山东省2017-2018届高三数学理一轮复习专题突破训练:集合与常用逻辑用语
(山东专用)2017版高考数学一轮复习 第一章 集合与常用逻辑用语 第3讲 简单的逻辑联结词、全

第一章集合与常用逻辑用语第3讲简单的逻辑联结词、全称量词与存在量词习题理新人教A版基础巩固题组(建议用时:30分钟)一、选择题1.(2015·肇庆二检)若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题解析∵p是真命题,q是假命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;綈p是假命题,选项C错误;綈q是真命题,选项D正确.故选D.答案 D2.已知命题p:∀x>0,总有(x+1)e x>1,则綈p为( )A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤1解析命题p为全称命题,所以綈p:∃x0>0,使得(x0+1)e x0≤1.答案 B3.命题“存在实数x,使x>1”的否定是( )A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1解析“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.故选C.答案 C4.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是( )A.(綈p)∨qB.p∧qC.(綈p)∧(綈q)D.(綈p)∨(綈q)解析不难判断命题p为真命题,命题q为假命题,从而上面叙述中只有(綈p)∨(綈q)为真命题.答案 D5.(2016·山师大附中模拟)若命题p:∀x∈R,log2x>0,命题q:∃x0∈R,2x0<0,则下列命题为真命题的是( )A.p ∨(綈q )B.p ∧qC.(綈p )∧qD.p ∨q解析 命题p 和命题q 都是假命题,则命题綈p 和命题綈q 都是真命题,故 选A. 答案 A6.(2016·雅安模拟)已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是( ) A.(-∞,-1) B.(-1,3) C.(-3,+∞)D.(-3,1)解析 原命题的否定为∀x ∈R ,2x 2+(a -1)x +12>0,由题意知,其为真命题,则Δ=(a -1)2-4×2×12<0,则-2<a -1<2,则-1<a <3.故选B. 答案 B 7.下列四个命题p 1:∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x0; p 2:∃x 0∈(0,1),log 12x 0>log 13x 0;p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x>log 12x ; p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<log 13x .其中真命题是( ) A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4解析 根据幂函数的性质,对∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故命题p 1是假命题;由于log 12x -log 13x =lg x -lg 2-lg x -lg 3=lg x (lg 2-lg 3)lg 2lg 3,故对∀x ∈(0,1),log 12x >log 13x ,所以∃x 0∈(0,1),log 12x 0>log 13x 0,命题p 2是真命题;当x ∈⎝ ⎛⎭⎪⎫0,12时,0<⎝ ⎛⎭⎪⎫12x<1,log 12x >1,故⎝ ⎛⎭⎪⎫12x>log 12x 不成立,命题p 3是假命题;∀x ∈⎝ ⎛⎭⎪⎫0,13,0<⎝ ⎛⎭⎪⎫12x <1,log 13x >1,故⎝ ⎛⎭⎪⎫12x<log 13x ,命题p 4是真命题. 答案 D8.已知命题p :∃φ∈R ,使f (x )=sin(x +φ)为偶函数;命题q :∀x ∈R ,cos 2x + 4sin x -3<0,则下列命题中为真命题的是( ) A.p ∧qB.(綈p )∨qC.p ∨(綈q )D.(綈p )∧(綈q )解析 ∃φ=π2,使f (x )=sin(x +φ)=sin ⎝ ⎛⎭⎪⎫x +π2=cos x 是偶函数,所以p 是真命题,綈p 是假命题;∃x =π2,使cos 2x +4sin x -3=-1+4-3=0,所以q 是假命题,綈q是真命题.所以p ∧q ,(綈p )∨q ,(綈p )∧(綈q )都是假命题,排除A ,B ,D ,p ∨(綈q )是真命题,故选C. 答案 C 二、填空题9.命题p :∀x ≥0,都有x 3-1≥0,则綈p 是________. 答案 ∃x 0≥0,有x 30-1<010.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 是________. 答案 ∃x 0∈(0,+∞),x 0≤x 0+111.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上,-8≤a ≤0. 答案 [-8,0]12.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是________.解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,解得x <-3或1<x ≤2或x ≥3, 所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞). 答案 (-∞,-3)∪(1,2]∪[3,+∞)能力提升题组 (建议用时:15分钟)13.给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x-1e x +1为偶函数.下列说法正确的是( ) A.p ∨q 是假命题 B.(綈p )∧q 是假命题 C.p ∧q 是真命题D.(綈p )∨q 是真命题解析 对于命题p :令y =f (x )=ln[(1-x )(1+x )],由(1-x )(1+x )>0, 得-1<x <1,∴函数f (x )的定义域为(-1,1),关于原点对称,又∵f (-x )=ln[(1+x )(1-x )]=f (x ),∴函数f (x )为偶函数,∴命题p 为真命题;对于命题q :令y =f (x )=e x-1e x +1,函数f (x )的定义域为R ,关于原点对称,f (-x )=e -x-1e -x +1=1e x -11ex +1=1-ex1+ex =-f (x ),∴函数f (x )为奇函数,∴命题q 为假命题,∴(綈p )∧q 是假命题,故选B. 答案 B14.(2015·资阳三模)下列说法中,正确的是( ) A.∀α,β∈R ,sin(α+β)≠sin α+sin βB.命题p :∃x 0∈R ,x 20-x 0=0,则綈p :∀x ∈R ,x 2-x <0C.在△ABC 中,“AB →·AC →>0”是“△ABC 为锐角三角形”的必要不充分条件 D.已知x ∈R ,则“x >1”是“x >2”成立的充分不必要条件解析 A 中,当β=0时,显然有sin(α+β)=sin α+sin β,故A 错误; B 中,綈p :∀x ∈R ,x 2-x ≠0,故B 项错误;C 中,由△ABC 为锐角三角形,显然能得到AB →·AC →=|AB →|·|AC →|cos A >0,但当AB →·AC →>0时只能说明A 是锐角,无法说明B ,C 是否为锐角,故“AB →·AC →>0”是“△ABC 为锐角三角形”的必要不充分条件;D 中,“x >1”是“x >2”的必要不充分条件,故D 项错误. 答案 C15.(2016·山东实验中学模拟)下列说法错误的是( )A.命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”B.如果命题“綈p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题C.若命题:∃x 0∈R ,x 20-x 0+1<0,则綈p :∀x ∈R ,x 2-x +1≥0D.“sin θ=12”是“θ=30°”的充分不必要条件解析 否命题是条件和结论都否定,故A 正确;“綈p ”是真命题,说明p 是假命题,“p ∨q ”是真命题,说明p 、q 至少有一个为真命题,又p 是假命题,故命题q 一定是真命题,即B 正确;特称命题的否定是全称命题,C 正确;“sin θ=12”是“θ=30°”的必要不充分条件,D 不正确.故选D.答案 D16.已知c >0,设命题p :函数y =c x为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围是________.解析 由命题p 为真知,0<c <1;由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若“p ∨q ”为真命题,“p ∧q ”为假命题,则p ,q 中必有一真一假,当p 真q 假时,c 的取值范围是⎝⎛⎦⎥⎤0,12;当p 假q 真时,c 的取值范围是[1,+∞).综上可知,c 的取值范围是⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 答案 ⎝ ⎛⎦⎥⎤0,12∪[1,+∞)。
2018年高考新课标数学(理)一轮考点突破练习第一章 集合与常用逻辑用语 Word版含答案

.第一章集合与常用逻辑用语
考纲链接
.集合
()集合的含义与表示
①了解集合的含义,体会元素与集合的属于关系.
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
()集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集.
②在具体情境中,了解全集与空集的含义.
()集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③能使用图表达集合间的基本关系及集合的基本运算.
.常用逻辑用语
()理解命题的概念.
()了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.()理解必要条件、充分条件与充要条件的含义.()了解逻辑联结词“或”“且”“非”的含义.
()理解全称量词和存在量词的意义.
()能正确地对含一个量词的命题进行否定.
.集合及其运算
()①∩;②∩;
③∩=;④∩∅=;
⑤∩∩.
()①∪; ②∪;
③∪=;④∪∅=;
⑤∪∪.
()①∁(∁)=;②∁=;
③∁∅=;
④∩(∁)=;
⑤∪(∁)=;
()①∩=⇔⇔∪=;
②∩=∪⇔.
()记有限集合,的元素个数为(),(),则:
(∪)=;
=.
自查自纠:
.()元素集合()确定性互异性无序性()列举法描述法
.*(+)
.()属于∈不属于∉。
高三数学理一轮复习专题突破训练集合与常用逻辑用语Word版含解析

山东省届高三数学理一轮复习专题突破训练集合与常用逻辑用语一、集合、(年山东高考)已知集合,则()() ()(,) ()(,) ()(,)2.、(年山东高考)集合则() [] () () () [) () ()、(年山东高考)已知集合={},则集合={-∈,∈}中元素的个数是( ).....、(德州市届高三二模)已知集合集合,则的子集个数为、(菏泽市届高三二模)设全集,集合{()≥},{()},则(∁)∩().{≤﹣或≥} .{(,)≤﹣,≥} .{≥} .{>﹣}、(青岛市届高三二模)已知集合{(﹣)},{},则∩().[﹣,).(,).(,].∅、(潍坊市届高三二模)设全集,集合,,则等于....、(淄博市届高三三模)设集合()()()()、(济宁市届高三上期末)设全集为,={},={},则=、(-)[)、(-]、()、(临沂市届高三上期末)集合,若,则实数的取值范围是....、(青岛市届高三上期末)已知集合,则....、(泰安市届高三上期末)集合等于....、(日照市届高三一模)集合... .、(潍坊市届高三一模)集合,,则等于....、(烟台市届高三一模)若集合,集合,则集合()....二、常用逻辑用语、(年山东高考)若“”是真命题,则实数的最小值为.、(年山东高考)给定两个命题,,若是的必要而不充分条件,则是的( )..充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件、(德州市届高三二模)给出下列两个命题,命题“”是“”的充分不必要条件;命题:函数是奇函数,则下列命题是真命题的是....、(菏泽市届高三二模)设、是两个实数,命题“、中至少有一个数大于”成立的充分不必要条件是()..>.>.>、(青岛市届高三二模)“≤﹣”是“函数()﹣在[﹣,∞)上单调递增”的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件。
2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3〈0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.(√)(4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|"的逆命题B.命题“若x>1,则x2>1"的否命题C.命题“若x=1,则x2+x-2=0"的否命题D.命题“若x2〉0,则x>1”的逆否命题答案A解析对于A,其逆命题是若x〉|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x〉y。
山东省13市2017届高三最新考试数学理试题分类汇编:集合与常用逻辑用语含答案

山东省13市2017届高三最新考试数学理试题分类汇编集合与常用逻辑用语 2017。
03一、集合1、(滨州市2017届高三下学期一模考试)已知集合{1,},{1,2,3}A a B ==,则“A B ⊆”是“3a =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2、(德州市2017届高三第一次模拟考试)设集合{}2|230A x xx =--<,{}|ln(2)B x y x ==-,则A B =( )A .{}|13x x -<<B .{}|12x x -<<C .{}|32x x -<<D .{}|12x x << 3、(菏泽市2017年高考一模)若集合A={x|x 2﹣x ﹣6>0},集合B={x |﹣1<x <4},则A ∩B 等于( )A .∅B .(﹣2,3)C .(2,4)D .(3,4)4、(济宁市2017届高三第一次模拟(3月))已知全集{}1,2,3,4,5U =,{}3,4,5M =,{}2,3N =,则集合()U N M =A .{}2B .{}1,3C .{}2,5D .{}4,5 5、(聊城市2017届高三高考模拟(一))已知集合{}12A x x =-≤,{}21,B x x n n Z ==-∈,则A B ⋂=( )A .{}1,3B .{}0,2C .{}1D .{}1,1,3-6、(临沂市2017届高三2月份教学质量检测(一模))已知集合{}21A x x =-≤,且A B ⋂=∅,则集合B 可能是(A){}2,5 (B) {}21x x ≤ (C ) ()1,2 (D ) (),1-∞-7、(青岛市2017年高三统一质量检测)已知集合{||1|1}A x x +≥=,{|1}B x x =≥-,则 R ()A B =A .[1,0]-B .[1,0)-C .(2,1)--D .(2,1]--8、(日照市2017届高三下学期第一次模拟)已知集合{}{}0,1,2,11,M N x x x Z ==-≤≤∈,则(A)M N ⊆ (B) N M ⊆ (C) {}0,1M N ⋂= (D ) M N N ⋃=9、(泰安市2017届高三第一轮复习质量检测(一模))已知集合{}}2230,03A x x x B x x A B =+-<=<<⋂=,则A .(0,1)B .(0,3)C .(-1,1)D .(-1,3)10、(潍坊市2017届高三下学期第一次模拟).设集合A={}2,x x n n N *=∈,B=122x x ⎧⎫⎪⎪≤⎨⎬⎪⎪⎩⎭,则A ∩B=A .{}2B .{}2,4C . {}2,3,4D .{}1,2,3,411、(烟台市2017届高三3月高考诊断性测试(一模))若集合{1,0,1,2,3}A =-,{|21,}B y y x x A ==-∈,集合C A B =,则C 的真子集个数为 ( )A . 3B . 4C . 7D .812、(枣庄市2017届高三下学期第一次模拟考试)已知集合()(){}(){}12log ,0213≤-=≥-+=x x B x x x A ,则()=⋂B C A RA .∅B .{}2,1>x x x -≤C .{}1-<x xD .{}2,1≥-≤x x x13、(淄博市2017届高三3月模拟考试)已知集合{}24A x x=>,{}0,1,2,3B =,则AB =( )。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高考第一轮复习集合与常用逻辑用语
年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。
2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。
这些内容大多是以其他数学知识为载体,具有较强的综合性。
3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。
命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。
难点:集合的表示及充分必要条件的判定。
一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。
(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。
(3)集合的表示法:、、、。
(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。
2018版高考数学一轮复习集合与常用逻辑用语1.1集合及其运算理
第一章集合与常用逻辑用语 1.1 集合及其运算理1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.集合间的基本关系A B(或B A)3.集合的基本运算【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩∁U A=∅;A∪∁U A=U;∁U(∁U A)=A.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.( ×)(4){x|x≤1}={t|t≤1}.( √)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.( √)(6)若A∩B=A∩C,则B=C.( ×)1.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是( ) A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D解析由题意知A={0,1,2,3},由a=22,知a∉A.2.(2016·江西重点中学联考)已知集合A={x|x2-6x+5≤0},B={x|y=x-3},则A∩B 等于( )A.[1,3] B.[1,5] C.[3,5] D.[1,+∞)答案 C解析根据题意,得A={x|x2-6x+5≤0}={x|1≤x≤5},B={x|y=x-3}={x|x≥3},所以A∩B={x|3≤x≤5}=[3,5].3.已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B等于( )A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}答案 A解析因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2},故选A.4.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B等于( ) A.{1} B.{4}C .{1,3}D .{1,4}答案 D解析 因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4; 当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10; 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.故选D.5.(2016·云南名校联考)集合A ={x |x -2<0},B ={x |x <a },若A ∩B =A ,则实数a 的取值范围是____________. 答案 [2,+∞)解析 由A ∩B =A ,知A ⊆B ,从数轴观察得a ≥2.题型一 集合的含义例1 (1)(2017·济南调研)设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( ) A .9 B .8 C .7 D .6(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 (1)B (2)0或98解析 (1)当a =0时,a +b =1,2,6; 当a =2时,a +b =3,4,8; 当a =5时,a +b =6,7,11.由集合中元素的互异性知P +Q 中有1,2,3,4,6,7,8,11共8个元素.(2)若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)(2016·临沂模拟)已知A ={x |x =3k -1,k ∈Z },则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈A (k ∈Z )D .-34∉A(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________. 答案 (1)C (2)2解析 (1)∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A . (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,a ≠0,所以a +b =0,得b a=-1, 所以a =-1,b =1,所以b -a =2. 题型二 集合的基本关系例2 (1)(2016·唐山一模)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是( ) A .5 B .4 C .3 D .2(2)已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________________. 答案 (1)B (2)[2 016,+∞) 解析 (1)∵{1,2}⊆B ,I ={1,2,3,4},∴满足条件的集合B 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)由x 2-2 017x +2 016<0,解得1<x <2 016, 故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 016},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(1)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为( )A.13或-12 B .-13或12C.13或-12或0 D .-13或12或0(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________.答案 (1)D (2)(-∞,4] 解析 (1)由题意知A ={2,-3}. 当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a,由B ⊆A ,可得1a =-3或1a=2,∴a =-13或a =12.综上,a 的值为-13或12或0.(2)当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( )A.⎝ ⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 (2)(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )等于( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)答案 (1)D (2)B解析 (1)由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}={x |x >32},得A ∩B ={x |32<x <3}=⎝ ⎛⎭⎪⎫32,3,故选D. (2)由已知得Q ={x |x ≥2或x ≤-2}. ∴∁R Q =(-2,2).又P =[1,3],∴P ∪(∁R Q )=[1,3]∪(-2,2)=(-2,3]. 命题点2 利用集合的运算求参数例4 (1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1D .a >-1(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 答案 (1)D (2)D解析 (1)因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)由题意可得{a ,a 2}={4,16},∴a =4.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)(2016·山东)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 (1)C (2)D解析 (1)∵A ={y |y >0},B ={x |-1<x <1}, ∴A ∪B =(-1,+∞),故选C.(2)由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例5 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合AB ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合AB 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合AB 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A B 中元素的个数为45.故选C.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A 等于( )A .{x |3<x ≤4}B .{x |3≤x ≤4}C .{x |3<x <4}D .{x |2≤x ≤4}答案 B解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}.1.集合关系及运算典例 (1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3或0(2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________. 错解展示解析 (1)由A ∪B =A 得B ⊆A ,∴m =3或m =m , 故m =3或m =0或m =1. (2)∵B ⊆A ,讨论如下:①当B =A ={0,-4}时,⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1.②当B A 时,由Δ=0得a =-1, 此时B ={0}满足题意,综上,实数a 的取值范围是{1,-1}. 答案 (1)D (2){1,-1} 现场纠错解析 (1)A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B.(2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}. 答案 (1)B (2)(-∞,-1]∪{1}纠错心得 (1)集合的元素具有互异性,参数的取值要代入检验. (2)当两个集合之间具有包含关系时,不要忽略空集的情况.1.(2016·四川)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( ) A .3 B .4 C .5 D .6 答案 C解析 由题意可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中的元素的个数为5.故选C. 2.已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( ) A .8 B .4 C .3 D .2 答案 B解析 由题意得P ={3,4},∴集合P 有4个子集.3.已知集合A ={x |1<x <3},B ={x |2m <x <1-m },若A ∩B =∅,则实数m 的取值范围是( ) A .[13,+∞)B .[0,13)C .(-∞,0]D .[0,+∞)答案 D解析 ∵A ∩B =∅,①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需满足⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,解得0≤m <13或∅,即0≤m <13.综上,实数m 的取值范围为[0,+∞).4.(2017·潍坊调研)已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则下图中阴影部分所表示的集合为( )A .{0,1}B .{1}C .{1,2}D .{0,1,2}答案 B解析 因为A ∩B ={2,3,4,5},而图中阴影部分为A 去掉A ∩B ,所以阴影部分所表示的集合为{1}.5.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(0,+∞) 答案 B解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.6.(2016·河北衡水中学模拟)已知U 为全集,集合A ={x |x 2-2x -3>0},B ={x |2<x <4},那么集合B ∩(∁U A )等于( ) A .{x |-1≤x ≤4} B .{x |2<x ≤3} C .{x |2≤x <3} D .{x |-1<x <4}答案 B解析 ∵A ={x <-1或x >3},∴∁U A ={x |-1≤x ≤3},B ={x |2<x <4}, ∴B ∩(∁U A )={x |2<x ≤3}.7.(2016·宁夏银川二中考试)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案 B 解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.8.(2015·浙江)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q 等于( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]答案 C解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2},∴(∁R P )∩Q ={x |1<x <2},故选C.9.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4答案 D解析 由x 2-3x +2=0,得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4}.∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.*10.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫作集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112 D.512答案 C解析 由已知,可得⎩⎪⎨⎪⎧ m ≥0,m +34≤1,即0≤m ≤14;⎩⎪⎨⎪⎧ n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1,所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112,故选C. 11.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________.答案 -32解析 ∵3∈A ,∴m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,不符合集合的互异性,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意, ∴m =-32. 12.(2017·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________.答案 (-∞,-1]∪(1,+∞)解析 因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}.13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是__________. 答案 (-∞,1]解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.*14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.*15.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.。
2017高考文科数学(山东专用)一轮复习课件:第1章 集合与常用逻辑用语 第1讲
第二十六页,编辑于星期六:二十一点 五十四 分。
解析:(1)依题意得 B={y|0≤y≤2},因此 B⊆A,∁RA⊆∁RB. (2)由 log2x≤2,得 0<x≤4, 即 A={x|0<x≤4}, 而 B=(-∞,a), 由于 A⊆B,如图所示,
则 a>4,即 c=4.
第二十七页,编辑于星期六:二十一点 五十四 分。
集合
的子集. (2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单
集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求给
定子集的补集.
(3)能使用韦恩(Venn)图表示集合的关系及运算.
第二页,编辑于星期六:二十一点 五十四分。
第二十五页,编辑于星期六:二十一点 五十四 分。
2.(1)(2016·邢台摸底考试)已知集合 A= {x|-
2≤x≤2},B={y|y= x,0≤x≤4},则下列关系正确的是 (C)
A. A⊆∁R B
B. B⊆∁ RA
C.∁ RA⊆∁ RB
D.A∪B=R
(2)已知集合 A={x|log2x≤2},B=(-∞,a),若 A⊆B,则 实数 a 的取值范围是(c,+∞),其中 c=__4______.
解析:(1)因为 5∈{1,m+2,m2+4}, 所以 m+2=5 或 m2+4=5, 即 m=3 或 m=±1. 当 m=3 时,M={1,5,13};当 m=1 时,M={1,3,5}; 当 m=-1 时,不满足互异性. 所以 m 的值为 3 或 1. (2)因为 A=∅,所以方程 ax2-3x+2=0 无实根, 当 a=0 时,x=2不合题意,
2018版高考数学一轮复习 第一章 集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件真题
2018版高考数学一轮复习 第一章 集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件真题演练集训 理 新人教A 版1.[2015·山东卷]设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤0答案:D解析:根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.故选D.2.[2015·北京卷]设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:B解析:当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β D ⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上知,“m ∥β”是“α∥β”的必要而不充分条件.3.[2015·重庆卷]“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案:B解析:∵ x >1⇒log 12 (x +2)<0,log 12 (x +2)<0⇒x +2>1⇒x >-1,∴ x >1是log 12(x +2)<0的充分而不必要条件.4.[2016·四川卷]设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧ y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案:A解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,故选A.课外拓展阅读根据充要条件求参数取值范围的方法1.解决根据充要条件求参数取值范围的问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的包含、相等关系列出关于参数的不等式(组)求解;有时也采用等价转化思想把复杂、疑难问题转化为简单、熟悉的问题来解决.2.在解求参数的取值范围的题目时,一定要注意区间端点值的检验,在利用集合关系列不等式时,不等式是否能取到等号直接决定着端点值的取舍,在这里容易增解或漏解.[典例] 已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.[答案] [9,+∞)[解析] 解法一:由⎪⎪⎪⎪⎪⎪1-x -13≤2,得 -2≤x ≤10,∴綈p 对应的集合为{x |x >10或x <-2},设A ={x |x >10或x <-2}.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0),∴綈q 对应的集合为{x |x >m +1或x <1-m ,m >0},设B ={x |x >m +1或x <1-m ,m >0}.∵綈p 是綈q 的必要而不充分的条件,∴B A ,∴⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m ≥10,且不能同时取得等号,解得m ≥9,∴实数m 的取值范围为[9,+∞).解法二:∵綈p 是綈q 的必要而不充分条件,∴q 是p 的必要而不充分条件,即p 是q 的充分而不必要条件.由x 2-2x +1-m 2≤0(m >0),得1-m ≤x ≤1+m (m >0).∴q 对应的集合为{x |1-m ≤x ≤1+m ,m >0},设M ={x |1-m ≤x ≤1+m ,m >0},又由⎪⎪⎪⎪⎪⎪1-x -13≤2,得-2≤x ≤10, ∴p 对应的集合为{x |-2≤x ≤10},设N ={x |-2≤x ≤10}.由p 是q 的充分而不必要条件知N M ,∴⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m ≥10,且不能同时取等号,解得m ≥9.∴实数m 的取值范围为[9,+∞).方法点睛本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2017-2018届高三数学理一轮复习专题突破训练集合与常用逻辑用语一、集合1、(2016年山东高考)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞2、(2015年山东高考)已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)3、(2014年山东高考)集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)4、(东营市、潍坊市2016届高三下学期第三次模拟)已知全集{}2,560U R A x x x ==-+≥,则U A =ð( ) A .{}2x x >B .{3x x >或}2x <C .{}23x x ≤≤ D .{}23x x <<5、(临沂市2016届高三11月期中质量检测)已知集合{}{}{}2log ,3,,,0A a B a b A B A B ==⋂=⋃=若,则A. {}03,B. {}013,,C. {}023,,D. {}0123,,,6、(齐鲁名校协作体2016届高三上学期第二次调研联考)设集合}112|{≥+=x x A ,集合}0,2|{<==x y y B x ,则=⋂B A ( )A .]1,1(-B .]1,1[-C .)1,0(D .),1[+∞- 7、(泰安市2016届高三二模)已知集合{}{}2|y 2,|x 2x 0A x x B x ==-=-<,则A. A B =∅B. A B R =C. B A ⊆D.A B ⊆ 8、(德州市2016届高三二模)R 表示实数集,集合M={x|0<x <2},N={x|x 2+x ﹣6≤0},则下列结论正确的是( )A .M ∈NB .∁R M ⊆NC .M ∈∁R ND .∁R N ⊆∁R M9、(滨州市2016届高三上学期期末)设集合{}{}|213,|128xM x x N x Z =-≤=∈<<,则M N =(A )(]0,2 (B )()0,2 (C ){}1,2 (D ){}0,1,210、(菏泽市2016届高三上学期期末)已知集合{}211|10,|24,2x M x x N x x Z +⎧⎫=-≤=<<∈⎨⎬⎩⎭,则=M N ( )A. {}1B. {}-1,0C. {}-1,01,D. ∅11、(济宁市2016届高三上学期期末)已知集合{}21log ,1,,12xA y y x xB y y x ⎧⎫⎪⎪⎛⎫==>==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B ⋂=A. 102y y ⎧⎫<<⎨⎬⎩⎭B. {}01y y <<C. 112yy ⎧⎫<<⎨⎬⎩⎭D. φ12、(胶州市2016届高三上学期期末)已知集合{}{}|21,|42x M x x N x y =-<==-,则M NA. ()12,B. (]12,C. ()23,D. [)23, 13、(青岛市2016届高三上学期期末)设集合{}11,216x A x B x y x ⎧⎫=>==-⎨⎬⎩⎭,则()R A C B ⋂等于A. (),1-∞B. ()0,4C. ()0,1D. ()1,414、(泰安市2016届高三上学期期末)设全集{}1,2,3,4,5,6,7,8U =,集合{}1,2,3,5A =, {}2,4,6B =,则右图中的阴影部分表示的集合为 A. {}2B. {}4,6C. {}1,3,5D. {}4,6,7,815、(威海市2016届高三上学期期末)已知集合(){}(){}2log 40,101xA x xB y y a a a =-≤==+>≠且,则=RC A B ⋂A. ()5+∞,B. (]14,C. [)[)145⋃+∞,,D. (]()145⋃+∞,,16、(烟台市2016届高三上学期期末)若集合{}{}31,,4,1,0,2,5A x x n n N B ==-∈=--,则集合A B ⋂=A. {}2,5B. {}4,1,2,5--C. {}1,2,5-D. {}1,0,2,5-17、(淄博市2016高三3月模拟)设集合{}{}=|12,|,A x x B x x a <<=≤,若A B ⊆,则a 的取值范围是A. 2a ≥B. 2a >C. 1a ≥D. 1a >18、(济南市2016高三3月模拟)已知集合{}2280M x x x =--≤,集合{}lg 0N x x =≥,则M N =( )A.{}24x x -≤≤B.{}1x x ≥C.{}14x x ≤≤D.{}2x x ≥-二、常用逻辑用语1、(2016年山东高考)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件2、(2015年山东高考)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .3、(2013年山东高考)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4、(东营市、潍坊市2016届高三下学期第三次模拟)已知,a b R ∈,则“01a ≤≤且01b ≤≤”是“01ab ≤≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、(临沂市2016届高三11月期中质量检测)下列说法正确的是 A.命题“,20x x R ∀∈>”的否定是“00,20xx R ∃∈<” B.命题“若sin sin x y x y ==,则”的逆否命题为真命题 C.若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题D.命题“若ABC ∆为锐角三角形,则有sin cos A B >”是真命题 6、(德州市2016届高三二模)已知命题p :∃x ∈R ,x 2+2x+3=0,则¬p 是( ) A .∀x ∈R ,x 2+2x+3≠0 B .∀x ∈R ,x 2+2x+3=0 C .∃x ∈R ,x 2+2x+3≠0 D .∃x ∈R ,x 2+2x+3=07、(德州市2016届高三上学期期末)已知()f x x sinx =-,命题p :(0,)2x π∃∈,()f x <0;则A .p 是假命题,p ⌝:(0,)2x π∀∈,()0f x ≥ B .p 是假命题,p ⌝:(0,)2x π∃∈,()0f x ≥ C .p 是真命题,p ⌝:(0,)2x π∀∈,()0f x ≥ D .p 是真命题,p ⌝:(0,)2x π∃∈,()0f x ≥8、(济宁市2016届高三上学期期末)下列说法中错误的是 A.若命题2:,10p x R x x ∃∈++<,则2:,10p x R x x ⌝∀∈++≥ B.“1x =”是“2320x x -+=”的充分不必要条件C.命题“若2320,1x x x -+==则”的逆否命题为:“若1x ≠,则232x x -+≠0” D.若p q ∧为假命题,则,p q 均为假命题9、(莱芜市2016届高三上学期期末)已知,αβ为两个平面,m 为直线,且m α⊂,则“m β⊥”是“αβ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 10、(临沂市2016届高三上学期期末)下列说法中正确的是A.命题“若,x y x y >-<-则”的逆命题是“若x y ->-,则x y <”B.若命题2:,10p x R x ∀∈+>,则2:,10p x R x ⌝∃∈+>C.设l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβD.设,x y R ∈,则“()20x y x -⋅<”是“x y <”的必要而不充分条件11、(威海市2016届高三上学期期末)设,l m 是两条不同的直线,α是一个平面,已知//m α,则l m l α⊥⊥是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、(枣庄市2016届高三上学期期末)已知命题():1,,1p x x ∀∈+∞>;命题()q :0,1a ∀∈,函数x y a =在(),-∞+∞上为减函数,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝13、(潍坊市2016高三3月模拟)已知p :函数()()()21f x x a =--∞在,上是减函数,21:0,x q x a x+∀>≤恒成立,则p ⌝是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14、(枣庄市2016高三3月模拟)若“,44x ππ⎡⎤∀∈-⎢⎥⎣⎦,tan 1m x ≤+”为真命题,则实数m 的最大值为 .15、(淄博市2016高三3月模拟)下列选项错误的是A.命题“若1,x ≠则2320x x -+≠”的逆否命题是“若232=0x x -+,则=1x ”B. "2"x >是2"32>0"x x -+的充分不必要条件C.若命题2":x R,x x 10"p ∀∈++≠,则2000":x R,x x 1=0"p ⌝∃∈++D.若""p q ∨为真命题,则,p q 均为真命题16、(济南市2016高三3月模拟)已知命题p :0x R ∃∈,使05s i n 2x =;命题q :(0,),sin 2x x x π∀∈>,则下列判断正确的是( )A.p 为真B.p ⌝为假C.p q ∧为真D.p q ∨为假参考答案 一、集合 1、C2、解析:2{|430}{|13},(2,3)A x x x x x A B =-+<=<<= ,答案选(C)3、答案:C解析:[][][)12212132,0,21,41,3x x x x y x y A B -<∴-<-<∴-<<=∈∴∈∴⋂=Q Q4、D5、B6、C7、C8、D9、C 10、B 11、A12、B 13、C 14、B 15、D 16、C 17、A 18、【答案】C【解析】考查集合的运算。