第一章有理数检测
第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
第一章《有理数》单元检测题

《有理数》单元检测题一、单选题1.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为()A. bB. b﹣2aC. 2a﹣bD. b+2a2.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A. 在点A,B之间B. 在点B,C之间C. 在点C,D之间D. 在点D,E之间3.已知:a,b在数轴上位置如图所示,则下列结论中正确的是()A. a<﹣a<bB. |a|>b>﹣aC. ﹣a>|a|>bD. |a|>|﹣1|>|b| 4.260000000用科学计数法表示为( )A. B. C. D.5.哈市某天的最高气温为11°C,最低气温为-6°C,则最高气温与最低气温的差为( ) A. 5℃ B. 17℃ C. -17℃ D. -5℃6.绝对值为1的实数共有().A. 0个B. 1个C. 2个D. 4个7.﹣(﹣2)等于()A. ﹣2B. 2C.D. ±28.若( )×=-1,则括号内应填的数是()A. 2B. -2C.D. -9. 1( )A. 1B.C.D.10.如图,的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E和点F B. 点F和点G C. 点F和点G D. 点G和点H11.下列算式中,运算结果为负数的是( )A. |-1|B. (-2)3C. (-1)×(-2)D. (-3)212.将7.48亿用科学记数法(保留两个有效数字)记为A. 7.48×108B. 7.4×108C. 7.5×108D. 7.5×109二、填空题13.已知太阳与地球之间的平均距离约为千米,用科学记数法表示为______千米.14.若|2x-3|=3-2x,则x的取值范围是______.15.若|a|=5,b=﹣2,且ab>0,则a+b=_____.16.如果,则x-y=_______.17.比较大小:-3__________0.(填“< ”“ ”“ > ”)三、解答题18.﹣4,5,﹣7三数的和比这三数的绝对值的和小多少?19.有一列数:,1,3,﹣3,﹣1,﹣2.5;(1)画一条数轴,并把上述各数在数轴上表示出来;(2)把这一列数按从小到大的顺序排列起来,并用“<”连接.20.计算:①﹣13+(﹣20)﹣(﹣33);②(+)﹣(﹣)+(﹣)﹣(+)21.计算:参考答案1.C【解析】分析:先由数轴上a,b两点的位置,判断出a,b的符号及绝对值的大小,再分别代入各式计算即可.详解:由数轴可得:a>0,b<0,,∴b-a<0,,故选C.点睛:本题借数轴考查负数的绝对值是它的相反数,熟记绝对值的性质是解决本题的关键.2.B【解析】【分析】先求出AF的长度,再求出AC长度,得到点C表示的数,推出原点的位置.【详解】因为,AF=16,每小段16÷5=3.2,所以,AC=6.4,即C表示:6.4-5=1.4.所以,原点在在点B,C之间故选:B【点睛】本题考核知识点:数轴上的点. 解题关键点:理解数轴上的点表示的数. 3.D【解析】由图可知:,∴﹣a>b,|a|>|﹣1|>|b|,故A错误,D正确;由|a|=﹣a,可知B,C错误;故选D.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤ a <10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】260000000的小数点向左移动8位得到2.6,所以260000000用科学记数法表示为,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤ a <10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】根据有理数的减法,用最高气温减去最低气温即可求得答案.【详解】哈市某天的最高气温为11°C,最低气温为-6°C,则温差为:11-(-6)=11+6=17(℃),故选B.【点睛】本题考查了有理数的减法在生活中的应用,根据题意列出减法算式,熟记减去一个数等于加上这个数的相反数的减法法则是解题的关键.6.C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.7.B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:﹣(﹣2)=2,故选:B.点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.8.B【解析】分析:设括号里的数为x,建立方程,求解即可.详解:设括号里的数为x,则x=-1解之:x=-2故选:B.点睛:此题主要考查了有理数的乘除法运算,关键是注意预算符号的变化.9.B【解析】分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.D【解析】分析:根据倒数的定义即可判断.详解:的倒数是52,∴52在G和H之间,故选:D.点睛:本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识.11.B【解析】分析:本题涉及乘法、绝对值、乘方等知识点.在计算时,需要针对每个知识点分别进行计算.详解:A.|−1|=1,错误;B.(-2)3=−8,正确;C.(−1)×(−2)=2,错误;D.(-3)2=9,错误;故选:B.点评:此题考查了乘法、绝对值、乘方等知识点.注意(-2)3和(-3)2的区别是关键.12.C【解析】分析: 对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.详解:7.48亿 748000000≈7.5×108.故选C.点睛: 本题考查了正整数指数科学计数法, 根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.13.1.5×108.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤ a <10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为:1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤ a <10,n为整数,表示时关键要正确确定a的值以及n的值.14.x≤【解析】分析:由|2x-3|=3-2x,可知3-2x≤0,即可求解.详解:若|2x-3|=3-2x,则2x-3≤0,x≤故答案为:点睛:此题考查了绝对值的代数意义.绝对值的代数意义:正数的绝对值是它本身,负数的的绝对值是它的相反数,0 的绝对值是0.15.﹣7.【解析】∵,∴,又∵,,∴,∴.故答案为:-7.16.-4【解析】分析:由于(x-2y+9)2和|x+y-6|都是非负数,而它们的和为0,由此可以得到它们每一个都等于0,然后即可求出x、y的值.详解:∵,而(x-2y+9)2≥0,|x+y-6 ≥0,∴(x-2y+9)2=0,|x+y-6|=0,∴==,解得x=1,y=5.∴x-y=1-5=-4.故答案为:-4.点睛:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.17.<【解析】分析:根据负数都小于0得出即可.详解:-3<0.故答案为:<.点睛:本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,难度不大.18.﹣4、﹣5、+7三个数的和比这三个数绝对值的和小22.【解析】试题分析:分别计算出﹣4,5,﹣7三数的和及它们绝对值的和,再用后一个和减去前一个和即可.试题解析:根据题意得:|﹣4|+|5|+|﹣7|﹣(﹣4+5﹣7)=4+5+7+4﹣5+7=22,∴﹣4、﹣5、+7三个数的和比这三个数绝对值的和小22.19.(1)画数轴见解析;(2)(2) ﹣3<﹣2.5<﹣1<<1<3.【解析】试题分析:(1)按数轴的三要素规范的画出数轴,并把各数表示到数轴上即可;(2)根据各数在数轴上的位置,按照数轴上的点表示的数左边的总小于右边的,把各数用“<”连接起来即可.试题解析:(1)把各数表示到数轴上如下图所示:;(2)根据数轴上的点表示的数,左边的总小于右边的结合(1)可得:﹣3<﹣2.5<﹣1<<1<3.20.①0;②.【解析】试题分析:按有理数的加减法则计算即可.试题解析:①﹣13+(﹣20)﹣(﹣33)=﹣33+33=0;②(+)﹣(﹣)+(﹣)﹣(+)=+﹣﹣==.21.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式==﹣1﹣×(﹣3)=﹣1+=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.。
第一章-有理数单元练习题(含答案)

第5题图第一章有理数检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 下列说法正确的个数是( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的. A.1 B. 2 C. 3 D. 42. 在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个 3.一个数加上12-等于5-,则这个数是( )A .17 B.7 C.17- D.7- 4. 下列算式中,积为负分数的是( )A.)5(0-⨯B.)10()5.0(4-⨯⨯C.)2()5.1(-⨯D.)32()51()2(-⨯-⨯- 5. 有理数a 、b 在数轴上对应的位置如图所示,则( ) A .<0 B .>0C .-0 D .->06. 在-5,-101,-3. 5,-0.01,-2,-212各数中,最大的数是( )A.-212B.-101C .-0.01 D.-5 7.某世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为( ) A .6×102亿立方米;B .6×103亿立方米;C .6×104亿立方米;D .0.6×104亿立方米 8. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位) C .0.05(精确到千分位) D .0.0502(精确到0.0001)9. 小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( ) A.90分 B.75分 C.91分 D.81分10. 已知=73.96,若2=0.739 6,则的值等于( )A. 0.86B. 86C.±0.86D.±86 二、填空题(每小题3分,共24分) 11.31的倒数是____;321的相反数是____. 12. 在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是. 13. 若0<a <1,则a ,2a ,1a的大小关系是 . 14. +5.7的相反数与-7.1的绝对值的和是___________.15. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配______辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小_________.17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑_________台. 18. 规定a ﹡,则(-4)﹡6的值为 .三、解答题(共46分) 19.(6分)计算下列各题: (1)72(2)4)(3)2)(4)2)220. (6分)如果规定a ﹡b =,求2﹡(-3)的值.21. (6分)比较下列各对数的大小. (1)54-与43-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯.22. (6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?23. (6分)若<0,求32---+-x y y x 的值.24.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为:(单位:cm ).问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?25. (8分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.参考答案1.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.2.A 解析:负数有211-,2-,所以有2个.故选A. 3.B 解析:一个数加上12-等于5-,所以-5减去-12等于这个数,所以这个数为7.故选B.4.D 解析:A 中算式乘积为0;B 中算式乘积为-20;C 中算式乘积为-3;D 中算式乘积为.故选D.5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:乘号前面的数必须是大于或等于1且小于10的. 8.C 解析:C 应该是0.050. 9.C 解析:小明第四次测验的成绩是故选C.10.C 解析:因为0.739 6=73.96×,73.96×=,所以故选C. 11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车. 16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.19.解:(1)(2)(3)(4)20.解:2﹡(-3)=21.解:(1)所以(2)=1,=9,所以<.(3)(4)22.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是23.解:当所以原式=-1.24.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵,∴小虫最后回到原点O.(2)12㎝. (3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.25.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了. (2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值. 解:(1)7. (2)令或,则或.当时,,∴, . 当时,,∴ ,,∴ .当2时,,∴ ,,∴,∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.。
1.第一章有理数当堂检测

1第一章 有理数1.1 正数和负数1. 下列说法:(1)正数前加上负号就是负数,(2)不是正数的数就是负数,(3)只有带“+”的数才是正数,(4)0既不是正数也不是负数,其中正确的有( )A.一个B.二个C.三个D.四个2. 【2012•河北】下列各数中,为负数的是( )A .0B .-2C .1D .21 3. 【2012•陕西】如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作( )A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃4. 2012年6月24日,我国自行研制的“蛟龙”号载人潜水器在马里亚纳海域成功突破7000米深度,再创中国载人深潜新纪录.如果把“蛟龙”号下潜350米记为-350米,那么正数:{ …};负数:{ …}.2参考答案:1. B2. B3. A4. 1005. 解:正数:{3.14,+72,227, …}; 负数:{-2.5,-2,-0.6, …}.31.2 有理数1.2.1 有理数1. 下列关于“0”的说法中不正确的是( )A .0不只是表示没有B .0是正数也是有理数C .0是非负数D .0既不是正数,也不是负数2. 有公共部分的两个数集是( )A .正数集和负数集B .正数集和整数集C .整数集和分数集D .正整数集和负数集3. 下列说法:(1)正数和负数统称有理数,(2)整数和分数统称有理数,(3)有理数包括:正有理数、负有理数和0,(4)有理数可以有不同的分类方法.其中正确的有( )A. 1个B. 2个C.3个D. 4个4 在 -2013,227,0,π,3.14,0.33,0.020020002…中,有理数有( ) A. 2个 B. 3个 C. 4个 D. 5个45. 写出3个负有理数与3个整数,分别填入下面的集合中,且使两集合重叠部分中的数有两个.5 参考答案:1. B2. B3. C6 1.2.2 数轴1.下列说法:(1)数轴是一条直线,(2)数轴是一条射线,(3)数轴是一条有正方向的直线,(4)规定了原点,单位长度和正方向的直线叫数轴.其中正确的有( )A .一个, B. 二个, C. 三个, D.四个。
人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。
新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
2023-2024学年人教版版七年级数学上册《第一章-有理数》单元检测卷及答案

2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
第一章-有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0 不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一 2D.123.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200 元与支出20 元B.上升l0 米和下降7 米C.超过0.05mm 与不足0.03m D.增大 2 岁与减少 2 升7.下列说法正确的是()A.-a 一定是负数;B. a 定是正数;C. a 一定不是负数;D.-a 一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2 10.若 0<m<1,m、m、1m的大小关系是()2 A.m<m <1m1B. mmC.1m2 D.1<m<mm<m2<m2<m11.4604608 取近似值,保留三个有效数字,结果是()6 B.4600000 C.4.61 ×106 D.4.605 ×106A.4.60 ×10- 1 -A.a+b 一定大于a-b B.若- ab<0,则 a、b 异号3=b3,则 a=b D.若 a2=b2,则 a=b C.若 a13.下列运算正确的是()2÷(一2)2=lB.A.-2 2133=-8127C.-5÷13×35=-25D.314×(-3.25)-634×3.25=-32.5.2,b=(-2×3)14.若 a=-2×3 2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x =2,y =3,则x y 的值为()A.5 B.-5 C.5 或 1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+5, -3.5 , 0.5 ,- 1.5 , 4 ,0
14、计算: ( 能简便计算用简便方法 , 每题 8 分 )
(1) ( -20 )+(+3)- (-5 )- (+7)
(2)
(-5) ×6+ (-125) ÷(- 5)
1
1
12
(3) 32 +(-2 )- (- 3 )+ 23
213 5 (4)( 3 - 4 -8 +24 ) ×4
(5)
-
18÷(-
3)2+
5×(-
1 2
)3 - ( - 15)
÷5
15、7 筐苹果,以每筐 25 千克为准,超过的千克记作正数,不足的千克记作负 数,称重的记录如下: +2,- 1,- 2, +1, +3,- 4,- 3 这七筐苹果实际各重 多少千克?这 7 筐苹果的实际总重量比标准质量多还是少?多(或少)多少千 克? (10 分)
9、已知 : |X-3|+(Y + 2 ) 2 =0,则 X2 + Y2 =
。
10、在 2.用科学记ቤተ መጻሕፍቲ ባይዱ法表示下面的数 125000000=
。
11、式子 -6 2的计算结果是
。
12、若│ a│ =5, 则 a=________ , 1 的倒数是
。
3
三.解答题(共 59 分)
13. 画出数轴,在数轴上表示下列各数,并用“ <”连接:( 9 分)
第一章 有理数检测
一、选择题(每题 4 分,共 20 分)
1、给出下列各数: -3 ,0,+5, 3 1 , +3.1 , 1 ,2004, +2008.其中负数
2
2
的有(
)
A. 2 个
B. 3 个 C.4 个
D.5 个
2、如图所示的图形为四位同学画的数轴,其中正确的是(
)
3、数轴上点 M 到原点的距离是 5,则点 M 表示的数是(
6、小明的姐姐在银行工作,她把存入 3 万元记作 +3 万元,那么支取 2 万元应记
作____ _ ,-4 万元表示 _____________ __ .
7、—(— 12)的相反数是 ______ _ ; 比较大小:- 4______-2
8、(-7 ) +( -8 )- (-5 )写成省略括号和加号的形式是
)
A. 5
B.
能确定
4、 若 a 的相反数是非负数,则
a 为: (
C. 5 或 )
D. 不
A、负数; B 、负数或零; C 、正数; D 、正数或零
5、.计算( -1)2009 +(-1)2008 +( -1)2007 +12010 + 02000 的结果是(
)
A.0
B. -1
C. 1
D.2
二 . 填空题(每题 3 分,共 21 分)