消弧线圈调节方式优缺点及说明

合集下载

消弧线圈的调节方式

消弧线圈的调节方式


过电流互感器直接测量接地零序电
流,其值就是系统电容电流。

测量原理图
A

B C



PT6-Leabharlann 0kV母线GK RD法
UA UB UC UN
UL
V1 V2
GK DL GK
A
测量原理
在变电站被电压母线上(6-10KV)任

意一相对地接一只已知电容器Cf(Cf的

选取视估算系统电容电流大小而定),人
多次发生。厂家解释为PT质量问题,但用户并不同意。 福建、上海等地已明文规定不采用相控式线圈。
➢ 残流稳定时间长。接地发生后,装置检测单元检
测到接地的时间、控制器向执行机构发出进入设定补偿 状态的命令的时间、执行机构接受命令后动作到位的时 间、装置由开始输出补偿电流到残流稳定所需过渡过程 的时间。一般不会少于100毫秒,甚至会到700毫秒以上。

的值,同时在E0发生较大变化时,也会启动位移法计算,

确保系统容流计算的准确性。

计算速度快,可达到每秒刷新一次;

基本上避免了因计算容流而引起的调档。在正常运行的

情况下,系统不平衡电压E0 不会有很大波动,也就不
需要专门进行计算调档了。
中性点不接地系统的选线
➢ 群体比幅法

➢ 群体比相法

消弧线圈接地系统的选线
为造成系统三相对地阻抗(主要是容抗)

不对称度增大,而产生更大的零序电压,

测量零序电压、相电压和通过已知电容C

f的电流,利用对称分量法推导出的计算

对系统有一定的冲击。

四种消弧线圈的性能比较doc(2011三钢)

四种消弧线圈的性能比较doc(2011三钢)

四种消弧线圈的性能比较第一部分一、调匝式消弧线圈1、基本工作原理:此种消弧线圈是通过有载开关调节电抗器的分接抽头来改变电感。

2、缺点:1)、补偿范围小(由于有载开关的档位数量的限定,导致消弧线圈补偿电流的上下限之比也就三倍或四倍左右,这样消弧线圈的适用性就比较小);2)、调节速度慢,每调一个档位都要十几秒钟;3)、有载开关不能带高压调节(电网在正常运行时,中性点的电压几乎等于零的时候才能调节,电网发生单相接地后,中性点的电压升高后(最高升到相电压)不能调节,如此时有载开关动作,那么立马就会被烧掉),但有谁能保证在调节档位的时候不发生单相接地事故呢?4)、只能采用预调的方式,不能采用动态的补偿方式,容易导致电网串联谐振过电压(由于调节速度慢,且不能带高压调节,所以消弧线圈必须在电网未发生单相接地时(此时消弧线圈和电网的分布电容处于串联的状态)调节到谐振点附近,这样一来即使串联了阻尼电阻也容易导致电网串联谐振过电压;5)、必须串联阻尼电阻,阻尼电阻容易崩烧(由于必须提前把消弧线圈调节到谐振点附近,所以必须串联一个阻尼电阻,在电网发生单相接地后再把阻尼电阻短接掉,万一接地后阻尼电阻未短接掉或发生高阻接地后中性点电压未升到装置认定接地的门槛电压而导致阻尼电阻不短接,那么阻尼电阻就会被烧掉);6)、使用寿命短,可靠性差(由于此种消弧线圈是靠调整有载开关档位来测量系统的电容电流的大小的,那么电网在一波动时就必须调节档位,此种消弧线圈由于原理性死循环的问题,会导致有载开关来回调整,这样寿命就很短了,另外往往在调整有载开关的过程中如果电网此时发生接地,就会导致有载开关烧毁);7)、补偿电流有级差,补偿效果差(由于消弧线圈是调档位的,所以补偿电流只能分级补偿,不能做到无级连续调节,所以接地后残流大,补偿效果差);8)、一次设备占地大、凌乱、安装使用维护繁杂(由于成套装置一次设备包括接地变、消弧线圈本体、阻尼电阻箱和有载开关四部份,安装使用及维护繁杂)9)、测量方法单一,准确性差(主要是用两点法测量,也就是把消弧线圈分别调到两个不同的档位来测量,在波动及比较大及操作频繁的电网测量准确性更差)。

调匝式、偏磁式、调容式三种调节方式消弧线圈成套装置区别

调匝式、偏磁式、调容式三种调节方式消弧线圈成套装置区别

调匝式、偏磁式、调容式三种调节方式消弧线圈成套装置区别一、三种调节方式消弧线圈成套装置从产品外观构成区别二、三种调节方式消弧线圈成套装置型号区别:调匝式:DT-XHDCZ偏磁式:DT-XHDCP调容式:DT-XHDCR二、三种调节方式消弧线圈成套装置调节方式概述区别(1)调匝式消弧线圈成套装置是将消弧线圈设有多个抽头,采用有载调节开关调节消弧线圈的抽头以改变电感值,来实现对地电感电流的输出,以实现自动跟踪补偿的目的。

(2)偏磁式消弧线圈成套装置是在消弧线圈内布置一个磁化铁芯段,通过施加直流励磁电流改变铁芯的磁通率,从而实现电感的连续可调。

(3)调容式消弧线圈成套装置是二次调节消弧线圈,消弧线圈本体由主绕组、二次绕组组成。

二次绕组链接电容调节柜。

通过调节二次电容的容量即可控制主绕组的感抗及电容电流的大小。

三、三种调节方式消弧线圈成套装置从构成上对比产品构成对比表四、性能特点上区别(1)调匝式消弧线圈成套装置的补偿调节方式属于预调节,即在发生单相接地前,消弧线圈已根据电网电容电流调至最佳补偿状态,其接地补偿相应时间为可控硅短接阻尼电阻时间,响应速度快,补偿效果佳。

(2)偏磁式消弧线圈成套装置的补偿调节方式是随调节,即在发生单相接地前,消弧线圈实时监测计算电网电流;当出现单相接地故障后,利用施加直流励磁电容,改变铁芯的磁阻,以毫秒级的速度调节电抗值,输出补偿电流。

(3)调容式消弧线圈成套装置的电容器选用BFMJ薄膜自愈型电容,额定工作电压1000V,其内部或外部装有限流线圈,以限制合闸瞬间的浪涌电流。

内部还装有放电电阻。

五、选型时该选择哪种调节方式的消弧线圈成套装置?根据具体项目要求,每套装置部件较多,调节方式、补偿方式都不一样。

在产品选型时,根据业主方技术负责人和设计院的偏好,一般情况推荐调匝式消弧线圈成套装置,毕竟传统、经过了时间的考验、稳定、可靠的产品是电网电气设备运行首要考虑的。

消弧线圈的调节方式比较

消弧线圈的调节方式比较
图2-2-4为带电容补偿的分级可调消弧线圈图2-2-5闸流式消弧线圈原理图
④调气隙式消弧线圈
这种消弧线圈的工作原理是靠移动插入线圈内部的可动铁心来改变磁导率从而改变线圈电感的。从理论上讲这种消弧线圈的电感可连续调节,但实际上因为机械的惯性和电机的控制精度问题在工程中做不到。其主要缺点是精度不高,可靠性差,响应慢,动作时间取决于可动铁心的移动时间,可至数十秒钟。在额定电压下消弧线圈噪音较大且铁心不可调节(因为此时静动铁心间电磁力很大)。
JJ为交流接触器的触点;JC为直流接触器的触点,当系统发生单相接地时,中性点电压升高,电流增大,同时母线PT开口三角输出电压。如其值超过设定值时会启动JC或JJ将阻尼电阻短接。延时由时间继电器控制。
②调容式
通过调节消弧线圈二次侧电容量大小来调节消弧线圈的电感电流。其采用二次调节消弧线圈,其结构如图所示:
我公司生产的偏磁式消弧线圈自动跟踪补偿成套装置是与上海交通大学的蔡旭教授共同研制开发的第三代产品。具有以下特点:
a.核心CPU采用TI公司最新生产的DSP(大规模数据处理器)芯片;
b.大屏幕液晶中文显示,参数设定、查看方便;
c.在电网正常运行时,远离谐振点,实时自动跟踪检测系统的电容电流;
d.一旦检测到单相接地故障,瞬时(≦20mS)补偿上相应的电感电流,使无功接地残流小于5A;
二次绕组连接电容调节柜,当二次电容全部断开时,主绕组感抗最小,电感电流最大。二次绕组有电容接入后,根据阻抗折算原理,相当于主绕组两端并接了相同功率、阻抗为k2倍的电容,使主绕组感抗增大,电感电流减小。因此通过调节二次电电容器的内部或外部装有限流线圈,以限制合闸涌流。电容器内部还装有放电电阻。
⑤调直流偏磁式
这种消弧线圈的工作原理是在交流工作线圈内布置一个铁芯磁化段,通过改变铁芯磁化段磁路上的直流励磁磁通大小来调节交流等值磁导,实现电感连续可调。它的内部为全静态结构,无运动部件,工作可靠性高。其响应速度快且可在消弧线圈承受高电压时调节电感值。其补偿电流上下限之比可达到10:1。补偿电流下限值的存在可以避免由于电磁式电压互感器饱和而引发铁磁谐振。

消弧线圈各种补偿方式的分析及应用

消弧线圈各种补偿方式的分析及应用

消弧线圈各种补偿方式的分析及应用通过对消弧线圈的不同方式进行尝试和分析,得出消弧线圈不同补偿方式的相关适用范围及应用中应注意到的一些问题,做了以下具体的分析。

标签:补偿电弧;谐振;过电压;中性点在6~35kV的电力系统中,供电电流会随着用户用电量的变化随时发生变化,当单链接电流大小超过限值时,就会产生电弧,进而影响电气设备的正常运行,甚至是损坏电器设备,为了达到降低或消除电弧,在电力供电网络系统中通常需要安装消弧线圈,即在中性点处通过消弧线圈接地,电网在此装置的补偿运行方式下工作可有效降低电弧所带来的损害。

下面对中性点经消弧线圈接地的原理进行简要介绍。

配电网络系统线路中中性点不直接接地,而是通过串联电感线圈后接地。

这种消弧方式其实是一种电流补偿装置,也就是一个维持平衡的过程,我们可以采取不同的补偿方式在电路中得到应用。

一般有三种,即完全补偿、欠补偿和过补偿,具体如下。

1 完全补偿完全补偿就是要使电感电流IL与接地电容电流IC相等,在这种情况下接地点的电流几乎为零,因此在该种补偿方式下理论上不会产生电弧,也就不会出现弧光过电压状态,也就不存在电弧危害了,所以,从理论上来讲完全补偿方式是一种理想的补偿范式。

但是这种状态是一种理想状态,通常情况下并不能实现,在供电系统正常运行时,电感电流和接地电容的电流总是会出现不相等的情况,电源中性点和地面之间就会形成点位的偏移,形成电压,从而使得中性点消弧线圈和接地电容共同形成一个串联回路(见图1和图2)。

[消弧线圈与接地电容构成消弧线圈接地系统W相金属的串联电路性接地的简化等值电路图1 图2]应用戴维南定理,图3中的N等于消弧线圈从中性点断开后,中性点的电压,由式(1)确定:UN= (1)式(1)中:Y1=ωc1;Y2=ωc2;Y3=ωc3;线路经完全换位后,c1、c2、c3差别很小,N数值较小。

在发生全补偿时,消弧线圈的感抗与三相对地电容容抗相等。

在N的作用下,图3所示的电路构成串联谐振,回路电流为I= (2)中性点电位为U0=LXL=XL (3)消弧线圈的感抗通常是比较大的,而线圈的电阻此时相对比较小,在UN不大的情况下中性点处电位U0仍然会很高,U0将在串联谐振回路中产生很大的电压落差,从而导致电源中性点对地电压迅速的升高,引起电压过量,这是不允许的,因此在实际中完全补偿方式,不是很适用。

消弧线圈的异常与优化

消弧线圈的异常与优化

消弧线圈的异常与优化中性点经消弧线圈接地的电力系统,也称为谐振接地系统。

电网中性点装设消弧线圈的目的,主要是为了自动消除电网的瞬间单相接地故障。

自动跟踪补偿消弧装置与人工调谐消弧线圈相比,具有显著的优越性,已大量的在配电网中运行。

自动跟踪补偿消弧装置能保证补偿精度,不仅可以提高补偿的动作成功率,同时能够限制弧光接地过电压和铁磁谐振过电压,有利于电网的安全运行。

1自动跟踪补偿消弧装置的异常1.1调轴头式与调容式调抽头式自动消弧装置主要是利用有载开关来切换可调电抗器的抽头进行测量、调整电感的。

其优点是:①结构简单,操作方便,一次设备比较可靠,制造方便;②在处理单相接地故障时,噪音较低;③对电网运行方式的变化能自动跟踪,响应时间也较快。

调容式自动消弧装置是在调抽头式的基础上发展起来的。

去掉绕组上的分接头,在消弧线圈上加一个二次绕组,从二次绕组引出,并接若干组电容器,电容器通过开关或可控硅投切,在运行时利用电容电流抵消一部分消弧线圈一次侧的电感电流,通过改变投入电容器的组数,来达到改变电感电流大小,调节补偿电流的目的。

以上两类消弧装置容易出现以下异常:(1)因消弧线圈的抽头需停电调整,而调整的依据是对电网每条线路电容电流的测量、计算,而补偿电网的网络结构和运行方式变化频繁,要准确弄清每段时间每条线路的电容电流几乎是不可能的,因而补偿电流也就难以准确控制。

不能准确的控制补偿电流,也就不能把故障残流准确的控制在10A 以下,如故障残流大于10A,就会影响可靠的熄弧,进而影响对弧光接地过电压的抑制。

(2)如果脱谐度调整得过小,或工作在欠补偿状态,即<时,一方面,会造成数据的误差;另一方面,可能发生消弧线圈与网络对地电容产生线性谐振,产生危险的谐振过电压。

(3)由于一次设备中有可控硅及续流二极管等元件的存在,在电网的长期运行中,特别是在内、外电压的作用下,这些元件容易损坏。

元件一旦损坏,系统就变成不接地系统,从而引起各相电压的异常。

消弧线圈的补偿方式

消弧线圈的补偿方式

消弧线圈的补偿方式1. 引言消弧线圈是一种用于电力系统中的保护装置,用于限制和消除电流瞬时变化时产生的电弧现象。

在电力系统中,电流瞬时变化可能会引发火灾、短路等危险情况,因此消弧线圈的作用至关重要。

然而,在实际应用中,消弧线圈会对电力系统产生一定程度的影响,需要进行补偿以提高系统的稳定性和效率。

本文将详细介绍消弧线圈的补偿方式,并分析其原理、优缺点以及应用场景。

2. 消弧线圈的原理消弧线圈是一种通过感应耦合原理来限制和消除电流瞬时变化时产生的电弧现象的装置。

它由主线圈和补偿线圈组成。

当电流突然发生变化时,主线圈中会产生感应电动势,从而在补偿线圈中产生与主线圈相反方向的磁场,通过相互作用抵消了主线圈中产生的磁场,从而达到限制和消除电流瞬时变化时产生的电弧现象的目的。

3. 消弧线圈的补偿方式消弧线圈的补偿方式主要包括主动补偿和被动补偿两种。

3.1 主动补偿主动补偿是指通过控制电流源来实现对消弧线圈的补偿。

具体而言,通过在电流源上加装一个反馈回路,根据感应电动势的方向和大小来调整电流源输出的电流,以达到消弧线圈中产生与主线圈相反方向磁场并抵消主线圈中磁场的目的。

主动补偿具有响应速度快、控制精度高等优点,适用于对电流变化要求较高、需要快速响应和精确控制的场景。

然而,主动补偿也存在一些缺点,如成本较高、系统复杂等。

3.2 被动补偿被动补偿是指通过改变消弧线圈结构参数来实现对其补偿。

具体而言,可以通过改变消弧线圈的匝数、截面积等参数来调整其感应电动势和磁场大小,从而达到限制和消除电流瞬时变化时产生的电弧现象的目的。

被动补偿具有结构简单、成本低等优点,适用于对电流变化要求不高、对响应速度和控制精度要求较低的场景。

然而,被动补偿也存在一些缺点,如无法实现快速响应和精确控制等。

4. 消弧线圈补偿方式的应用场景消弧线圈补偿方式的选择应根据具体应用场景来确定。

以下是几种常见的应用场景:4.1 高压输电线路在高压输电线路中,电流突变可能会引发火灾、短路等危险情况。

消弧线圈介绍购买时如何选择

消弧线圈介绍购买时如何选择

消弧线圈介绍:购买时如何选择——北京拓山电力科技有限公司1、消弧线圈的作用。

1) 主要是补偿系统电容电流,使接地点电流数值较小,防止弧光短路,保证安全供电。

同时降低弧隙使电压恢复,提高弧隙绝缘强度,防止因电弧重燃造成间歇性接地过电压。

优点:从根本上将电容电流补偿掉,保证系统的正常运行;防止故障扩大。

2、消弧线圈的优点。

从根本上将电容电流补偿掉,保证系统的正常运行;防止故障扩大。

3、消弧线圈的缺点.较消弧柜造价高;当系统电容电流测量不准确或脱谐度调整不好时,不能很好熄弧。

4、购买消弧线圈产品时需要参考的有效信息。

1)系统电压等级:选线装置适用于电压等级为(66kV、35kV、10kV、6kV)的系统。

2)系统接线形式:单母线、单母线分段、单母线加旁路和单母线分段加旁路;双母线、双母线分段、双母线加旁路和双母线分段加旁路等。

3)出线路数(选线):多少条输出线路。

4)出线形式(选线):电缆出线还是架空出线。

如果是电缆出线有无零序电流互感器,如果有“变比”是多少;如果是架空出线,一般需要在B相加装CT(合成零序)。

5)消弧线圈及接地变压器容量:接地变压器是否有副边,消弧线圈容量决定用几个分体电抗器。

6)消弧线圈及接地变压器绝缘方式:油浸绝缘,杜邦纸绝缘,环氧树脂绝缘。

7)调节方式:随调还是预调(随调无需阻尼电阻,预调则需要配阻尼电阻)。

8)安装地点:户内还是户外。

5、消弧线圈按运行方式。

“预调”和“随调”两种。

6、消弧线圈的作用。

熄灭弧光,补偿系统电容电流7、接地弧光的危害。

易造成跳闸事故,易引发火灾。

8、TSH2007型消弧线圈成套装置特点。

1)运行方式灵活,可以采用“预调”的运行方式,也可以采用“随调”的运行方式。

补偿范围大,保证可靠熄灭电弧。

2)消弧线圈控制器可以控制调匝式消弧线圈、8421并联电抗器组合式消弧线圈。

3)消弧线圈的投入不会对系统造成谐波污染。

4)成套装置具有调节速度快、调节方式灵活,选线快速、准确的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

消弧线圈调节方式优缺点及说明
自动跟踪补偿消弧线圈装置可以自动适时的监测跟踪电网运行
方式的变化,快速地调节消弧线圈的电感值,以跟踪补偿变化的电容电流,以保证系统发生单相接地故障时能够有效抑制引故障电流引起的谐振过电压及接地弧光的危害。

自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分:调匝式,调容式,调励磁式(偏磁式)等几种常见的调节形式。

一、调匝式
1、工作原理:调匝式消弧线圈是在消弧线圈设有多个抽头,采用有载调压开关调节消弧线圈的抽头以改变电感值。

在电网正常运行时,微机控制器通过实时测量流过消弧线圈电流的幅值和相位变化,计算出电网当前方式下的对地电容电流,根据预先设定的最小残流值或失谐度,由控制器调节有载调压分接头,使之调节到所需要的补偿档位,在发生接地故障后,故障点的残流可以被限制在设定的范围之内。

正常运行采用过补偿方式,消弧线圈接地回路串接阻尼电阻。

2、优点:电感基本上为线性电抗值稳定,铁芯和线圈结构稳定使用寿命长,无非线性谐波干扰,无噪音,可制作很大容量,结构简单,运行可靠有丰富的运行经验,使用量大。

同时因其属预补偿工作方式,即在系统正常运行时,消弧线圈根据控制器的测量计算以投到最佳档位,当系统发生单相接地故障时,消弧线圈对地产生的补偿电流和系统中的故障电流几乎同时发生,因此补偿到位时间最快。

另外调匝式消弧
线圈属于机械性调节,当其调到最佳状态时,档位就已固定不动了,当系统发生单相接地故障时,消弧线圈可以不受任何因素的影响达到最佳的补偿效果。

在所有的调节方式中调匝式消弧线圈在故障发生的一瞬间的补偿稳定性最强,且不受控制部分的影响。

3、缺点:调匝式消弧线圈属于有极调节,补偿时有一定极差电流,但不过可以根据提前设计,将档位细分,使极差电流控制在5A以内,甚至更小(国标要求系统补偿后残流不许大于5A)。

另外预调节方式的工作状态,在系统下常运行时会对系统的脱谐度有一定的影响,但可以配套合理的阻尼电阻装置。

二、偏磁式
1、工作原理:偏磁式消弧线圈在其交流工作线圈内布置了一个铁芯磁化段,通过改变铁芯磁化段磁路上的直流助磁磁通大小来调节交流等值磁导,实现电感连续可调的目的。

其直流励磁绕组采取反串连接方式,使整个绕组上感应的工频电压相互抵消。

通过对三相全控整流电路输出电流的闭环调节,实现消弧线圈励磁电流的控制。

根据控制器测量计算出的电容电流值来控制消弧线圈的输出补偿电流。

偏磁式消弧线圈属随动调节方式,即当供电系统发生单相接地故障后才开始起调及补偿,虽说是电子调节,但因是滞后于故障进行补偿,所以相对于预补偿方式的消弧线圈来说补偿速度较慢。

2、优点:此种消弧线圈属于静态无极调节,调节速度快,补偿平滑。

随动调节,在系统正常运行时对供电系统运行影响小。

3、缺点:偏磁式消弧线圈需要复杂的绝对可靠的直流励磁系统,对控制系统可靠性要求很高。

铁芯特性、饱和特性难于控制。

相对调匝式消弧线圈偏磁式消弧线圈工作时铁芯损耗大,发热大,噪音大。

在补偿容量方面难于实现大容量的消弧线圈。

另外偏磁式消弧线圈工作在铁芯的非线性段,电流波形畸形大,谐波分量高。

所以对控制装置本身的谐波治理及控制要求较高。

相关文档
最新文档