2019版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定与性质课时作业 理

合集下载

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

高考数学一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A

高考数学一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A

a∥α,a⊂β, α∩β=b⇒a∥b
(1)[教材习题改编]在空间四边形 ABCD 中,E,F 分别在边
AD,CD 上,且满足DEAE=DFCF,则直线 EF 与平面 ABC 的关系是 __平__行____.
解析:因为DEAE=DFCF,所以 EF∥AC.又因为 AC⊂平面 ABC, EF⊄平面 ABC,所以 EF∥平面 ABC.
§8.4 直线、平面平行的判定与性质
考纲展示► 1.能以立体几何中的定义、公理和定理为出发点,认识和理 解空间中线面平行的有关性质与判定定理. 2.能运用公理、定理和已获得的结论证明一些空间图形的平 行关系的简单命题.
考点 1 线面平行的判定与性质
直线与平面平行 (1)直线与平面平行的定义 直线 l 与平面 α 没有公共点,则称直线 l 与平面 α 平行.
α∥β,a ⊂α
⇒a∥β
α∥β, α∩γ=a, β∩γ=b
⇒a∥b
(1)[教材习题改编]已知平面 α,β 和直线 a,b,c,且 a∥b ∥c.若 a,b⊂α,c⊂β,则平面 α 与 β 的关系是__平__行__或__相__交___.
(2)[教材习题改编]如图所示,在长方体 ABCD-A1B1C1D1 中, 平面 AB1C 与平面 A1DC1 的位置关系是___平__行___.
证法三:如图,在平面 ABEF 内,过点 P 作 PM∥BE,交 AB 于点 M,连接 QM.
∵PM⊄平面 BCE, ∴PM∥平面 BCE,且APEP=AMMB, 又 AE=BD,AP=DQ,PE=BQ,
∴APEP=DBQQ,∴MAMB=DQQB,∴MQ∥AD. 又 AD∥BC,∴MQ∥BC. 又 MQ⊄平面 BCE, ∴MQ∥平面 BCE. 又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE. 又 PQ⊂平面 PMQ, ∴PQ∥平面 BCE.

(全国通用版)2019版高考数学大一轮复习_第八章 立体几何初步 第4节 直线、平面平行的判定及其性质课件 文

(全国通用版)2019版高考数学大一轮复习_第八章 立体几何初步 第4节 直线、平面平行的判定及其性质课件 文

第4节直线、平面平行的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判一条直线与此平面内的一条直线定平面外a ⊄α,b ⊂α, a ∥b ⇒a ∥α定平行,则该直线平行于此平面 理 性 交线一条直线和一个平面平行,则过 a ∥α,a ⊂β, α∩β= 质 这条直线的任一平面与此平面的 定 与该直线平行理b ⇒a ∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示 符号表示a ⊂α,b ⊂α, a ∩b =P , 判相交直线 一个平面内的两条与另一个平面平行,则这 两个平面平行 定定理a ∥β,b ∥β⇒α∥β 两个平面平行,则其中一平行α∥β, 性个平面内的直线 质于另一个平面a ⊂α⇒a ∥β 交线定如果两个平行平面同时和 理第三个平面相交,那么它α∥β,α∩γ =a ,β∩γ=[常用结论与微点提醒]1.平行关系中的两个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.2.线线、线面、面面平行间的转化诊断自测1.思考辨析(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )解析(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2) 错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.答案(1)× (2)× (3)×(4)√2.(必修2P61A组T1(1)改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析根据线面平行的判定与性质定理知,选D.答案 D3.设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析当m∥β时,可能α∥β,也可能α与β相交.当α∥β时,由m⊂α可知,m∥β.∴“m∥β”是“α∥β”的必要不充分条件.答案 B4.(2018·长沙模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交于一条直线,D错.答案 C5.(必修2P56练习2改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案平行考点一与线、面平行相关命题的判定【例1】(1)(2018·成都诊断)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是( )A.0B.1C.2D.3(2)(2018·安庆模拟)在正方体 ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱 D 1C 1,A BC 2 3 的中点,点 P 在 BD 1上且 BP = BD 1,则下面说法正确的是________(填序号).①MN ∥平面 APC ;②C 1Q ∥平面 APC ;③A ,P ,M 三点共线;④平面 MNQ ∥APC .解析 (1)①若α∥β,则m ∥n 或m ,n 异面,不正确;②若α∥β,根据平面与平面平行的性质,可得m ∥β,正确;③若α∩β=l ,且m ⊥l ,n ⊥l ,则α与β不一定垂直,不正确;④若α∩β=l ,且m ⊥l ,m ⊥n ,l 与n 不一定相交,不能推出α⊥β,不正确.(2)如图,对于①,连接MN,AC,则MN∥AC,连接AM,CN,易得AM,CN交于点P,即MN⊂面APC,所以MN∥面APC是错误的.对于②,由①知M,N在平面APC内,由题易知AN∥C1Q,且AN⊂平面APC,C1Q⊄平面APC.所以C1Q∥面APC是正确的.答案对于③(,由1)B①(知,2)②③A,P,M三点共线是正确的.对于④,由①知MN⊂面APC,又MN⊂面MNQ,所以面MNQ∥面APC是错误的.规律方法 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】(1)设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2016·全国Ⅱ卷)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.解析(1)若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.(2)当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.答案(1)A (2)②③④考点二直线与平面平行的判定与性质(多维探究)命题角度1直线与平面平行的判定【例2-1】(2016·全国Ⅲ卷)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体N-BCM的体积.2 3 (1)证明由已知得 AM = AD =2.如图,取 BP 的中点 T ,连接 AT ,TN , 由 N 为 PC 中点知 TN ∥BC ,TN =12BC=2.又AD ∥BC ,故TN 綉AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解因为PA ⊥平面ABCD ,N 为PC 的中点,所以 N 到平面 ABCD 的距离为12PA .如图,取 BC 的中点 E ,连接 AE .由 AB =AC =3得 AE ⊥BC ,AE = AB 2-B = 5.由 AM ∥BC 得 M 到 BC 的距离为 5,故 S △BCM =12×4× 5=2 5.所以四面体 N -BCM 的体积 V N -BCM =13×S △BCM ×= . PA 4 5 2 3命题角度2直线与平面平行性质定理的应用【例2-2】(2018·青岛质检)如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是线段BC上一点,直线BC与平面ABD所成角为30°,CE∥平面ADF.(1)试确定F的位置;(2)求三棱锥A-CDF的体积.解 (1)连接BE 交AD 于点O ,连接OF ,∵CE ∥平面ADF ,CE ⊂平面BEC ,平面ADF ∩平面BEC =OF , ∴CE ∥OF .∵O 是BE 的中点,∴F 是BC 的中点.(2)∵BC 与平面ABD 所成角为30°,BC =AB =1,∴C 到平面 ABD 的距离为 h =BC ·sin 30°=12.∵AE =2,∴V A -CDF =V F -ACD =12V B -ACD =12V C -ABD = × × ×1×2×= . 1 1 1 2 3 2 1 1 2 12规律方法 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,AB⊥AD,EF⊥AD,则AB∥EF. ∵AB⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质(典例迁移)【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面. (2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG. 又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件 “E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“D 1,D 分别为B 1C 1,BC 的中点”,求证:平面A BD ∥平面AC D . 证明如图所示,连接A C 交AC 于点M , 1 1 1 1 1 ∵四边形A 1ACC 1是平行四边形,∴M 是A 1C 的中点,连接MD ,∵D 为BC 的中点,∴A 1B ∥DM .∵A 1B ⊂平面A 1BD 1,DM ⊄平面A 1BD 1,∴DM ∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1綉BD ,∴四边形BDC 1D 1为平行四边形,∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1,∴DC 1∥平面A 1BD 1,又DC 1∩DMD ,DC 1,DM ⊂平面AC 1D ,因此平面A 1BD 1∥平面AC 1D .【迁移探究 2】在本例中,若将条件“E ,F ,G ,H 分别是 AB ,AC ,A 1B 1,A 1C 1的中点”变为“点 D ,D 1分别是 AC ,A 1C 1上的点,且平面 BC 1D ∥平面 AB 1D 1”, AD 试求的值. DC解连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面 A 1BC 1∩平面 BC 1D = BC 1,平面 A 1BC 1∩平面AB D =D O ,A D A O 1 1 D C OB1 1 1 1 11 1 所以 BC ∥D O ,则 = =1. 1 A D DC DC D C ADAD1 1 AD DC 1 1 又由题设 =,∴=1,即=1.规律方法 1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】(2018·东北三省四校联考)如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E,F分别是棱BC,CC1的中点.(1)若线段AC上存在点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(2)证明:EF⊥A1C.(1)解点D是AC的中点,理由如下:∵平面DEF∥平面ABC1,平面ABC∩平面DEF=DE,平面ABC∩平面ABC1=AB,∴AB∥DE,∵在△ABC中,E是BC的中点,∴D是AC的中点.(2)证明∵三棱柱ABC-A1B1C1中,AC=AA1,∴四边形A1ACC1是菱形,∴A1C⊥AC1.∵AA1⊥底面ABC,AB⊂平面ABC,∴AA1⊥AB,又AB⊥AC,AA1∩AC=A,∴AB⊥平面AA1C1C,∵A1C⊂平面AA1C1C,∴AB⊥A1C.又AB∩AC1=A,从而A1C⊥平面ABC1,又BC1⊂平面ABC1,∴A1C⊥BC1.。

2019高考数学一轮复习第8章立体几何第4课时直线平面平行的判定及性质课件理

2019高考数学一轮复习第8章立体几何第4课时直线平面平行的判定及性质课件理

5.(2017·课标全国Ⅰ,文)如图,在下列四个正方体中,A, B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四 个正方体中,直线 AB 与平面 MNQ 不平行的是( )
答案 A 解析 通解:对于选项 B,如图所示,连接 CD,因为 AB∥CD, M,Q 分别是所在棱的中点,所以 MQ∥CD,所以 AB∥MQ,又 AB⊄平面 MNQ,MQ⊂平面 MNQ,所以 AB∥平面 MNQ.同理可 证选项 C,D 中均有 AB∥平面 MNQ.故选 A.
课前自助餐
直线和平面平行的判定定理 (1)定义:若直线与平面没有公共点,则称直线平行平面; (2)判定定理:a⊄α ,b⊂α ,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α ⇒a∥β .
直线和平面平行的性质定理 a∥α ,a⊂β ,α ∩β =l⇒a∥l.
两个平面平行的判定定理 (1)定义:两个平面没有公共点,称这两个平面平行; (2)判定定理:若一个平面内的两条相交直线与另一个平面平 行,则这两个平面平行; (3)推论:若一个平面内的两条相交直线分别平行于另一个平 面内的两条相交直线,则这两个平面平行.
题型一 线面平行的判定与性质 正方形ABCD与正方形ABEF所在平面相交于AB,在 AE,BD上各有一点P,Q,且AP=DQ,求证:PQ∥平面BCE.
【思路】 证明直线与平面平行可以利用直线与平面平行的判 定定理,也可利用面面平行的性质.
【证明】 方法一:(判定定理法)如图所示.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N, 连接 MN.
方法二:(判定定理法)如图,连接AQ,并延长交BC延长线 于K,连接EK.
∵AE=BD,AP=DQ,∴PE=BQ,∴APEP=DBQQ. 又AD∥BK,∴DBQQ=AQQK,∴APEP=AQQK,∴PQ∥EK. 又PQ⊄平面BCE,EK⊂平面BCE, ∴PQ∥平面BCE.

2020高考数学一轮复习:第八章立体几何第4讲直线、平面平行的判定与性质(讲义)

2020高考数学一轮复习:第八章立体几何第4讲直线、平面平行的判定与性质(讲义)

第4讲直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理导师提醒1.牢记线面平行、面面平行的七个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)夹在两个平行平面之间的平行线段长度相等.(4)经过平面外一点有且只有一个平面与已知平面平行.(5)两条直线被三个平行平面所截,截得的对应线段成比例.(6)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(7)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.2.关注平行关系中的三个易误点(1)在推证线面平行时,一定要强调直线a不在平面内,直线b在平面内,且a∥b,否则会出现错误.(2)一条直线平行于一个平面,它可以与平面内的无数条直线平行,但这条直线与平面内的任意一条直线可能平行,也可能异面.(3)a∥α的判定定理和性质定理使用的区别:如果结论中有a∥α,则要用判定定理,在α内找与a平行的直线;若条件中有a∥α,则要用性质定理,找(或作)过a且与α相交的平面.判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()答案:(1)×(2)×(3)×(4)√(5)×(6)×(教材习题改编)对于直线m,n和平面α,若n⊂α,则“m∥n”是“m∥α”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:D(教材习题改编)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.若两条直线都与一个平面平行,则这两条直线的位置关系是() A.平行B.相交C.异面D.以上均有可能解析:选D.与一个平面平行的两条直线可以平行、相交,也可以异面.已知正方体ABCD-A1B1C1D1,下列结论中,正确的是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:如图,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④线面平行的判定与性质(多维探究)角度一直线与平面平行的判定如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1的中点.(1)证明:AD1∥平面BDC1;(2)证明:BD∥平面AB1D1.【证明】(1)因为D1,D分别为A1C1,AC的中点,四边形ACC1A1为平行四边形,所以C1D1綊DA,所以四边形ADC1D1为平行四边形,所以AD1∥C1D,又AD1⊄平面BDC1,C1D⊂平面BDC1,所以AD1∥平面BDC1.(2)连接D1D,因为BB1∥平面ACC1A1,BB1⊂平面BB1D1D,平面ACC1A1∩平面BB1D1D=D1D,所以BB1∥D1D,又因为D1,D分别为A1C1,AC的中点,所以DD1綊AA1,所以BB1=AA1=DD1,故四边形BDD1B1为平行四边形,所以BD∥B1D1,又BD⊄平面AB1D1,B1D1⊂平面AB1D1,所以BD∥平面AB1D1.角度二直线与平面平行的性质如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.【解】 (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC , 因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为PA =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH .因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,且G 是PB 的中点,所以GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3. 易得EF =BC =8, 故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α). (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).1.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )解析:选A.对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C ,D 中均有AB ∥平面MNQ .故选A.2.如图,四棱锥P -ABCD 中AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD .证明:(1)连接EC ,因为AD ∥BC ,BC =12AD ,所以BC 綊AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,所以FH ∥平面PAD . 又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,所以OH ∥平面PAD . 又FH ∩OH =H , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EFA1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.[迁移探究1](变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,AB,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.[迁移探究2](变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A 1ACC 1是平行四边形, 所以M 是A 1C 的中点,连接MD , 因为D 为BC 的中点, 所以A 1B ∥DM .因为A 1B ⊂平面A 1BD 1, DM ⊄平面A 1BD 1, 所以DM ∥平面A 1BD 1.又由三棱柱的性质知,D 1C 1綊BD , 所以四边形BDC 1D 1为平行四边形, 所以DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, 所以DC 1∥平面A 1BD 1,又因为DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D , 所以平面A 1BD 1∥平面AC 1D .证明面面平行的常用方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)如果两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化进行证明.1.如图,AB ∥平面α∥平面β,过A ,B 的直线m ,n 分别交α,β于C ,E 和D ,F ,若AC =2,CE =3,BF =4,则BD 的长为( )A.65B.75C.85D.95解析:选C.由AB ∥α∥β,易证 AC CE =BD DF .即AC AE =BD BF, 所以BD =AC ·BF AE =2×45=85.2.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明:(1)如图,连接SB ,因为E ,G 分别是BC ,SC 的中点, 所以EG ∥SB .又因为SB ⊂平面BDD 1B 1, EG ⊄平面BDD 1B 1, 所以直线EG ∥平面BDD 1B 1. (2)连接SD ,因为F ,G 分别是DC ,SC 的中点, 所以FG ∥SD .又因为SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, 所以FG ∥平面BDD 1B 1,又EG ⊂平面EFG , FG ⊂平面EFG ,EG ∩FG =G , 所以平面EFG ∥平面BDD 1B 1.平行关系中的探索性问题(师生共研)如图,已知斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1?(2)若平面BC 1D ∥平面AB 1D 1,求ADDC的值.【解】 (1)如图,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形, 所以点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, 所以OD 1∥BC 1.又因为OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, 所以BC 1∥平面AB 1D 1.所以当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1.(2)由已知,平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BDC 1=BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O . 因此BC 1∥D 1O ,同理AD 1∥DC 1. 因为A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD.又因为A 1O OB =1,所以DC AD =1,即AD DC=1.解决探索性问题的方法(1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD ;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.解:(1)证明:如图所示,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=12AB,又AB∥CD,CD=12AB.所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.(2)存在,理由如下:如图所示,取AB的中点F,连接CF,EF,所以AF=12AB,又CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD,又CF⊄平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.空间几何问题平面化如图所示的一块木料中,棱BC平行于平面A′B′C′D′.(1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面ABCD是什么位置关系?并证明你的结论.【解】(1)过点P作B′C′的平行线,交A′B′,C′D′于点E,F,连接BE,CF;作图如下:(2)EF∥平面ABCD.理由如下:因为BC∥平面A′B′C′D′,又因为平面B′C′CB∩平面A′B′C′D′=B′C′,所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,又因为EF⊄平面ABCD,BC⊂平面ABCD,所以EF∥平面ABCD.本题以学习的线面平行为基础,将线面问题经过严密的逻辑推理,转化为线线平行的问题,从而实现了空间问题平面化,并最终实现问题的解决.如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.解:(1)证明:①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC,平面β∩平面ABDC=BD知,AC∥BD.因为AE ∶EB =CF ∶FD ,所以EF ∥BD . 又EF ⊄β,BD ⊂β,所以EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=DH ,且DH =AC , 因为平面α∥平面β,平面α∩平面ACDH =AC , 所以AC ∥DH ,所以四边形ACDH 是平行四边形,在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .又因为AE ∶EB =CF ∶FD =AG ∶GH , 所以GF ∥HD ,EG ∥BH . 又EG ∩GF =G ,BH ∩HD =H , 所以平面EFG ∥平面β.又EF ⊂平面EFG ,所以EF ∥平面β. 综合①②可知,EF ∥平面β.(2)如图所示,连接AD ,取AD 的中点M ,连接ME ,MF .因为E ,F 分别为AB ,CD 的中点.所以ME ∥BD ,MF ∥AC ,且ME =12BD =3,MF =12AC =2.所以∠EMF 为AC 与BD 所成的角或其补角, 所以∠EMF =60°或120°. 所以在△EFM 中,由余弦定理得 EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19.[基础题组练]1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C.对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.3.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合解析:选C.如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN ∥平面PQR .4.如图所示,在空间四边形ABCD 中,E ,F 分别为边AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,又EF ⊄平面BCD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG 綊12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形.5.在正方体ABCD -A1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点,给出下列四个推断:①FG ∥平面AA 1D 1D ; ②EF ∥平面BC 1D 1; ③FG ∥平面BC 1D 1; ④平面EFG ∥平面BC 1D 1. 其中推断正确的序号是( ) A .①③ B .①④ C .②③D .②④解析:选A.因为在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点,所以FG ∥BC 1,因为BC 1∥AD 1,所以FG ∥AD 1,因为FG ⊄平面AA 1D 1D ,AD 1⊂平面AA 1D 1D ,所以FG ∥平面AA 1D 1D ,故①正确; 因为EF ∥A 1C 1,A 1C 1与平面BC 1D 1相交,所以EF 与平面BC 1D 1相交,故②错误; 因为E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点,所以FG ∥BC 1,因为FG ⊄平面BC 1D 1,BC 1⊂平面BC 1D 1, 所以FG ∥平面BC 1D 1,故③正确;因为EF 与平面BC 1D 1相交,所以平面EFG 与平面BC 1D 1相交,故④错误.故选A. 6.在四面体A -BCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN平行的是________.解析:如图,取CD的中点E,连接AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案:平面ABD与平面ABC7.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以F为DC的中点.故EF=12AC= 2.答案: 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD=D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截而得到的,其中AB=4,BC=2,CC1=3,BE=1.(1)求证:四边形AEC1F为平行四边形;(2)求BF的长.解:(1)证明:由已知得平面ABE∥平面DCC1F,平面AEC1F∩平面ABE=AE,平面AEC1F ∩平面DCC1F=C1F,所以AE∥C1F,同理可得AF∥C1E,所以四边形AEC1F是平行四边形.上取点H,使CH=1,可得四边形BCHE为矩形,即(2)在CC可得四边形ADHE为平行四边形,所以DH∥AE,AE∥FC1,所以四边形FDHC1为平行四边形,所以FD=3-1=2,所以BF=BD2+DF2=2 6.10.如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.[综合题组练]1.(创新型)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确的个数是()A.1 B.2C.3 D.4解析:选C.由题图,显然①是正确的,②是错的;对于③因为A1D1∥BC,BC∥FG,所以A1D1∥FG且A1D1⊄平面EFGH,所以A1D1∥平面EFGH(水面).所以③是正确的;因为水是定量的(定体积V).所以S △BEF ·BC =V , 即12BE ·BF ·BC =V . 所以BE ·BF =2VBC(定值),即④是正确的,故选C.2.(应用型)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =12,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H ,且它们分别是AB ,BC ,SC ,SA 的中点,那么四边形DEFH 的面积为( )A .18B .18 3C .36D .36 3 解析:选A.因为D ,E ,F ,H 分别是AB ,BC ,SC ,SA 的中点,所以DE ∥AC ,FH ∥AC ,DH ∥SB ,EF ∥SB ,则四边形DEFH 是平行四边形,且HD =12SB =6,DE =12AC =3.如图,取AC 的中点O ,连接OB ,SO ,因为SA =SC =12,AB =BC =6,所以AC ⊥SO ,AC ⊥OB ,又SO ∩OB =O ,所以AO ⊥平面SOB ,所以AO ⊥SB ,则HD ⊥DE ,即四边形DEFH 是矩形,所以四边形DEFH 的面积S =6×3=18,故选A.3.(应用型)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1.则以下四个说法:①MN ∥平面APC ; ②C 1Q ∥平面APC ; ③A ,P ,M 三点共线; ④平面MNQ ∥平面APC .其中说法正确的是________(填序号).解析:①连接MN ,AC ,则MN ∥AC ,连接AM ,CN ,易得AM ,CN 交于点P ,即MN ⊂平面APC ,所以MN ∥平面APC 是错误的; ②由①知M ,N 在平面APC 上,由题易知AN ∥C1Q ,AN ⊂平面APC , 所以C 1Q ∥平面APC 是正确的; ③由①知A ,P ,M 三点共线是正确的;④由①知MN ⊂平面APC ,又MN ⊂平面MNQ ,所以平面MNQ ∥平面APC 是错误的.答案:②③4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD上一点,且AP =a 3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.解析:因为平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥PQ .又因为B 1D 1∥BD ,所以BD ∥PQ ,设PQ ∩AB =M ,因为AB ∥CD ,所以△APM ∽△DPQ .所以PQ PM =PD AP=2,即PQ =2PM . 又知△APM ∽△ADB ,所以PM BD =AP AD =13, 所以PM =13BD ,又BD =2a , 所以PQ =223a . 答案:223a 5.(应用型)在如图所示的多面体中,DE ⊥平面ABCD ,AF ∥DE ,AD ∥BC ,AB =CD ,∠ABC =60°,BC =2AD =4DE =4.(1)在AC 上求作点P ,使PE ∥平面ABF ,请写出作法并说明理由;(2)求三棱锥A -CDE 的高.解:(1)取BC 的中点G ,连接DG ,交AC 于点P ,连接EG ,EP .此时P 为所求作的点(如图所示).下面给出证明:因为BC =2AD ,G 为BC 的中点, 所以BG =AD .又因为BC ∥AD ,所以四边形BGDA 是平行四边形,故DG ∥AB ,即DP ∥AB .又AB ⊂平面ABF ,DP ⊄平面ABF ,所以DP ∥平面ABF .因为AF ∥DE ,AF ⊂平面ABF ,DE ⊄平面ABF ,所以DE ∥平面ABF .又因为DP ⊂平面PDE ,DE ⊂平面PDE ,PD ∩DE =D , 所以平面PDE ∥平面ABF ,因为PE ⊂平面PDE ,所以PE ∥平面ABF .(2)在等腰梯形ABCD 中,因为∠ABC =60°,BC =2AD =4, 所以可求得梯形的高为3,从而△ACD 的面积为12×2×3= 3. 因为DE ⊥平面ABCD ,所以DE 是三棱锥E -ACD 的高.设三棱锥A -CDE 的高为h .由V A ­CDE =V E ­ACD ,可得13×S △CDE ×h =13S △ACD ×DE ,即12×2×1×h =3×1,解得h = 3. 故三棱锥A -CDE 的高为 3.6.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明B 1D 1∥l .证明:(1)由题设知BB1綊DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綊B1C1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.。

高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)

高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)

第四节 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言 判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α, l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理文字语言 图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β, b ∥β, a ∩b =P ,a ⊂α, b ⊂α, ∴α∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β.二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABC­A1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABC­A1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A ∵若m ⊄α,n ⊂α,且m ∥n ,由线面平行的判定定理知m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴“m ∥n ”是“m ∥α”的充分不必要条件.2.如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,P A⊂平面P AHG,∴P A∥GH.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.变结论在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF 的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点, 所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 中点,所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CD AB ,∴AB =P A ×CD PC =5×12=52.答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.10.(2019·南昌摸底调研)如图,在四棱锥P ­ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ­ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离.∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ­ABM 的体积V =V M ­P AB =V C ­P AB =V P ­ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N ­BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N ­BCM 的体积V N ­BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ­ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE . ∵CB =CD ,∴CO ⊥BD . 又∵EC ⊥BD ,EC ∩CO =C ,∴BD⊥平面OEC,∴BD⊥EO.又∵O为BD中点.∴OE为BD的中垂线,∴BE=DE.(2)取BA的中点N,连接DN,MN.∵M为AE的中点,∴MN∥BE.∵△ABD为等边三角形,N为AB的中点,∴DN⊥AB.∵∠DCB=120°,DC=BC,∴∠OBC=30°,∴∠CBN=90°,即BC⊥AB,∴DN∥BC.∵DN∩MN=N,BC∩BE=B,∴平面MND∥平面BEC.又∵DM⊂平面MND,∴DM∥平面BEC.。

高考数学一轮复习统考 第8章 立体几何 第4讲 直线、平面平行的判定及性质课件

高考数学一轮复习统考 第8章 立体几何 第4讲 直线、平面平行的判定及性质课件
第十三页,共八十六页。
答案
解析 因为矩形 ABCD 的对角线 AC 与 BD 交于点 O,所以 O 为 BD 的 中点.在△PBD 中,因为 M 为 PB 的中点,所以 OM 为△PBD 的中位线, OM∥PD,所以 PD∥平面 AMC,OM∥平面 PCD,且 OM∥平面 PDA.因为 M∈PB,所以 OM 与平面 PBA,平面 PBC 相交.
第二十五页,共八十六页。
解析
2.(2019·湖南联考)已知 m,n 是两条不同的直线,α,β,γ 是三个不同 的平面,下列命题中正确的是( )
A.若 m∥α,n∥α,则 m∥n B.若 m∥α,m∥β,则 α∥β C.若 α⊥γ,β⊥γ,则 α∥β D.若 m⊥α,n⊥α,则 m∥n
解析 A 中,两直线可能平行、相交或异面;B 中,两平面可能平行 或相交;C 中,两平面可能平行或相交;D 中,由线面垂直的性质定理可 知结论正确,故选 D.
第三十一页,共八十六页。
解析
例 3 如图所示,四边形 ABCD 是平行四边形 PC 的中点,在 DM 上取一点
G,过 G 和 AP 作平面交平面 BDM 于 GH.
求证:AP∥GH.
证明 如图所示,连接 AC 交 BD 于点 O,连接 MO,
∵四边形 ABCD 是平行四边形,
第二十六页,共八十六页。
解析 答案
精准设计考向,多角度探究突破 考向二 直线与平面平行(píngxíng)的判定与性质 角度 1 用线线平行证明线面平行 例 2 (1)(2019·豫东名校联考)如图,在直四棱柱 ABCD-A1B1C1D1 中,E 为线段 AD 上的任意一点(不包 括 A,D 两点),平面 CEC1 与平面 BB1D 交于 FG. 证明:FG∥平面 AA1B1B.

2019版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定与性质配套课件 理

2019版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定与性质配套课件 理

3.下列命题中,正确命题的个数是( A )
①若直线 l 上有无数个点不在平面α内,则 l∥α;
②若直线 l 与平面α平行,则 l 与平面α内的任意一条直线都
ห้องสมุดไป่ตู้
平行;
③如果两条平行直线中的一条直线与一个平面平行,那么
另一条直线也与这个平面平行;
④若直线 l 与平面α平行,则 l 与平面α内的任意一条直线都
图 8-4-1
解析:如题图①,∵MN∥AC,NP∥AD,∴平面 MNP∥ 平面 ADBC.∴AB∥平面 MNP.如题图②,假设 AB∥平面 MNP, 设 BD∩MP=Q,则 NQ 为平面 ABD 与平面 MNP 的交线.∴AB ∥NQ.∵N 为 AD 的中点,∴Q 为 BD 的中点.但由 M,P 分别为 棱的中点,知 Q 为 BD 的14分点,矛盾.∴得不到 AB∥平面 MNP.
没有公共点.
A.1 个
B.2 个
C.3 个
D.4 个
4.已知直线 l,m,n 及平面α,下列命题中的假命题是( D ) A.若 l∥m,m∥n,则 l∥n B.若 l⊥α,n∥α,则 l⊥n C.若 l⊥m,m∥n,则 l⊥n D.若 l∥α,n∥α,则 l∥n
考点 1 直线与平面平行的判定与性质 例 1:(1)(2017 年新课标Ⅰ)在下列四个正方体中,A,B 为 正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正 方体中,直线 AB 与平面 MNQ 不平行的是( )
⇒BOOA=QBQD,则 OQ∥AD∥BC.
∴平面 POQ∥平面 CBE. 又∵PQ 平面 CBE,PQ⊂平面 POQ, ∴PQ∥平面 CBE.
【规律方法】证明线面平行,关键是在平面内找到一条直 线与已知直线平行.方法一是作三角形得到的;方法二是通过作 平行四边形得到在平面内的一条直线 KH;方法三利用了面面平 行的性质定理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲直线、平面平行的判定与性质
1.已知m,n表示两条不同直线,α表示平面,下列说法正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n⊂α,则m⊥n
C.若m⊥α,m⊥n,则n∥α
D.若m∥α,m⊥n,则n⊥α
2.(2017年河北唐山模拟)若m,n表示不同的直线,α,β表示不同的平面,则下列结论中正确的是( )
A.若m∥α,m∥n,则n∥α
B.若m⊂α,n⊂β,m∥β,n∥α,则α∥β
C.若α⊥β,m∥α,n∥β,则m∥n
D.若α∥β,m∥α,n∥m,n⊄β,则n∥β
3.如图X8­4­1,已知l是过正方体ABCD­A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线,下列结论错误的是( )
图X8­4­1
A.D1B1∥l B.BD∥平面AD1B1
C.l∥平面A1D1B1 D.l⊥B1C1
4.(2015年北京)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.设α,β,γ是三个不重合的平面,m,n是两条不重合的直线,则下列说法正确的是( )
A.若α⊥β,β⊥γ,则α∥γ B.若α⊥β,m∥β,则m⊥α
C.若m⊥α,n⊥α,则m∥n D.若m∥α,n∥α,则m∥n
6.如图X8­4­2(1),在透明塑料制成的长方体ABCD­A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行;
④当容器倾斜至如图X8­4­2(2)时,BE·BF是定值.
其中正确说法的序号是____________.
图X8­4­2
7.如图X8­4­3,在长方体ABCD­A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC 的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件____________时,
有MN ∥平面B 1BDD 1.
图X8­4­3
8.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题.可以在横线处填入的条件是________(把所有正确的序号填上).
9.(2017年新课标Ⅱ)如图X8­4­4,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直
于底面ABCD ,AB =BC =1
2
AD, ∠BAD =∠ABC =90°.
(1)证明:直线BC ∥平面PAD ;
(2)若△PCD 的面积为2 7,求四棱锥P ­ABCD 的体积.
图X8­4­4
10.如图X8­4­5,四棱锥P ­ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .
(1)求证:AC ⊥PD ;
(2)在线段PA 上是否存在点E ,使BE ∥平面PCD ?若存在,求PE PA
的值;若不存在,请说明理由.
图X8­4­5
第4讲 直线、平面平行的判定与性质
1.B 解析:若m ∥α,n ∥α,则m ∥n 或m ,n 相交或m ,n 异面,故A 错;若m ⊥α,n ⊂α,由直线和平面垂直的定义知,m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;若m ∥α,m ⊥n ,则n ∥α或n ,α相交或n ⊂α,故D 错.
2.D 解析:在A 中,若m ∥α,m ∥n ,则n ∥α或n ⊂α,故A 错误.
在B 中,若m ⊂α,n ⊂β,m ∥β,n ∥α,则α与β相交或平行,故B 错误. 在C 中,若α⊥β,m ∥α,n ∥β,则m 与n 相交、平行或异面,故C 错误.
在D 中,若α∥β,m ∥α,n ∥m ,n ⊄β,则由线面平行的判定定理得n ∥β,故D 正确.
3.D
4.B 解析:若m ∥β,则平面α,β可能相交也可能平行,不能推出α∥β;反过来,若α∥β,m ⊂α,则有m ∥β.故“m ∥β”是“α∥β”的必要而不充分条件.
5.C 解析:A 选项中,α,γ可能的位置关系为相交,平行,故A 错误;B 选项中,m 可能在α上,也可能与α平行或相交,故B 错误;C 选项中,根据线面垂直的性质,可知C 正确;D 选项中,m ,n 可能的位置关系为相交,平行,异面,故D 错误.故选C.
6.①③④ 解析:对于①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱、三棱柱或五棱柱),且BC 为棱柱的一条侧棱,故①正确;对于②,当水的部分是四棱柱或五棱柱时,水面面积与上下底面面积不等;当水的部分是三棱柱时,水面面积可能变大,也可能变小,故②不正确;③是正确的;④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.
7.M ∈线段HF 解析:如图D148,连接FH ,HN ,FN ,
图D148
由题意知,HN ∥平面B 1BDD 1, FH ∥平面B 1BDD 1. 且HN ∩FH =H .
∴平面NHF ∥平面B 1BDD 1.
∴当M 在线段HF 上运动时,有MN ∥平面B 1BDD 1.
8.①③ 解析:由线面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.
9.(1)证明:在平面ABCD 内,
因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面PAD ,AD ⊂平面PAD , 故BC ∥平面PAD .
(2)解:如图D149,取AD 的中点M ,连接PM ,CM ,
由AB =BC =1
2
AD 及BC ∥AD ,∠ABC =90°,得四边形ABCM 为正方形,
则CM ⊥AD .
因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD , 所以PM ⊥AD .所以PM ⊥底面ABCD . 因为CM ⊂底面ABCD ,所以PM ⊥CM .
设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x .取CD 的中点N ,连接PN ,
则PN ⊥CD ,所以PN =
142
x . 因为△PCD 的面积为2 7,
所以12×2x ×142
x =2 7,
解得x =-2(舍去),x =2.
于是AB =BC =2,AD =4,PM =2 3,
所以四棱锥P ­ABCD 的体积V =13×

2
×2 3=4 3.
图D149
10.(1)证明:∵平面PCD ⊥平面ABCD , 平面PCD ∩平面ABCD =CD , 又AC ⊥CD ,AC ⊂平面ABCD , ∴AC ⊥平面PCD .
∵PD ⊂平面PCD ,∴AC ⊥PD .
(2)解:线段PA 上存在点E ,使BE ∥平面PCD . ∵BC =1,AD =3.
在△PAD 中,分别取PA ,PD 靠近点P 的三等分点E ,F ,连接EF (如图D150).
图D150
∵PE PA =PF PD =13
, ∴EF ∥AD ,EF =1
3
AD =1.
又∵BC ∥AD ,∴BC ∥EF ,且BC =EF . ∴四边形BCFE 是平行四边形. ∴BE ∥CF .
又BE ⊄平面PCD ,CF ⊂平面PCD . ∴BE ∥平面PCD .。

相关文档
最新文档