等腰三角形的点Q的位置,并求出相应的x值;如果不可能,试说明能使PCQ理由.。

初中数学苏州市吴中区初二下数学期中考模拟试卷及答案.docx

初中数学苏州市吴中区初二下数学期中考模拟试卷及答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列图形中,既是轴对称图形又是中心对称图形的是A B CD试题2:下列事件是必然事件的为A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“新闻夜班车”D.任意一个三角形,它的内角和等于180°试题3:下列分式:①;②;③;④其中最简分式有A.1个 B.2个 C.3个 D.4个试题4:若反比例函数的图像过点(2,1),则这个函数的图像还经过的点是A.(一2,1) B.(一l,2) C.(一2,一1) D.(1,一2)试题5:已知四边形ABCD中,A=B=C=90,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是A.D=90 B.AB=CD C.AD=BC D.BC=CD试题6:将一个长为10 cm、宽为8 cm的矩形纸片对折两次后,沿所得矩形两邻边中点的膀(如图①)剪下,将剪下的图形打开,得到的菱形ABCD(如图②)的面积为A.10 B.20 C.40D.80试题7:如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点0,点F、G分别是BO、CO的中点,连接AO.若AO=6 cm,BC=8 cm,则四边形DEFG的周长是A.14 cm B.18 cm C.24 cm D.28 cm试题8:为了了解我市2014年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指A.150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩 D.我市2014年中考数学成绩试题9:函数y=(a≠0)与y=a(x-1)(a≠0)在同一平面直角坐标系中的大致图像是试题10:如图,将矩形ABCO放在直角坐标系中,其中顶点B的坐标为(10, 8),E是BC边上一点,:将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=的图象与边AB交于点F, 则线段AF的长为A. B. 2 C. D.试题11:一个口袋中装有4个白色球,1个红色球,搅匀后随机从袋中摸出1个球是白色球的概率是.试题12:四边形ABCD中,对角线AC、BD相交于点0,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有种.试题13:如图,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为 (0°<a<90°).若∠1=110°,则= .试题14:苏州中学举行了一次科普知识竞赛,满分为100分,学生得分的最低分为31分.如图所示是根据学生竞赛成绩绘制的频数分布直方图的一部分,已知参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为.试题15:已知函数是反比例函数,则= .试题16:如果分式的值为零,则a的值为____________试题17:如图,点A在函数y=(x>0)的图像上,点B在函数y=(x>0)的图像上,点C在x轴上.若AB∥x轴,则△ABC的面积为.试题18:如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7, AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC 向终点C 运动,同时点Q 从点B出发,以1个单位/s的速度沿BA 向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为秒.试题19:计算:++试题20:÷试题21:先化简,再求代数式的值:,其中m=1。

【精品】江苏省苏州市吴中区八年级下期中数学试卷及答案

【精品】江苏省苏州市吴中区八年级下期中数学试卷及答案

2015-2016学年江苏省苏州市吴中区八年级(下)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是()A.8000名学生是总体B.500名学生是样本C.每个学生是个体D.样本容量是5004.对下列分式约分,正确的是()A. =a2B. =﹣1C. =D. =5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60° B.45° C.35° D.25°7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.29.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B.C.D.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x= .12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是.(填序号)的频率为.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是形.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则= .三、解答题:本大题共10小题,共76分.19.计算:(1)(2).20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.21.先化简,再求值:,其中x=﹣.22.解方程: =﹣1.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是(选填“抽样调查”或“普查”),调查的人数是;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .28.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,a=,b=,试判断a ,b 的大小关系,并说明理由.2015-2016学年江苏省苏州市吴中区八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )A .B .C .D .【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可. 【解答】解:A 、是中心对称图形,故本选项正确; B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误; D 、不是中心对称图形,故本选项错误; 故选A . 2.要使分式有意义,则x 的取值范围是( )A .x ≠1B .x >1C .x <1D .x ≠﹣1 【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得出x 的取值范围. 【解答】解:∵分式有意义,∴x ﹣1≠0, 解得:x ≠1. 故选A .3.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是( ) A .8000名学生是总体 B .500名学生是样本 C .每个学生是个体 D .样本容量是500 【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A 、8000名学生的体重情况是总体,故选项错误; B 、500名学生的体重情况是样本,故选项错误; C 、每个学生的体重情况是个体,故选项错误; D 、样本容量是500,正确. 故选D .4.对下列分式约分,正确的是( ) A . =a 2 B .=﹣1C .= D .=【考点】约分.【分析】分别根据分式的基本性质进行化简即可得出答案.【解答】解:A、=a3,故本选项错误;B、不能约分,故本选项错误;C、=,故本选项错误;D、=,故本选项正确;故选D.5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.【考点】几何概率.【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故选:B.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60° B.45° C.35° D.25°【考点】旋转的性质.【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=25°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=25°,∴∠AOB′=∠BOB′﹣∠AOB=60°﹣25°=35°.故选C.7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.9.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】把(a,b)分别代入函数y=x+3与y=,求出ab与b﹣a的值,代入代数式进行计算即可.【解答】解:∵函数y=x+3与y=的图象的交点为(a,b),∴b=a+3,b=﹣,∴b﹣a=3,ab=﹣2,∴===﹣.故选A.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15【考点】反比例函数的应用.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,x+b,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1则,解得:.故一次函数解析式为:y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入,得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14,即饮水机的一个循环周期为分钟.每一个循环周期内,在前两分钟或者最后的14到这两个时间段内,水温不超过50℃.∴选项A:7:00至8:30之间有90分钟.90﹣×3=20,14<20,故可行;选项B:7:07至8:30之间有83分钟.83﹣×3=13,14>13,13>2,故不可行;选项C:7:10至8:30之间有80分钟.80﹣×3=10,14>10,10>2,故不可行;选项D:7:15至8:30之间有75分钟.75﹣×3=5,14>5,5>2,故不可行.故选A.二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x= 1 .【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:1.12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到a•2=﹣8,然后解方程即可.【解答】解:根据题意得a•2=﹣8,解得a=﹣4.故答案为﹣4.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是②.(填序号)【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:两直线平行,内错角相等是必然事件;掷一枚硬币,国徽的一面朝上是随机事件,故答案为:②.的频率为0.1 .【考点】频数(率)分布表.【分析】根据频率的计算公式:频率=计算即可.【解答】解:通话时间超过15min的频率为: =0.1,故答案为:0.1.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.【考点】矩形的判定;平行四边形的性质.【分析】根据对角线相等的平行四边形是矩形进行填空即可.【解答】解:根据矩形的判定,对角线相等的平行四边形是矩形,知在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.故应填:矩.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为y=﹣.【考点】反比例函数系数k的几何意义.【分析】过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.【解答】解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11 .【考点】三角形中位线定理;勾股定理.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则= .【考点】翻折变换(折叠问题).【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答】解:连接EG,∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=8a,∴BC=CG+BG=a+8a=9a,在矩形ABCD中,AD=BC=9a,∴AF=9a,AG=AF+FG=9a+a=10a,在Rt△ABG中,AB===6a,∴==.故答案为:.三、解答题:本大题共10小题,共76分.19.计算:(1)(2).【考点】分式的混合运算.【分析】(1)先分解因式,然后根据分式的乘法法则进行计算;(2)化成同分母的分式,然后根据分式的加减法法则进行计算.【解答】解:(1)=•=;(2)=﹣==.20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征.【分析】(1)根据反比例函数图象上点的坐标特征得到k﹣1=2×1,然后解方程即可;(2)根据反比例函数的性质得k﹣1<0,然后解不等式;(3)根据反比例好图象上点的坐标特征解析判断.【解答】解:(1)把A(2,1)代入y=得k﹣1=2×1,解得k=3;(2)根据题意得k﹣1<0,解得k<1;(3)在.理由如下:当k=9时,反比例函数解析式为y=,因为﹣×(﹣16)=8,所以点B在这个函数的图象上.21.先化简,再求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=﹣时,原式==.22.解方程: =﹣1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是抽样调查(选填“抽样调查”或“普查”),调查的人数是200 ;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是54°;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可得这次调查是抽样调查;利用选A的人数÷选A的人数所占百分比即可算出总数;(2)用总数减去选A、C、D的人数即可得到选B的人数,再补全图形即可;再利用360°×选C的人数所占百分比即可得到圆心角度数;(3)根据样本估计总体的方法计算即可.【解答】解:(1)根据题意知,本次调查活动采取的调查方式是抽样调查,调查的人数为: =200(人);(2)选项B的人数为:200﹣(60+30+10)=100(人),选项C的圆心角度数为:×360°=54°,补全图形如下:(3)5%×2000=100(人).答:该校可能有100名学生平均每天参加体育活动的时间在0.5小时以下.24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【考点】分式方程的应用.【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得: =,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【考点】菱形的判定;平行四边形的判定;矩形的性质.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8∴S=OE•CD=×8×6=24.四边形OCED26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为 3 ,k的值为12 ;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.【考点】反比例函数综合题.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF ⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥﹣2时,自变量x的取值范围.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= 8﹣2t ,AP= 2+t .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= 8.【考点】四边形综合题.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.28.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是平行四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.【考点】反比例函数综合题.【分析】(1)由直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称,即可得到结论. (2)联立方程求得A 、B 点的坐标,然后根据OA=OB ,依据勾股定理得出 =,两边平分得+k 1=+k 2,整理后得(k 1﹣k 2)(k 1k 2﹣1)=0,根据k 1≠k 2,则k 1k 2﹣1=0,即可求得;(3)由P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,得到y 1=,y 2=,求出a===,得到a ﹣b=﹣==>0,即可得到结果.【解答】解:(1)∵直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称, ∴OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形; 故答案为:平行;(2)解:∵正比例函数y=k 1x (k 1>0)与反比例函数y=的图象在第一象限相交于A , ∴k 1x=,解得x=(因为交于第一象限,所以负根舍去,只保留正根)将x=带入y=k 1x 得y=,故A 点的坐标为(,)同理则B 点坐标为(,),又∵OA=OB , ∴=,两边平方得:+k 1=+k 2,整理后得(k 1﹣k 2)(k 1k 2﹣1)=0, ∵k 1≠k 2,所以k 1k 2﹣1=0,即k 1k 2=1;(3)∵P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点, ∴y 1=,y 2=,∴a===,∴a﹣b=﹣==,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.2016年11月8日21。

2019-2020学年江苏省苏州市吴中区八年级下学期期中数学试卷 (解析版)

2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列代数式中属于分式的是()A.B.C.D.a2.下列图案中,不是中心对称图形的是()A.B.C.D.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣64.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的5.下列分式是最简分式的()A.B.C.D.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.410.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).12.当x=时,分式无意义.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为.(用“<”连接)14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=.16.当m=时,解分式方程=会出现增根.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.20.解方程:=1.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C 类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足时,四边形EFGH是正方形.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填涂在答题卷相对应的位置上.)1.下列代数式中属于分式的是()A.B.C.D.a【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.解:、、a的分母中不含有字母,属于整式.的分母中含有字母,属于分式.故选:B.2.下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣6【分析】直接把点(3,﹣2)代入y=,然后求出k即可.解:把点(3,﹣2)代y=得﹣2×3=k,∴k=﹣6,故选:D.4.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【分析】依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.5.下列分式是最简分式的()A.B.C.D.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选:C.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称【分析】根据反比例函数的性质和题目中的函数解析式,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵反比例函数y=﹣,∴当x=1时,y=﹣4,即图象经过点(1,﹣4),故选项A正确;它的图象在第二、四象限,故选项B错误;当x>0时,y随x的增大而增大,故选项C正确;图象关于原点中心对称,故选项D正确;故选:B.8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.4【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.解:∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=16,∴EF=8,故选:C.10.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,∴S四边形ABMD=AM2,故④小题正确,综上所述,正确的是①②③④共4个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.12.当x=2时,分式无意义.【分析】根据分母等于0,分式无意义列式进行计算即可求解.解:根据题意得,x﹣2=0,解得x=2.故答案为:2.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为b<a.(用“<”连接)【分析】直接利用反比例函数的增减性分析得出答案.解:∵反比例函数y=中,k=4>0,∴在每个象限内,y随x的增大而减小,∵点A(1,a),B(3,b)都在反比例函数y=的图象上,且3>1,∴b<a,故答案为:b<a.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为60°.【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定,可得答案.解:由矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,得∠ABC=90°,∠BAO=90°﹣∠ACB=60°.由OA=OB,得△ABO是等边三角形,∠AOB=60°,故答案为:60°15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=﹣3.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.当m=2时,解分式方程=会出现增根.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.解:分式方程可化为:x﹣5=﹣m,由分母可知,分式方程的增根是3,当x=3时,3﹣5=﹣m,解得m=2,故答案为:2.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x 轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(+)×(2m﹣m)=.故答案为:.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=1﹣•=1﹣=.20.解方程:=1.【分析】因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解:方程两边同乘(x+1)(x﹣1),得:x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得:x=2.经检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解为:x=2.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【分析】(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x 的增大而增大,进而可得:m﹣5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=﹣x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=0.3,b=6;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【分析】(1)根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;(2)用类别为B的学生数所占的百分比乘以360°,即可得出答案;(3)用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:调查结果估计该校学生中类别为C的人数约为240名.23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?【分析】设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据数量=总价÷单价结合购进第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批饮料进货单价为8元.25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足AC⊥BD,且AC=BD时,四边形EFGH是正方形.【分析】(1)连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)①根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.根据邻边相等的矩形是正方形即可证明.解:(1)四边形EFGH是平行四边形,理由如下:如答图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)如答图2,连接BD.①当AC⊥BD时,四边形EFGH为矩形;理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.理由:∵EH=BD,EF=AC,BD=AC,∴EH=EF,∵当AC⊥BD时,四边形EFGH是矩形,∴四边形EFGH是正方形.故答案是:AC⊥BD,且AC=BD.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM =CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。

【苏教版】数学八年级下学期《期中考试试卷》含答案

苏教版八年级下学期数学期中测试卷一、选择题: (本大题共10小题,每题3分,共30分.)1. 下列图形中,不是中心对称图形是( ) A. B. C. D.2. 下列四种说法中不正确的是( )A. 为了解一种灯泡的使用寿命,宜采用普查的方法;B. “在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C. “打开电视机,正在播放少儿节目”是随机事件;D. 如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.3. 一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为( )A. 在袋中放入1个白球B. 在袋中放入1个白球、2个红球C. 在袋中取出1个红球D. 在袋中放入2个白球、1个红球 4. 下列分式是最简分式的是( ) A. 22a a ab+ B. 63xy a C. 211x x -+ D. 211x x ++ 5. 若222x x y +中的x 和y 的值都缩小2倍,则分式的值( ) A. 缩小2倍B. 缩小4倍C. 扩大2倍D. 扩大4倍6. 下列命题中是真命题的是( )A. 两条对角线相等的四边形是矩形;B. 有一条对角线平分一个内角的平行四边形为菱形;C. 对角线互相垂直且相等的四边形是正方形;D. 依次连结四边形各边的中点,所得四边形是菱形. 7. 如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A. 68°B. 20°C. 28°D. 22°8. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③9. 如图,四边形ABCD是正方形,直线a,b,c分别通过A,B,C三点,且////a b c,若a与b的距离为5,b与c的距离为7,则正方形ABCD的面积等于( )A. 148B. 70C. 144D. 7410. 如图,在矩形ABCD中,AB=10,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN 的最小值为()A. 10B. 8C. 5D. 6二、填空题: (本大题共8小题,每题2分,共16分.)11. 若分式242aa-+的值为0,则a的值为____.12. 有5张看上去无差别的卡片,上面分别写着02,227,1.333,随机抽取1张,则取出的数是无理数的概率是_______.13. 已知平行四边形ABCD中,∠C=2∠B,则∠A=___________度.14. 若关于x 的方程2111x mx x++=--产生增根,则m的值为___________15. 菱形的周长为40,两条对角线之比为3: 4,则菱形的面积为_________________.16. 若112a b-=,则422a ab ba ab b+---的值是________ 17. 如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.18. 如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是___.三、解答题: (本大题共8小题,共54分. 解答需写出必要的文字说明或演算步骤)19.计算或解方程: (1)23232y y x x⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(2) 214111x x x+-=--20. 先化简228(2)242m m m m m m+÷-+--,若22m-≤≤,请你选择一个你喜欢的整数,代入求值.21. 如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:(1)在第二象限内的格点上..........画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是____________,△ABC的面积是_____________________.(2)画出△ABC,以点C为旋转中心、旋转180°后的△A′B′C,连结AB′和A′B,则四边形AB A′B′的形状是何特殊四边形?___________________.(3)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等?若存在,请直接写出点P的坐标(写出一种情况即可)___________________.22. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位: kg)分成五组(A: 39.5~46.5;B: 46.5~53.5;C: 53.5~60.5;D: 60.5~67.5;E: 67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?23. 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证: 四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.24. 今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.25. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长.答案与解析一、选择题: (本大题共10小题,每题3分,共30分.)1. 下列图形中,不是中心对称图形是( ) A. B. C. D.【答案】B【解析】分析: 根据中心对称图形的定义判断即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.详解: A 、C 、D 符合中心对称图形的定义,是中心对称图形;B 不符合中心对称图形的定义,不是中心对称图形,是轴对称图形.故选B.点睛: 本题考查了中心对称图形的识别,准确掌握中心对称图形的定义是解答本题的关键. 2. 下列四种说法中不正确的是( )A. 为了解一种灯泡的使用寿命,宜采用普查的方法;B. “在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C. “打开电视机,正在播放少儿节目”是随机事件;D. 如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.【答案】A【解析】分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据随机事件、必然事件、不可能事件,可得答案.详解: A.为了解一种灯泡的使用寿命,调查具有破坏性,宜采用抽样调查的方法,A 错误;B.”在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C.”打开电视机,正在播放少儿节目”是随机事件,故C 正确;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,故D 正确;故选A . 点睛: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查;随机事件是可能发生也可能不发生的事件,必然事件是一定发生的事件,不可能事件是一定不发生的事件.3. 一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为( )A. 在袋中放入1个白球B. 在袋中放入1个白球、2个红球C. 在袋中取出1个红球D. 在袋中放入2个白球、1个红球 【答案】B【解析】分析: 根据概率公式,分别求出各选项中摸到白球与摸到红球的概率即可求解.详解:A 、在袋中放入1个白球,则摸到白球的概率为: 1111212+=++,摸到红球的概率为: 211212=++,故本选项不符合题意;B 、在袋中放入1个白球、2个红球,则摸到白球的概率为: 11112123+=+++,摸到红球的概率为: 22212123+=+++,故本选项符合题意; C 、在袋中取出1个红球,则摸到白球的概率为:111212=+-,摸到红球的概率为: 2111212-=+-,故本选项不符合题意;D 、在袋中放入2个白球、1个红球,则摸到白球的概率为: 12112212+=+++,摸到红球的概率为: 21112212+=+++,故本选项不符合题意; 故选B .点睛: 本题考查了概率公式: 概率=所求情况数与总情况数之比,熟练掌握概率的计算公式是解答本题的关键.4. 下列分式是最简分式的是( ) A. 22a a ab+ B. 63xy a C. 211x x -+ D. 211x x ++ 【答案】D【解析】 A 选项中,分式分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确.故选D .点睛: 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.5. 若222x x y+中的x 和y 的值都缩小2倍,则分式的值( ) A. 缩小2倍B. 缩小4倍C. 扩大2倍D. 扩大4倍【答案】C【解析】 分析: 依题意分别用12x 和12y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 详解: 分别用12x 和12y 去代换原分式中的x 和y 得, 222222124211114422x x x x y x y x y ⨯==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,∴分式的值变为原来的2倍.故选C.点睛: 本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6. 下列命题中是真命题的是( )A. 两条对角线相等的四边形是矩形;B. 有一条对角线平分一个内角的平行四边形为菱形;C. 对角线互相垂直且相等的四边形是正方形;D. 依次连结四边形各边的中点,所得四边形是菱形.【答案】B【解析】分析: 根据菱形、矩形和正方形的判定来逐一分析各个选项,从而选出正确的答案.详解: A. ∵两条对角线相等的四边形可能是等腰梯形,故A 不正确;B. 有一条对角线平分一个内角的平行四边形为菱形,正确;如图,四边形ABCD 是平行四边形,BD 平分∠ABC .求证: 四边形ABCD是菱形.证明: ∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3.∵BD平分∠ABC,∴∠1=∠2,∴∠1=∠3,∴AB=AD,∴四边形ABCD是菱形.C. ∵对角线互相垂直且相等的四边形可能是筝形,故C不正确;D. ∵依次连结四边形各边的中点,所得四边形是平行四边形,故D不正确.点睛: 本题主要考查命题的概念、平行四边形的判定定理、菱形的判定定理、矩形的判定定理以及正方形的判定定理.用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.7. 如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A. 68°B. 20°C. 28°D. 22°【答案】D【解析】试题解析: ∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.8. 小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③【答案】D【解析】【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.a b c,若a与b的距离9. 如图,四边形ABCD是正方形,直线a,b,c分别通过A,B,C三点,且////为5,b与c的距离为7,则正方形ABCD的面积等于( )A. 148B. 70C. 144D. 74【答案】D【解析】分析: 过A作AM⊥直线b于M,过D作DN⊥直线c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根据AAS推出△AMD≌△CND,根据全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.详解: 如图:过A作AM⊥直线b于M,过D作DN⊥直线c于N,则∠AMD=∠DNC=90°,∵直线b∥直线c,DN⊥直线c,∴∠2+∠3=90°,∵四边形ABCD是正方形,∴AD=DC,∠1+∠2=90°,∴∠1=∠3,在△AMD和△CND中,∵∠1=∠3,∠AMD=∠CND,AD=DC,∴△AMD≌△CND,∴AM=CN,∵a与b之间的距离是5,b与c之间的距离是7,∴AM=CN=5,DN=7,在Rt△DNC中,由勾股定理得: DC2=DN2+CN2=72+52=74,即正方形ABCD的面积为74,故选B.点睛: 本题考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线,并进一步求出△AMD≌△CND,难度适中.10. 如图,在矩形ABCD中,AB=10,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN 的最小值为()A. 10B. 8C. 5D. 6【答案】B【解析】【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.【详解】解: 过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,5AC边上的高为55∵△ABC∽△EFB,∴AB ACEF BE=,即1055EF45=EF=8.故选B.考点: 轴对称-最短路线问题.二、填空题: (本大题共8小题,每题2分,共16分.)11. 若分式242aa-+的值为0,则a的值为____.【答案】2【解析】【分析】先进行因式分解和约分,然后求值确定a【详解】原式=(2)(2)22a aaa=-++-∵值为0∴a-2=0,解得: a=2故答案为: 2【点睛】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立12. 有5张看上去无差别的卡片,上面分别写着02,227,1.333,随机抽取1张,则取出的数是无理数的概率是_______.【答案】0.4【解析】解: 一共有5个数,无理数有π2共2个,∴抽到写有无理数的卡片的概率是2÷5=0.4.故答案为0.4.点睛: 考查概率公式的应用;判断出无理数的个数是解决本题的易错点.13已知平行四边形ABCD中,∠C=2∠B,则∠A=___________度.【答案】120°【解析】试题分析: 根据题意得: ∠B+∠C=180°,则∠B=60°,∠C=120°,则∠A=∠C=120°.考点: 平行四边形的性质.14. 若关于x的方程2111x mx x++=--产生增根,则m的值为___________【答案】2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x-1=0,求出x的值,代入整式方程即可求出m 的值.【详解】去分母得: x+2=m+1,由分式方程有增根,得到x−1=0,即x=1,把x=1代入整式方程得: m=2,故答案为2.【点睛】此题考查分式方程的增根,解题关键在于掌握运算法则.15. 菱形的周长为40,两条对角线之比为3: 4,则菱形的面积为_________________.【答案】96【解析】【分析】根据已知可分别求得两条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可得到其面积.【详解】设两条对角线长分别为3x,4x,根据勾股定理可得(32x)2+(42x)2=102,解之得,x=4,则两条对角线长分别为12、16,∴菱形的面积=12×16÷2=96.故答案为96.【点睛】此题主要考查菱形的面积公式: 两条对角线的积的一半,综合利用了菱形的性质和勾股定理16. 若112a b-=,则422a ab ba ab b+---的值是________【答案】2 -5.【解析】解: ∵1a﹣1b=2,∴a﹣b=﹣2ab,∴原式=42a b aba b ab-+--()()=244ab abab ab-+--=25abab-=﹣25.故答案为﹣25.17. 如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是_____________.【答案】3【解析】分析: 连接CE,设DE=x,则AE=8-x,判断出OE是AC的垂直平分线,即可推得CE=AE=8-x,然后在Rt△CDE 中,根据勾股定理,求出DE的长是多少即可.详解: 如图,连接CE,,设DE=x,则AE=8-x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8-x,在Rt△CDE中,x2+42=(8-x)2,解得x=3,∴DE的长是3.故答案为3.点睛: 此题主要考查了矩形的性质、中垂线的性质和勾股定理,熟练掌握矩形的对角线互相平分和中垂线的性质是解题的关键.18. 如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是___.【答案】()n13-【解析】【分析】【详解】试题分析: 连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=1 2∴3∴3同理可得332,333,…按此规律所作的第n3)n-1三、解答题: (本大题共8小题,共54分. 解答需写出必要的文字说明或演算步骤)19. 计算或解方程: (1)23232y yx x⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭(2)214111xx x+-=--【答案】(1)489x y -;(2)x=1 【解析】分析: (1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x +1)(x -1),把分式方程转化为整式方程求解,解分式方程要验根;详解: (1)原式=232698y y x x ⎛⎫÷- ⎪⎝⎭=-262389y x x y ⨯=-489x y; (2)两边都乘以最简公分母(x+1)(x-1),得()22141x x +-=-,∴x 2+2x +1-4=x 2-1, ∴2x =2,∴1x =.点睛: 本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解分式方程的步骤是解答本题的关键.20. 先化简228(2)242m m m m m m +÷-+--,若22m -≤≤,请你选择一个你喜欢的整数,代入求值. 【答案】16【解析】分析: 先把括号里通分,再把除法转化为乘法,并把分子、分母分解因式约分化简,然后从22m -≤≤中选一个使分式有意义的数代入计算.详解: 原式= ()()2282222m m m m m m -++÷-- =()()222222m m m m m +-⨯-+ =()122m m + , 当1m =时,原式()()11222112m m ==+⨯⨯+=16(或当1m =-时,原式=12-).点睛: 本题考查了分式的化简求值,明确分式混合运算的顺序是解答本题的关键,不考虑分式有无意义,随便选数是本题的易错点.21. 如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作: (1)在第二象限内的格点上..........画一点C , 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是____________,△ABC 的面积是_____________________.(2)画出△ABC ,以点C 为旋转中心、旋转180°后的△A′B′C ,连结AB′和A′B , 则四边形AB A′B′的形状是何特殊四边形?___________________.(3)在坐标轴上是否存在P 点,使得△PAB 与△CAB 的面积相等?若存在,请直接写出点P 的坐标(写出一种情况即可)___________________.【答案】 (1). C (-1,1) (2). 4 (3). 矩形 (4). P (0,2)或(-2,0)【解析】分析: (1)根据网格特征选择即可(答案不唯一),利用勾股定理可验证腰长为无理数,用割补法求出△ABC 的面积;(2)由于旋转180°后与原图形成中心对称,所以延长AC 、BD ,使'CA AC =,'CB BC =,即可画出图形,然后根据矩形的判定方法说明即可;(3)根据网格特征选择,然后求出面积验证.详解: (1)如图,取点C (-1,1),则221310+=△ABC 的面积=4×4-111332213134222⨯-⨯⨯-⨯⨯-⨯⨯=. (2)延长AC 、BD ,使'CA AC =,'CB BC =,连接AB′,A′B ,B′′B ,由题意可知,BC=CB′,AC=C A′,∴四边形ABA′B′是平行四边形,又∵AA′=BB′,∴四边形ABA′B′是矩形;(3)如图,当P 1(0,2)时,S △ABP1=11188422AB AP ⋅=⨯⨯=,符合题意; 当P 2(-2,0)时, S △ABP1=21188422AB BP ⋅=⨯⨯=,符合题意; ∴P 点坐标是(0,2)或(-2,0).点睛: 本题考查了旋转作图,矩形的判定,勾股定理的应用,坐标平面内求图形的面积,明确旋转180°后与原图形成中心对称,熟练运用勾股定理求线段的长是解答本题的关键.22. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位: kg )分成五组(A: 39.5~46.5;B: 46.5~53.5;C: 53.5~60.5;D: 60.5~67.5;E: 67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;(2)C 组学生的频率为 ,在扇形统计图中D 组的圆心角是 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【答案】(1)50;(2)0.32;72(3)360【解析】【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【详解】(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=1050×360°=72°;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=1850×100%×1000=360(人).考点: 频数分布直方图.23. 如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证: 四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【答案】(1)证明见解析(2)2【解析】(1)根据平行线的性质以及判定定理求得//DF AC 和//EC DB ,从而得证四边形BCED 是平行四边形;(2)根据角平分线的性质得DBN CBN =∠∠,再根据平行线的性质得CNB DBN =∠∠,从而得证BNC NBC =∠∠,根据等腰三角形的性质即可求出CN 的长.【详解】(1)∵∠A=∠F∴//DF AC∵1DMF =∠∠,12∠=∠∴DMF =∠∠2∴//EC DB∴四边形BCED 是平行四边形(2)∵BN 平分∠DBC∴DBN CBN =∠∠∵//EC DB∴CNB DBN =∠∠∴BNC NBC =∠∠∴2CN BC DE ===.【点睛】本题考查了平行线相关的问题,掌握平行线的性质以及判定定理、平行四边形的性质以及判定定理、角平分线的性质、等腰三角形的性质是解题的关键.24. 今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km ,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h .(1) 求v 的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的23,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.【答案】(1) 15v =;(2)骑自行车的学生应提前76h 出发. 【解析】分析: (1)根据题意列出方程,求出方程的解即可得到v 的值;(2)根据题意求出骑自行车的速度,即可得到骑自行的学生应该提前的时间.详解: (1)由题意得:1515233v v =+ , 解之得,经检验: 15v =是方程的解;(2)自行车的速度变为210/3v km h =, 应该提前时间1515710456h -= , 则骑自行车的学生应提前76h 出发. 点睛: 本题考查了分式方程的实际应用,根据同时到达找出等量关系: 自行车行完全程所用时间=汽车行完全程所用时间+23是解答本题的关键. 25. 如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长. 【答案】 (1). AE (2). GF (3). 1: 2【解析】分析:(1)由图可直接得到第一、二空答案,根据折叠的性质可得△AEH 与△ABE 面积相等、梯形HFGA 与梯形FCDG 面积相等,据此不难得到第三空答案;(2)对图形进行点标注,如图所示: 首先根据勾股定理求得FH 的长,再根据折叠的性质以及请到的知识可得AH =FN ,HD =HN ,然后根据线段和差关系即可得到AD 的长;(3)根据题目信息,动手这一下,然后将结合画出来,再结合折叠的性质以及勾股定理的知识分析解答即可.详解: (1)根据题意得: 操作形成的折痕分别是线段AE、GF;由折叠的性质得: △ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=12S平行四边形ABCD,∴S矩形AEFG: S平行四边形ABCD=1: 2;故答案为AE,GF,1: 2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH=22512=13,由折叠的性质得: AD=FH=13;由折叠的对称性可知: DH=NH,AH=HM,CF=FN. 易得△AEH≌CGF,所以CF=AH,所以AD=DH+AH=HN+FN=FH=13.(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得: AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM=222254CF FM-=-=3,∴AD=BG=BM-GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得: 四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴2254-,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得: x=134,∴AD=134,BC=252-134=374;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=12CD=5,正方形的边长2,GM=FM=4,2254,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8-7=1,∴AD=5.点睛: 本题是四边形综合题,考查了折叠的性质,正方形的性质、勾股定理、梯形面积的计算、解方程等知识,本题综合性强,有一定难度.。

【苏教版】数学八年级下学期《期中测试题》附答案

苏教版八年级下学期数学期中测试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 若分式221xx-+有意义,则x的取值范围是()A. x≠0B. x≠-12C. x≠12D. x≠23. 下列调查方式,你认为最合适的是().A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式;B. 旅客上飞机前的安检,采用抽样调查方式;C. 了解娄底市居民日平均用水量,采用全面调查方式;D. 对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式.4. 下列各事件中,属于必然事件的是()A. 抛一枚硬币,正面朝上B. 早上出门,在第一个路口遇到红灯C. 在平面内,度量一个三角形的内角度数,其和为360°D. 5本书分放在4个抽屉,至少一个抽屉内有2本书5. 数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A. 4B. 10C. 6D. 86. 如果把分式xyx y-中的x、y都扩大3倍,那么分式的值()A. 扩大3倍B. 不变C. 缩小3倍D. 扩大9倍7. 某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A. 120240420x x-=+B.240120420x x-=+C. 120240420x x-=-D.240120420x x-=-8. 下列性质中,矩形具有而菱形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边相等9. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C. 12D. 2410. 如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A.3 B. 13+ C.7D. 3二、填空题(本大题共8小题,每小题2分,共16分)11. 当x =_____时,分式22x x +-的值为0. 12. 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______.13. 某种油菜籽在相同条件下发芽试验的结果如表: 每批粒数n 100 300 400 600 1000 20003000发芽的频数m 96 284 380 571 948 19022848发芽的频率m n0.9600.9470.9500.9520.9480.9510.949那么这种油菜籽发芽的概率是________(结果精确到0.01). 14. 在平行四边形ABCD 中,若∠A+∠C=100°,则∠D=_____. 15. 要使□ABCD 是菱形, 你添加条件是_______.(写出一种即可) 16. 关于x 的方程1433x mx x -=+-- 有增根,则m =_______. 17. 如图,矩形ABCD 的对角线交于点O ,点E 在线段AO 上,且DE =DC ,若∠EDO =15°,则∠DEC =______°.18. E 、F 是线段AB 上的两点,且AB =16,AE =1,BF =3,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连结PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.三、解答题(本大题共9小题,共74分)19. 化简或计算:(1)2222a ab a b a ab--÷ (2)211a a a +--20. 先化简再求值: 222142442x x x x x x x x ---⎛⎫-÷⎪++++⎝⎭,其中2240x x +-= 21. 解下列分式方程:(1)321x x =- (2)228224x x x x x +-=+-- 22. 某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了 人.②有阅读兴趣的学生占被调查学生总数的 %. ③有”其它”爱好的学生共多少人? ④补全折线统计图.23. 在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.24. 只用无刻度的直尺作图(保留作图痕迹,不要求写作法)(1)如图1,已知∠AOB ,OA =OB ,点E 在OB 边上,其中四边形AEBF 是平行四边形,请你在图中画出∠AOB 的平分线.(2)如图2,已知E 是菱形ABCD 中AB 边上的中点,请你在图中画出一个矩形EFGH ,使得其面积等于菱形ABCD 的一半.25. 阅读下面的材料:如果函数y =f (x )满足: 对于自变量x 取值范围内的任意x 1,x 2, (1)若12x x <,都有()()12f x f x <,则称f (x )是增函数; (2)若12x x <,都有()()12f x f x >,则称f (x )是减函数. 例题: 证明函数f (x )=6(0)x x>是减函数. 证明: 设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-== ∵120x x <<, ∴21120,0x x x x ->>.∴()112620x x x x ->.即()()120f x f x ->.∴()()12f x f x >. ∴函数6()(0)f x x x->是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=221x x-(x <0),例如f (-1)=22(1)1(1)⨯---=-3,f (-2)=22(2)1(2)⨯---=-54(1)计算: f (-3)= ; (2)猜想: 函数f (x )=221x x-(x <0)是 函数(填”增”或”减”);(3)请仿照例题证明你的猜想.26. 【发现问题】爱好数学的小强在做作业时碰到这样的一道题目: 如图①,在△ABC 中,AB =8,AC =6,E 为BC 中点,求AE 的取值范围. 【解决问题】(1)小强经过多次的尝试与探索,终于得到解题思路: 在图①中,作AB 边上的中点F ,连接EF ,构造出△ABC 的中位线EF ,请你完成余下的求解过程.【灵活运用】(2)如图②,在四边形ABCD 中,AB =8,CD =6,E 、F 分别为BC 、AD 中点,求EF 的取值范围. (3)变式: 把图②中的A 、D 、C 变成在一直线上时,如图③,其它条件不变,则EF 的取值范围为 . 【迁移拓展】(4)如图④,在△ABC 中,∠A =60°,AB =4,E 为BC 边的中点,F 是AC 边上一点且EF 正好平分△ABC的周长,则EF= .27. 如图①,将正方形ABOD 放在平面直角坐标系中,O 是坐标原点,点D 的坐标为(2,3), (1)点B 的坐标为 ;(2)若点P 为对角线BD 上的动点,作等腰直角三角形APE ,使∠P AE =90°,如图②,连接DE ,则BP 与DE 的关系(位置与数量关系)是 ,并说明理由;(3)在(2)的条件下,再作等边三角形APF ,连接EF 、FD ,如图③,在 P 点运动过程中当EF 取最小值时,此时∠DFE = °;(4)在(1)的条件下,点 M 在 x 轴上,在平面内是否存在点N ,使以 B 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形及中心对称图像概念分析选项即可得解答.【详解】解: 轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形绕对称中心旋转180度后两部分重合.A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,是中心对称图形.故正确;D、不是轴对称图形,不是中心对称图形.故错误.故选: C.【点睛】本题考查的是中心对称图形与轴对称图形的概念: 轴对称图形沿对称轴折叠后可重合,中心对称图形绕对称中心旋转180度后两部分重合.2. 若分式221xx-+有意义,则x的取值范围是()A. x≠0B. x≠-12C. x≠12D. x≠2【答案】B【解析】【分析】根据分式有意义的条件即可求出答案.【详解】解: 分式221xx-+有意义,则210x+≠,∴1-2x≠,故选: B.【点睛】本题考查分式有意义的条件,即分母不为0.3. 下列调查方式,你认为最合适的是().A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式;B. 旅客上飞机前的安检,采用抽样调查方式;C. 了解娄底市居民日平均用水量,采用全面调查方式;D. 对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式.【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解: A、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式;故A错误;B、旅客上飞机前的安检,采用全面调查方式;故B错误;C、了解娄底市居民日平均用水量,采用抽样调查方式;故C错误;D、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式;故D正确;故选: D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 下列各事件中,属于必然事件的是()A. 抛一枚硬币,正面朝上B. 早上出门,在第一个路口遇到红灯C. 在平面内,度量一个三角形的内角度数,其和为360°D. 5本书分放在4个抽屉,至少一个抽屉内有2本书【答案】D【解析】【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解: A、抛一枚硬币,正面朝上,是随机事件,不符合题意;B、早上出门,在第一个路口遇到红灯,是随机事件,不符合题意;C、在平面内,度量一个三角形的内角度数,其和为180°,不可能是360°,是不可能事件,不符合题意;D、5本书分放在4个抽屉,至少一个抽屉内有2本书,是必然事件,符合题意;故选: D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为 ( ) A. 4 B. 10C. 6D. 8【答案】D 【解析】第5组的频数为40×0.1=4; ∴第6组的频数为40-(10+5+7+6+4)=8. 故本题选D . 6. 如果把分式xyx y-中的x 、y 都扩大3倍,那么分式的值( ) A. 扩大3倍 B. 不变C. 缩小3倍D. 扩大9倍【答案】A 【解析】33333x y xyx y x y⨯=⨯--,分式的值扩大3倍.故选A.7. 某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x 本素描本,列方程正确的是( )A. 120240420x x -=+ B.240120420x x -=+ C. 120240420x x -=- D.240120420x x-=- 【答案】A 【解析】 【分析】根据题意可知第二次买了(x +20)本素描本,然后根据”第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解: 由题意可知: 120240420x x -=+ 故选A .【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.8. 下列性质中,矩形具有而菱形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边相等【答案】A【解析】【分析】根据矩形和菱形的性质即可做出选择;【详解】解: (A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选A.【点睛】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.9. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. 245B.125C. 12D. 24【答案】A【解析】【分析】【详解】解: 如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=12AC=12×8=4,BO=12BD=12×6=3,由勾股定理的,22AO BO+2243+,∵DH⊥AB,∴S菱形ABCD =AB•DH=12AC•BD,即5DH=12×8×6,解得DH=245.故选A.【点睛】本题考查菱形的性质.10. 如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A. 3B. 13+C. 7D. 3【答案】C 【解析】 【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解: 如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点, ∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO , ∴OP OP =',∴PO +PB =BP O P BO +='', ∵四边形ABCD 是矩形,∠AOD =120°, ∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形, ∴AB =BO =4,过点A 作AH ⊥BO 于H ,∴AH =,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O ,∴AH OO =='OO BD ⊥',∴BO ='即PO +PB 故选: C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.二、填空题(本大题共8小题,每小题2分,共16分)11. 当x =_____时,分式22x x +-的值为0. 【答案】-2 【解析】 【分析】根据分式的意义可得到x ﹣2≠0,即x ≠2,根据题意分式值为0可知x+2=0,解得x =﹣2,符合题意. 【详解】由分子x+2=0,解得x =﹣2, 而x =﹣2时,分母x ﹣2=﹣2﹣2=﹣4≠0. 所以x =﹣2.【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题. 12. 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______. 【答案】1000 【解析】 【分析】根据样本容量的定义进行分析即可,样本容量: 一个样本包括的个体数量叫做样本容量.【详解】解: 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是1000.故答案为: 1000.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.13. 某种油菜籽在相同条件下发芽试验的结果如表:那么这种油菜籽发芽的概率是________(结果精确到0.01).【答案】0.95【解析】【分析】根据表格求得频率的平均数,结合频率估计概率的知识即可得解.【详解】油菜籽发芽的频率的平均数为: 0.9600.9470.9500.9520.9480.9510.9497++++++≈0.95.故答案为0.95.【点睛】本题考查利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解此题的关键.14. 在平行四边形ABCD中,若∠A+∠C=100°,则∠D=_____.【答案】130°【解析】【分析】【详解】解: 由平行四边形对角相等可得∠A=∠C,又因∠A+∠C=100°,所以∠A=∠C=50°.根据平行四边形的邻角互补可求的∠D=130°.考点: 平行四边形的性质.15. 要使□ABCD是菱形,你添加的条件是_______.(写出一种即可)【答案】AD=AB (答案不唯一)【解析】【分析】添加的条件是AD=AB,根据菱形的判定定理: 有一组邻边相等的平行四边形是菱形,即可推出结论.【详解】解: ∵四边形ABCD 是平行四边形,AD =AB , ∴平行四边形ABCD 是菱形, 故答案为: AD =AB .【点睛】本题主要考查对菱形的判定的理解和掌握,能灵活运用菱形的判定进行推理是解此题的关键.此题是一个开放性题目,也可选用别的邻边相等来作为添加条件. 16. 关于x 的方程 1433x mx x -=+-- 有增根,则m =_______. 【答案】2 【解析】 【分析】首先解分式方程,进而利用分式方程有增根得出关于m 的方程,解之求得m 的值即可. 【详解】解: 方程1433x mx x -=+--两边同时乘以(x -3),得: 1=4(3)x m x -+-, 解得: 113mx -=, ∵方程有增根, ∴30x -=,即3x =, ∴1133m-=, 解得: 2m =, 故答案为: 2.【点睛】本题考查了分式方程的增根,解决增根问题的步骤: ①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17. 如图,矩形ABCD 的对角线交于点O ,点E 在线段AO 上,且DE =DC ,若∠EDO =15°,则∠DEC =______°.【答案】55 【解析】 【分析】设∠DEC =x ,由DE =DC 可得∠DCE =x ,根据四边形ABCD 为平行四边形,AC 、BD 为对角线,则∠ODC =∠DCE =x ,进而得到∠DOE =∠OCD +∠ODC =2x ,再有∠EDO =15°,△DOE 内角和为180°,建立等式解x 即可.【详解】解: 设∠DEC =x , ∵DE =DC , ∴∠DCE =x ,∵四边形ABCD 为矩形, ∴∠ODC =∠DCE =x ,∴∠DOE =∠OCD +∠ODC =2x , ∵△DOE 内角和为180°, ∴215180x x ++︒=︒, 解得: 55x =︒, 即∠DEC =55︒, 故答案为: 55.【点睛】本题为三角形和四边形综合,主要考查矩形四边形对角线互相平分,等腰三角形等边对等角,三角形外角等于不相邻两内角之和等知识点.18. E 、F 是线段AB 上的两点,且AB =16,AE =1,BF =3,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连结PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【答案】36 【解析】 【分析】分别延长AD 、BC 相交于点H ,连接PH ,EH ,FH ,易证四边形DGCH 为矩形,且P 为矩形DGCH 的对角线交点,即P 为HG 中点,过P 作MN ∥AB 分别交EH 、FH 与M 、N ,所以MN 为△HEF 的中位线,即点P 的运动轨迹即为MN ,所以GP 扫过的图形即为梯形MEFN ,再根据已知线段求出梯形MEFN 的面积即可. 【详解】解: 分别延长AD 、BC 交于点H ,连接PH ,EH ,FH ,∵△ADG、△GCB为等腰直角三角形,∴∠DGA=∠CGB=45°,∴∠DGC=90°,∴AH∥GC,又∵∠HCG=90°,∴∠HCG=∠DGC=90°,∴DG∥HB,∴四边形DGCH为矩形,∵点P未DC中点,∴点G、P、H三点共线,且P为HG的中点,过P作MN∥于AB分别交EH、FH与M、N,∴MN为△HEF的中位线,且MN即为点P的运动轨迹,∴GP扫过的图形即为梯形MEFN,∵AB=16,AE=1,BF=3,∴EF=16-1-3=12,∴162MN EF==,过点H作HO垂直AB于O,∴182HO AB==,∴梯形的高为: 184 2⨯=,∴14(612)362MEFNS=⨯⨯+=梯形,即线段PG扫过的图形面积为36,故答案为: 36.【点睛】本题为动点问题,考查了等腰直角三角形的性质,三角形中位线定理,平行四边形的判定和性质等知识点.解题的关键是寻找点P 的运动轨迹.三、解答题(本大题共9小题,共74分)19. 化简或计算:(1)2222a ab a b a ab--÷ (2)211a a a +--【答案】(1)b a b +;(2)11a -- 【解析】 【分析】(1)利用提公因式法和公式法进行因式分解,然后进行乘除计算约分即可;(2)同分母化后利用利用平方差公式展开,进行计算即可.【详解】(1)解: 2222a ab a b a ab--÷=2()()()a ab aba ab a b -⨯-+ =ba b+; (2)解: 211a a a +--=2(1)(1)11a a a a a +---- =2211a a a ---=11a -- 【点睛】本题考查分式的运算,涉主要考查公式法和提取公因式法分解因式,熟练掌握完全平方差公式的运用是此题的关键. 20. 先化简再求值: 222142442x x x x x x x x ---⎛⎫-÷⎪++++⎝⎭,其中2240x x +-=【答案】212x x +,14【解析】 【分析】利用公式法和提取公因式法将第一个式子进行化简,观察化简后的式子,将第二个等式变形求得224x x +=,在通过整体代入求得原式的结果.【详解】解: 原式=2212[](2)(2)4x x x x x x x --+-⨯++-=22(2)(2)(1)2[](2)(2)4x x x x x x x x x x -+-+-⨯++-=242(2)4x x x x x -+⨯+- =212x x+, ∵2240x x +-=, ∴224x x +=, ∴原式=14. 【点睛】本题考查分式的化简求值,利用提公因式法和公式法因式分解,再通过整体代入求值.熟练掌握完全平方公式,平方差公式是解答本题的关键. 21. 解下列分式方程:(1)321x x =- (2)228224x x x x x +-=+-- 【答案】(1)x =-2;(2)无解 【解析】 【分析】(1)等式两边同时乘(1)x x -,得32(1)x x =-,再解此一元一次方程即可;(2)等式两边同乘24x -,得2(2)(2)8x x x --+=,解此方程即可. 【详解】(1)解:321x x=-,等式两边同时乘(1)x x -, 得: 32(1)x x =-, 解得: 2x =-检验: 当x =-2时,x (x -1)≠0,x =-2是原方程的解; (2)解:228224x x x x x +-=+--, 等式两边同乘24x -, 得: 2(2)(2)8x x x --+=222(44)8x x x x --++=612x -=解得: 2x =-,检验: 当x =-2时,(x +2)(x -2)=0,x =-2是增根, 故: 原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是”转化思想”,把分式方程转化为整式方程求解.需要注意解分式方程一定要验根.22. 某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了 人.②有阅读兴趣的学生占被调查学生总数的 %. ③有”其它”爱好的学生共多少人? ④补全折线统计图.【答案】①200;②30%;③20;④详见解析 【解析】【分析】①由折线统计图可以看出爱好运动的人数是40人,由扇形统计图看出爱好运动的人数占抽样人数的20%,根据百分数除法的意义,用爱好运动的数除以所占的百分率就是被抽样调查的人数;②用有阅读兴趣的学生数(从折线统计图可以看出)除以被调查总人数(①已求出));③把被调查的总人数看作单位”1”,用1减去有阅读兴趣、运动兴趣、娱乐兴趣人数所的百分率就是其它兴趣学生人数所占的百分率;根据百分数乘法的意义,用总人数乘其它爱好人数所占的百分率就是有”其它”爱好的学生人数;④根据百分数乘法的意义,用总人数乘爱好娱乐人数所占的百分率求出爱好娱乐人数,即可补全折线统计图.【详解】解: ①40÷20%= 200 人,即这次调研,一共调查了200人,故答案为: 200;②60÷200= 30 %即有阅读兴趣的学生占被调查学生总数的30%,故答案为: 30%;③1-20%-40%-30%=10%200×10%=20(人)即有”其它”爱好的学生共20人,故答案为: 20;④200×40%=80(人)爱好娱乐的80人,”其它”爱好的20人,补全折线统计图如下:【点睛】此题是考查如何从折线、扇形统计图中获取信息,并根据所获取的信息被折线、扇形统计图和进行有关计算.23. 在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证: △ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.【答案】(1)证明见解析(2)菱形【解析】分析: (1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF 是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明: (1)∵四边形ABCD 是正方形,∴AB=AD ,∴∠ABD=∠ADB ,∴∠ABE=∠ADF ,在△ABE 与△ADF 中AB AD ABE ADF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ADF.(2)如图,连接AC ,四边形AECF 是菱形.理由: 在正方形ABCD 中,OA=OC ,OB=OD ,AC ⊥EF ,∴OB+BE=OD+DF ,即OE=OF ,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.点睛: 本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.24. 只用无刻度的直尺作图(保留作图痕迹,不要求写作法)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,其中四边形AEBF是平行四边形,请你在图中画出∠AOB的平分线.(2)如图2,已知E是菱形ABCD中AB边上的中点,请你在图中画出一个矩形EFGH,使得其面积等于菱形ABCD的一半.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)根据平行四边形的性质可知∠AOB的平分线必定经过平行四边形的中心即对角线的交点.所以先作平行四边形的对角线,再作∠AOB的平分线;(2)直接利用菱形的性质将其分割进而得出各边中点即可得出答案.【详解】解: (1)如图所示: AD即为∠AOB的角平分线;(2)如图2所示: 四边形EFMN即为菱形.【点睛】此题主要考查了平行四边形的性质以及复杂作图,关键是熟练掌握平行四边形的性质、菱形的判定,找出作图的方法.25. 阅读下面的材料:如果函数y =f (x )满足: 对于自变量x 的取值范围内的任意x 1,x 2,(1)若12x x <,都有()()12f x f x <,则称f (x )是增函数;(2)若12x x <,都有()()12f x f x >,则称f (x )是减函数.例题: 证明函数f (x )=6(0)x x>是减函数. 证明: 设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-== ∵120x x <<,∴21120,0x x x x ->>.∴()112620x x x x ->.即()()120f x f x ->.∴()()12f x f x >. ∴函数6()(0)f x x x->是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=221x x -(x <0),例如f (-1)=22(1)1(1)⨯---=-3,f (-2)=22(2)1(2)⨯---=-54(1)计算: f (-3)= ;(2)猜想: 函数f (x )=221x x -(x <0)是 函数(填”增”或”减”);(3)请仿照例题证明你的猜想.【答案】(1)79-;(2)减;(3)详见解析 【解析】【分析】 (1)根据题目中函数,将3x =-代入f (x )=221x x -(x <0),即可求解f (-3)的值;(2)取2x =-,代入函数f (x )=221x x -(x <0),求得f (-2)的值,结合(1)比较f (-3)和f (-2)的大小,再根据材料信息进行判断即可; (3)根据题目中例子的证明方法,结合(1)和(2)可证明猜想成立.【详解】解: (1)计算: f (-3)=22(3)1(3)⨯---=79-, 故答案为: 79-; (2)由(1)知,f (-3)=79-, 当2x =-时,f (-2)=22(2)15(2)4⨯--=--, ∵320-<-<,(3)(2)f f ->-,∴猜想: 函数f (x )=221x x -(x <0)是减函数 故答案为: 减; (3)证明: 设120x x <<,121222122121()()x x f x f x x x ---=- =211212212()[2()]()x x x x x x x x --+, ∵120x x <<,∴210x x ->,120x x >,120x x +<, ∴211212212()[2()]0()x x x x x x x x --+>,即12())0(f x f x ->,∴12()()f x f x >,∴函数f (x )=221x x-(x <0)是减函数,猜想得证. 【点睛】本题考查函数的概念,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的性质解答.26. 【发现问题】爱好数学的小强在做作业时碰到这样的一道题目: 如图①,在△ABC 中,AB =8,AC =6,E 为BC 中点,求AE 的取值范围.【解决问题】(1)小强经过多次的尝试与探索,终于得到解题思路: 在图①中,作AB 边上的中点F ,连接EF ,构造出△ABC 的中位线EF ,请你完成余下的求解过程.【灵活运用】(2)如图②,在四边形ABCD 中,AB =8,CD =6,E 、F 分别为BC 、AD 中点,求EF 的取值范围.(3)变式: 把图②中的A 、D 、C 变成在一直线上时,如图③,其它条件不变,则EF 的取值范围为 .【迁移拓展】(4)如图④,在△ABC 中,∠A =60°,AB =4,E 为BC 边的中点,F 是AC 边上一点且EF 正好平分△ABC 的周长,则EF = .【答案】(1)详见解析;(2)1<EF <7;(3)17EF <<;(4)EF =23【解析】【分析】(1)依照题意作出图形,利用△AFE 中两边之和大于第三边,两边之差小于第三边,求解AE 边的取值范围;(2)连接BD ,取BD 中点G ,连接FG 、EG ,由E 、F 分别为BC 、AD 中点,可得FG =12AB ,EG =12DC ,同(1)△GEF 中两边之和大于第三边,两边之差小于第三边,求解EF 边的取值范围;(3)如图,连接BD ,取BD 的中点H ,连接HF ,HE ,由三角形中位线定理可知1=42FH AB =,1=32EH CD =,在△DHE 中有,两边之和大于第三边,两边之差小于第三边,即可求得17EF <<; (4)在线段CF 上取一点M ,使得FM =AF ,连接BM ,取BM 的中点N ,连接FN ,EN ,由EF 平分三角形ABC 周长,可得CM =AB =4,由三角形中位线定理,及∠A =60°,可知NF =NE =2,且∠FNE =120°,作NO ⊥EF 于O ,解△ENF ,可得FO =E 0=3,即可求得EF =23.【详解】(1)解:∵E 为 BC 中点,F 为 AB 中点,∴EF =12AC , ∵AB =8,AC =6, ∴AF =12AB =4,EF =12AC =3, 在△AEF 中,两边之和大于第三边,两边之差小于第三边,∴4-3<AE <4+3,即,1<AE <7;(2)解: 连接BD ,取BD 中点G ,连接FG 、EG ,∵E 、F 分别为BC 、AD 中点,∴FG =12AB ,EG =12DC , ∵AB =8,CD =6, ∴FG =4,EG =3,在△GEF 中,4-3<EF <4+3,即1<EF <7.(3)如图,连接BD ,取BD 的中点H ,连接HF ,HE ,∵E 、F 分别为BC 、AD 中点,∴1=42FH AB =,1=32EH CD = ∴在△DHE 中,4343EF -<<+,即EF 的取值范围为17EF <<,故答案为: 17EF <<;(4)在线段CF 上取一点M ,使得FM =AF ,连接BM ,取BM 的中点N ,连接FN ,EN ,∴F 为线段AM 的中点,∵E 为BC 中点,∴FN ∥AB ,且12FN AB =,EN ∥AC ,且12EN MC =,BE =EC , ∵∠A =60°,AB =4,∴FN =2,∠FNE =120°,∵EF 正好平分△ABC 的周长,∴BA AF CF +=,∴BA CF AF CF MF CM=-=-=,∴CM=4,∴NE=2,∴△FNE为等腰三角形,且∠NFE=∠NEF=30°,过点N作NO⊥EF于点O,则FO=OE=3,∴23EF=,故答案为: 23.【点睛】本题主要考查三角形中位线定理,三角形三边的数量关系,以及构造直角三角形求三角边长.根据题目信息,分析线段中点的作用,作出三角形中位线是解此题的关键.27. 如图①,将正方形ABOD放在平面直角坐标系中,O是坐标原点,点D的坐标为(2,3),(1)点B的坐标为;(2)若点P为对角线BD上的动点,作等腰直角三角形APE,使∠P AE=90°,如图②,连接DE,则BP与DE的关系(位置与数量关系)是,并说明理由;(3)在(2)的条件下,再作等边三角形APF,连接EF、FD,如图③,在P点运动过程中当EF取最小值时,此时∠DFE=°;(4)在(1)的条件下,点M在x轴上,在平面内是否存在点N,使以B、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.。

苏科版(完整版)八年级数学下册期中试卷及答案

苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .不是平行四边形B .不是中心对称图形C .一定是中心对称图形D .当AC =BD 时,它为矩形 2.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论: ①∠ABE =∠DCE ;②∠AHB =∠EHD ;③S △BHE =S △CHD ;④AG ⊥BE .其中正确的是( )A .①③B .①②③④C .①②③D .①③④3.已知12x <≤ ,则23(2)x x -+-的值为( )A .2 x - 5B .—2C .5 - 2 xD .24.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .45.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45° 6.用配方法解一元二次方程2620x x --=,以下正确的是( )A .2(3)2x -=B .2(3)11x -=C .2(3)11x +=D .2(3)2x +=7.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE=BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是( )A .BC=ACB .CF ⊥BFC .BD=DFD .AC=BF 8.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4 D .4或-29.在四边形中,能判定这个四边形是正方形的条件是()A .对角线相等,对边平行且相等B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分10.关于x 的一元二次方程x 2+(a 2﹣2a )x+a ﹣1=0的两个实数根互为相反数,则a 的值为( )A .2B .0C .1D .2或0二、填空题11.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.12.在英文单词tomato 中,字母o 出现的频数是_____.13.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.14.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.15.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.16.在整数20200520中,数字“0”出现的频率是_________.17.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.18.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D、B作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_______.x y的平均数为6,众数为5,则这组数据的方差为__________.19.若一组数据4,,5,,7,920.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于___.三、解答题21.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC =2∠ADC ,求证:四边形ABEC 是矩形.22.在Rt △AEB 中,∠AEB =90°,以斜边AB 为边向Rt △AEB 形外作正方形ABCD ,若正方形ABCD 的对角线交于点O (如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.23.解方程:224124x x x +-=-- 24.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?25.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.26.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?27.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.28.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积; (2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3,P m ⎛⎫ ⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先连接AC ,BD ,根据EF =HG =12AC ,EH =FG =12BD ,可得四边形EFGH 是平行四边形,当AC ⊥BD 时,∠EFG=90°,此时四边形EFGH 是矩形;当AC=BD 时,EF=FG=GH=HE ,此时四边形EFGH 是菱形,据此进行判断即可.【详解】连接AC ,BD ,如图:∵点E 、F 、G 、H 分别为四边形ABCD 的四边AB 、BC 、CD 、DA 的中点,∴EF =HG =12AC ,EH =FG =12BD , ∴四边形EFGH 是平行四边形,故选项A 错误;∴四边形EFGH 一定是中心对称图形,故选项B 错误;当AC ⊥BD 时,∠EFG =90°,此时四边形EFGH 是矩形,当AC =BD 时,EF =FG =GH =HE ,此时四边形EFGH 是菱形,故选项D 错误;∴四边形EFGH 可能是轴对称图形,∴四边形EFGH 是平行四边形,四边形EFGH 一定是中心对称图形.故选:C .【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.2.B解析:B【分析】根据正方形的性质证得BAE CDE ∆≅∆,推出ABE DCE ∠=∠,可知①正确;证明ABH CBH ∆≅∆,再根据对顶角相等即可得到AHB EHD ∠=∠,可知②正确;根据//AD BC ,求出BDE CDE S S ∆∆=,推出BDE DEH CDE DEH S S S S ∆∆∆∆-=-,即BHE CHD S S ∆∆=,故③正确;利用正方形性质证ADH CDH ∆≅∆,求得HAD HCD ∠=∠,推出ABE HAD ∠=∠;求出90ABE BAG ∠+∠=︒,求得90AGE ∠=︒故④正确.【详解】 解:四边形ABCD 是正方形,E 是AD 边上的中点,AE DE ∴=,AB CD =,90BAD CDA ∠=∠=︒,()BAE CDE SAS ∴∆≅∆,ABE DCE ∴∠=∠,故①正确;∵四边形ABCD 是正方形,∴AB=BC , ∠ABD=∠CBD ,∵BH=BH ,∴ABH CBH ∆≅∆,AHB CHB ∴∠=∠,BHC DHE ∠=∠,AHB EHD ∴∠=∠,故②正确;//AD BC ,BDE CDE S S ∆∆∴=,BDE DEH CDE DEH S S S S ∆∆∆∆∴-=-,即BHE CHD S S ∆∆=,故③正确;四边形ABCD 是正方形,AD DC ∴=,45ADB CDB ∠=∠=︒,DH DH =,()ADH CDH SAS ∴∆≅∆,HAD HCD ∴∠=∠,ABE DCE ∠=∠ABE HAD ∴∠=∠,90BAD BAH DAH ∠=∠+∠=︒,90ABE BAH ∴∠+∠=︒,1809090AGB ∴∠=︒-︒=︒,AG BE ∴⊥,故④正确;故选:B .【点睛】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题关键要充分利用正方形的性质:①四边相等; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且每条对角线平分一组对角.3.C解析:C【分析】结合1 < x ≤ 2 ,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1 < x ≤ 2 ,所以23(2)x x -+-32x x -+-= 5 - 2 x.故选择C .【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.4.A解析:A【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点,∴AO =OC ,BO =OD ,AC ⊥BD ,∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB 2234+5,∵S菱形ABCD=12×AC×BD=AB×DH,∴12×8×6=5×DH,∴DH=245,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.5.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.6.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.【详解】解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=.故选:B.【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键. 7.D解析:D【详解】解:∵EF 垂直平分BC ,∴BE=EC ,BF=CF ;∵CF=BE ,∴BE=EC=CF=BF ;∴四边形BECF 是菱形.当BC=AC 时,∠ACB=90°,∠A=45°,∴∠EBC=45°;∴∠EBF=2∠EBC=2×45°=90°.∴菱形BECF 是正方形.故选项A 不符合题意.当CF ⊥BF 时,利用正方形的判定得出,菱形BECF 是正方形,故选项B 不符合题意. 当BD=DF 时,利用正方形的判定得出,菱形BECF 是正方形,故选项C 不符合题意. 当AC=BD 时,无法得出菱形BECF 是正方形,故选项D 符合题意.故选D .8.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值. 【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.9.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A 选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.10.B解析:B【解析】设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2-2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=-4<0,故a=2舍去,所以a的值为0.故选B.二、填空题11.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.12.2【分析】根据频数定义可得答案.【详解】解:字母o 出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o 出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.13.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1a b -(本), 故答案为1a b -. 【点睛】 本题考查的是列代数式,掌握列代数式的方法是解题的关键.14.5.【分析】由四边形ABCD 是正方形,可得AB=BC ,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C 的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.15.2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE =CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM交AB于E,解析:2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE=CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM交AB于E,∵AB∥CD,∴∠C=∠A,在△AME和△CMD中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是.故答案为:.【点睛】此题主要考查了频率的求解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12. 故答案为:12. 【点睛】此题主要考查了频率的求法,正确把握定义是解题关键. 17.40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC解析:40【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【详解】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°,∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.18.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.19.【分析】根据平均数的计算公式,可得,再根据众数是5,所以可得x,y中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据的平均数为6,众数为5,∴中至少有一个是解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.20.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB==6,∵四边形ABCD 是菱形,∴AC ⊥BD ,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB =244=6, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∵H 为AB 边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=12AB=3.故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.22.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析.【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论.【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(22OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.23.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n,6n).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.26.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.27.(1)见解析;(2)10,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF 即为所求.(2)AE =223+1=10,菱形AEBF 的面积=12×6×2=6, 故答案为10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】 本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.28.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =-,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33m =-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()()11,0,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =,(243a ∴=-,解得:123a =232a =, (()120,23,32Q Q ∴==;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =3a =B 重合),()30,3Q ∴-; ③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:3a =, 430,Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,3⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,P m ⎛ ⎝⎭, (),0H m ∴, 3,1OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()13322m =⨯⨯-⎭334m =, 1131322AOB S OA OB ∆==⨯⨯=, ()113122APH S AH PH m ∆==⨯-)31m =-,ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)1m =-=, ABP ABC S S ∆∆=,24∴-+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省苏州市吴中区八年级(下)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B.C.D.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣13.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是()A.8000名学生是总体B.500名学生是样本C.每个学生是个体D.样本容量是5004.对下列分式约分,正确的是()A. =a2B. =﹣1C. = D. =5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60°B.45° C.35° D.25°7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A. B.2 C.D.29.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B.C.D.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x= .12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是.(填序号)的频率为.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是形.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则= .三、解答题:本大题共10小题,共76分.19.计算:(1)(2).20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.21.先化简,再求值:,其中x=﹣.22.解方程: =﹣1.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是(选填“抽样调查”或“普查”),调查的人数是;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= ,AP= .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= .28.如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.2015-2016学年江苏省苏州市吴中区八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.2.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零,可得出x的取值范围.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选A.3.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是()A.8000名学生是总体B.500名学生是样本C.每个学生是个体D.样本容量是500【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、8000名学生的体重情况是总体,故选项错误;B、500名学生的体重情况是样本,故选项错误;C、每个学生的体重情况是个体,故选项错误;D、样本容量是500,正确.故选D.4.对下列分式约分,正确的是()A. =a2B. =﹣1C. = D. =【考点】约分.【分析】分别根据分式的基本性质进行化简即可得出答案.【解答】解:A、=a3,故本选项错误;B、不能约分,故本选项错误;C、=,故本选项错误;D、=,故本选项正确;故选D.5.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B. C. D.【考点】几何概率.【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故选:B.6.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.60°B.45° C.35° D.25°【考点】旋转的性质.【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=25°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=25°,∴∠AOB′=∠BOB′﹣∠AOB=60°﹣25°=35°.故选C.7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.8.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C. D.2【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.9.函数y=x+3与y=的图象的交点为(a,b),则的值是()A.B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】把(a,b)分别代入函数y=x+3与y=,求出ab与b﹣a的值,代入代数式进行计算即可.【解答】解:∵函数y=x+3与y=的图象的交点为(a,b),∴b=a+3,b=﹣,∴b﹣a=3,ab=﹣2,∴===﹣.故选A.10.我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:07 C.7:10 D.7:15【考点】反比例函数的应用.【分析】第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,x+b,设一次函数关系式为:y=k1将(0,30),(7,100)代入y=kx+b,1则,解得:.故一次函数解析式为:y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入,得k=700,∴y=,将y=30代入y=,解得x=;∴y=(7≤x≤),令y=50,解得x=14,即饮水机的一个循环周期为分钟.每一个循环周期内,在前两分钟或者最后的14到这两个时间段内,水温不超过50℃.∴选项A:7:00至8:30之间有90分钟.90﹣×3=20,14<20,故可行;选项B:7:07至8:30之间有83分钟.83﹣×3=13,14>13,13>2,故不可行;选项C:7:10至8:30之间有80分钟.80﹣×3=10,14>10,10>2,故不可行;选项D:7:15至8:30之间有75分钟.75﹣×3=5,14>5,5>2,故不可行.故选A.二、填空题:本大题共8小题,每小题3分,共24分.11.若分式的值为0.则x= 1 .【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:1.12.已知反比例函数y=﹣的图象经过点P(a,2),则a的值是﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到a•2=﹣8,然后解方程即可.【解答】解:根据题意得a•2=﹣8,解得a=﹣4.故答案为﹣4.13.下列事件:①两直线平行,内错角相等;②掷一枚硬币,国徽的一面朝上,其中,随机事件是②.(填序号)【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:两直线平行,内错角相等是必然事件;掷一枚硬币,国徽的一面朝上是随机事件,故答案为:②.的频率为0.1 .【考点】频数(率)分布表.【分析】根据频率的计算公式:频率=计算即可.【解答】解:通话时间超过15min的频率为: =0.1,故答案为:0.1.15.在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.【考点】矩形的判定;平行四边形的性质.【分析】根据对角线相等的平行四边形是矩形进行填空即可.【解答】解:根据矩形的判定,对角线相等的平行四边形是矩形,知在▱ABCD中,如果AC=BD时,那么这个▱ABCD是矩形.故应填:矩.16.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为y=﹣.【考点】反比例函数系数k的几何意义.【分析】过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.【解答】解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11 .【考点】三角形中位线定理;勾股定理.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则= .【考点】翻折变换(折叠问题).【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答】解:连接EG,∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=8a,∴BC=CG+BG=a+8a=9a,在矩形ABCD中,AD=BC=9a,∴AF=9a,AG=AF+FG=9a+a=10a,在Rt△ABG中,AB===6a,∴==.故答案为:.三、解答题:本大题共10小题,共76分.19.计算:(1)(2).【考点】分式的混合运算.【分析】(1)先分解因式,然后根据分式的乘法法则进行计算;(2)化成同分母的分式,然后根据分式的加减法法则进行计算.【解答】解:(1)=•=;(2)=﹣==.20.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;(3)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征.【分析】(1)根据反比例函数图象上点的坐标特征得到k﹣1=2×1,然后解方程即可;(2)根据反比例函数的性质得k﹣1<0,然后解不等式;(3)根据反比例好图象上点的坐标特征解析判断.【解答】解:(1)把A(2,1)代入y=得k﹣1=2×1,解得k=3;(2)根据题意得k﹣1<0,解得k<1;(3)在.理由如下:当k=9时,反比例函数解析式为y=,因为﹣×(﹣16)=8,所以点B在这个函数的图象上.21.先化简,再求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=﹣时,原式==.22.解方程: =﹣1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.23.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取的调查方式是抽样调查(选填“抽样调查”或“普查”),调查的人数是200 ;(2)把图(1)中选项B的部分补充完整并计算图(2)中选项C的圆心角度数是54°;(3)若该校有2000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可得这次调查是抽样调查;利用选A的人数÷选A的人数所占百分比即可算出总数;(2)用总数减去选A、C、D的人数即可得到选B的人数,再补全图形即可;再利用360°×选C的人数所占百分比即可得到圆心角度数;(3)根据样本估计总体的方法计算即可.【解答】解:(1)根据题意知,本次调查活动采取的调查方式是抽样调查,调查的人数为: =200(人);(2)选项B的人数为:200﹣(60+30+10)=100(人),选项C的圆心角度数为:×360°=54°,补全图形如下:(3)5%×2000=100(人).答:该校可能有100名学生平均每天参加体育活动的时间在0.5小时以下.24.列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?【考点】分式方程的应用.【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.【解答】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得: =,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.25.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【考点】菱形的判定;平行四边形的判定;矩形的性质.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8=OE•CD=×8×6=24.∴S四边形OCED26.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为 3 ,k的值为12 ;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.【考点】反比例函数综合题.【分析】(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF ⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥﹣2时,自变量x的取值范围.【解答】解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.27.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM= 8﹣2t ,AP= 2+t .(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC= 8 .【考点】四边形综合题.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.28.如图,过原点的直线y=k 1x 和y=k 2x 与反比例函数y=的图象分别交于两点A ,C 和B ,D ,连接AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 平行 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时k 1,k 2之间的关系式;若不能,说明理由;(3)设P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,a=,b=,试判断a ,b 的大小关系,并说明理由.【考点】反比例函数综合题.【分析】(1)由直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称,即可得到结论.(2)联立方程求得A 、B 点的坐标,然后根据OA=OB ,依据勾股定理得出 =,两边平分得+k 1=+k 2,整理后得(k 1﹣k 2)(k 1k 2﹣1)=0,根据k 1≠k 2,则k 1k 2﹣1=0,即可求得;(3)由P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,得到y 1=,y 2=,求出a===,得到a ﹣b=﹣==>0,即可得到结果.【解答】解:(1)∵直线y=k 1x 和y=k 2x 与反比例函数y=的图象关于原点对称, ∴OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形;故答案为:平行;(2)解:∵正比例函数y=k 1x (k 1>0)与反比例函数y=的图象在第一象限相交于A , ∴k 1x=,解得x=(因为交于第一象限,所以负根舍去,只保留正根)将x=带入y=k 1x 得y=,故A 点的坐标为(,)同理则B 点坐标为(,),又∵OA=OB ,∴=,两边平方得: +k 1=+k 2,整理后得(k 1﹣k 2)(k 1k 2﹣1)=0,∵k 1≠k 2,所以k 1k 2﹣1=0,即k 1k 2=1;(3)∵P (x 1,y 1),Q (x 2,y 2)(x 2>x 1>0)是函数y=图象上的任意两点,∴y 1=,y 2=,∴a===,∴a ﹣b=﹣==,∵x 2>x 1>0,∴>0,x 1x 2>0,(x 1+x 2)>0,∴>0,∴a ﹣b >0,∴a >b .2016年11月8日。

相关文档
最新文档