实验一原电池电动势测定
原电池电动势的测定实验报告2篇

原电池电动势的测定实验报告2篇实验报告一:原电池电动势的测定一、实验目的1. 学习使用滑动电位器、标准电池等基本仪器设备测量电动势;2. 学会使用欧姆定律计算电路中各元件的电流、电阻和电势差;3. 掌握伏安法测量电路中各元件的电流、电势差、电动势的方法和步骤。
二、实验仪器1. 滑动电位器2. 标准电池3. 直流电流表4. 直流电压表5. 常用电线6. 脚踏电源开关7. 变阻器三、实验原理1. 滑动电位器滑动电位器是一种可以改变电路中电势差的调节器件。
原理上它是由一条可调长度的电阻组成,它的内部连接方式由电源端、负载端和滑动端组成。
通过滑动端移动到不同位置来实现改变电路中电势差的调节。
2. 电路中的电阻电阻是指导体材料在电流作用下阻碍电子流动的一种现象。
它与导体长度、截面积、材料特性有关,即R=ρL/S。
其中,R为电阻值,ρ为材料电阻率,L为导体长度,S为导体截面积。
3. 欧姆定律欧姆定律是电路中电流、电阻和电势差之间的数学关系,即I=U/ R。
其中,I为电流强度,U为电势差,R为电路中电阻值。
4. 伏安法伏安法常用于测量电路中各元件的电流、电势差、电动势。
在测量电动势时,将电位器调至电动势终止的位置,则在它前一端的电位差即为原电池电动势。
若此时测量它前后端的电势差,则可以计算出电路中其他元件的电压差和电流强度。
四、实验步骤1. 将电路接线连接好,将标准电池接在电路左侧,然后在电路右侧接上滑动电位器和变阻器,再将直流电压表和直流电流表分别插在电路中测量电压和电流。
2. 打开脚踏电源开关,调节滑动电位器位置,使电压表读数为0.00V,电流表读数为0.00A。
3. 开始实验前,需要先调节电位器,使得标准电池的正极与电路左侧相连,负极与电路右侧相连。
然后用直流电压表测量电池两端的电势差,并记录在实验记录本上。
4. 将滑动电位器向右移动一定距离,并用直流电压表测量滑动电位器前后的电势差,记录在实验记录本上。
原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定一、实验目的1) 掌握电位差计的测量原理和测量电池电动势的方法;2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用;5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池反应的热力学函数△G 、△S 、△H 。
二、实验原理1.用对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。
另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。
而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。
对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。
2.电池电动势测定原理:Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位:其中)25(00097.0799.0Ag /Ag --=+t ϕ;而+++-=Ag Ag /Ag Ag /Ag 1lna F RTϕϕ 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25)而电池电动势 饱和甘汞理论—ϕϕ+=Ag /Ag E ;可以算出该电池电动势的理论值。
与测定值比较即可。
3.电动势法测定化学反应的△G 、△H 和△S :如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压下的吉布斯函数变化△G和电池的电动势E有以下关系式:△r G m =-nFE从热力学可知:△H=-nFE+△S4.注意事项:①盐桥的制备不使用:重复测量中须注意盐桥的两端不能对调;②电极不要接反;三、.实验仪器及用品1.实验仪器SDC数字电位差计、饱和甘汞电极、光亮铂电极、银电极、250mL烧杯、20mL烧杯、U 形管2.实验试剂0.02mol/L的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂四、实验步骤1.制备盐桥3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL烧杯中,加入100mL蒸馏水和3g琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。
原电池电动势的测定实验报告

原电池电动势的测定实验报告实验名称:原电池电动势的测定实验目的:1.理解原电池的工作原理;2.学习测量电路的电动势;3.探究原电池电动势与其组成材料以及温度的关系。
实验器材:1.原电池;2.直流电桥;3.电阻箱;4.恒压源;5.电流表;6.万用表;7.导线等。
实验步骤:1.将电桥的四个电极连接在一起,并将电阻箱连接在电桥的“+”处。
2.将原电池的正极和负极分别接在电桥的两个电极上,并确保连接牢固。
3.通过调节电阻箱的电阻值,使得电桥的平衡指示器指向中间。
4.通过读取电阻箱的电阻值,测量电桥的平衡电阻。
5.使用万用表测量电路中的电流值,并记录下来。
6.切换恒压源,分别测量电池的电动势与终端电压。
7.将实验条件恢复到初始状态。
实验数据:1.电桥平衡电阻:Rb=150Ω;2.电流值:I=0.5A;3.电池电动势:E1=1.5V;4.终端电压:V1=1.3V。
数据处理:根据电桥平衡条件,电池的内电阻可以通过以下公式计算得出:R=Rb×(V1/E1-1)代入实测数据,计算得到电池的内电阻为:R=150×(1.3/1.5-1)=20Ω实验结果与讨论:根据测得的实验数据,我们可以得到原电池的电动势为1.5V,内电阻为20Ω。
这个结果表明原电池的电动势与其组成材料和温度密切相关。
原电池的电动势是由其两端材料的化学反应决定的。
在这个实验中,我们使用了标准电池,并且保持温度恒定。
因此,可以认为我们测得的电动势是该电池在标准条件下的电动势。
然而,在实际应用中,电池的电动势可能会受到温度的影响。
当温度升高时,电池内部化学反应的速率会加快,电动势可能会增加。
相反,当温度降低时,反应速率减慢,电动势可能会减小。
此外,电池的组成材料也会对其电动势产生影响。
不同的组成材料所产生的化学反应可能会有所不同,从而导致不同的电动势。
在实验中,我们还测量了电池的终端电压。
终端电压是指从电池的正极到负极之间的电压差。
由于电池的内阻存在,电池的终端电压一般会小于其电动势。
原电池电动势的测定及应用实验报告

原电池电动势的测定及应用实验报告实验报告:原电池电动势的测定及应用一、实验目的:1.学习如何测定原电池的电动势。
2.了解原电池的构造和工作原理。
3.研究原电池的应用。
二、实验仪器和材料:1.原电池(例如锌银电池、铜锌电池等)2.电流表3.电位计4.导线5.开关6.电阻箱7.连接板8.电源三、实验原理:原电池是一种将化学能转化为电能的装置,由两个不同的金属或合金及其周围的电解质溶液组成。
在原电池中,金属条与电解质之间的化学反应产生电流。
电动势是原电池提供给外部电路单位正电荷所需的能量。
电动势的实际值与原电池的化学反应和电化学平衡有关。
四、实验步骤及数据处理:1.将原电池、电流表、电位计以及电阻箱按照电路图连接好。
2.打开开关,通过调节电阻箱中的电阻,使电流表示数保持在一个恒定的值。
3.根据电位计的示数和电流表的示数,计算出原电池的电动势。
五、实验结果与分析:根据电位计的示数和电流表的示数,我们进行了多组实验,并计算出了不同条件下原电池的电动势。
在分析实验结果时,我们可以发现,原电池的电动势与电流的大小无关,主要取决于原电池中的化学反应和电化学平衡。
不同种类的原电池,其电动势可能会有所不同。
六、实验应用:1.用于供电:原电池可以直接为电器设备或电路提供稳定的直流电源。
2.计算电动势:通过测量原电池的电动势,我们可以了解原电池的性能与工作状态,判断其是否需要更换或维修。
3.进行电解实验:原电池可以为电解实验提供所需的电流。
4.进行电池组装:原电池可以通过串联或并联的方式组装成电池组,提供更大的电动势和容量。
七、实验总结:通过本次实验,我们学习了如何测定原电池的电动势,并了解了原电池的构造、工作原理和应用。
电动势是一个重要的物理概念,对于理解电路的工作原理和实际应用具有重要意义。
原电池电动势的测定实验报告 (2)

原电池电动势的测定实验报告引言电动势(emf)是电池产生的电压,是电池驱动电荷流动的力量。
测定电池的电动势有助于了解其电力输出能力和性能。
本实验旨在通过测量原电池的电动势来探究其特性,并分析实验结果。
实验目的•测定原电池的电动势;•理解电动势的概念和测量方法;•了解原电池的电力输出能力和特性。
实验装置•原电池(如干电池或锌铜电池);•电动势测量仪器(如电压表);•导线;•镊子。
实验步骤1.将电动势测量仪器的红色探针(正极)连接到原电池的正极,黑色探针(负极)连接到原电池的负极。
2.打开电动势测量仪器并记录显示的读数。
这个读数将近似等于原电池的电动势。
3.小心地将导线的一端用镊子连接到原电池的正极,并将另一端连接到电动势测量仪器的红色探针(正极)。
4.将导线的另一端用镊子连接到原电池的负极,并将另一端连接到电动势测量仪器的黑色探针(负极)。
5.记录电动势测量仪器显示的读数。
实验结果与分析经过实验测量,我们得到了原电池的电动势的读数和连接有导线的电动势的读数。
根据测量结果,我们可以得出以下结论:1.原电池的电动势是通过直接连接仪器测量得到的读数;2.连接有导线的电动势是通过在电路中连接导线测量得到的读数;3.温度和电池的化学反应速率对电动势有一定的影响,可能导致电动势的变化。
根据实验结果,与理论电动势相比,我们可以进一步分析原电池的性能和特性。
如果原电池的电动势与理论值接近,说明电池的输出能力较好,电池性能良好。
如果电动势与理论值有显著差异,可能是电池损耗、内阻等问题导致的。
实验结果提醒我们在实际应用中使用电池时要注意其电动势的准确性,并选择适当的电池类型和使用方式。
结论通过本实验的测量和分析,我们成功地测定了原电池的电动势,并对电动势的测量方法和原电池的特性有了更深入的了解。
实验结果提醒我们在实际应用中要注意电池的电动势准确性,并选择合适的电池类型以满足需求。
参考文献(列出参考文献的信息)致谢(写明感谢实验室的老师和同学的帮助)附录(在此列出实验中用到的数据表格、图表等附加的内容)。
原电池电动势的测定实验报告_实验报告_

原电池电动势的测定实验报告原电池电动势的测定实验报告1实验目的1.掌握可逆电池电动势的测量原理和电位差计的操作技术2.学会几种电极和盐桥的制备方法3.学会测定原电池电动势并计算相关的电极电势实验原理凡是能使化学能转变为电能的装置都称之为电池(或原电池)。
可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。
电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。
可逆电池的电动势可看作正、负两个电极的电势之差。
设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。
电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。
将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。
由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。
常用的参比电极有甘汞电极、银-氯化银电极等。
这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。
以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。
仪器和试剂SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和 KCl 溶液。
实验步骤1. 记录室温,打开SDC-II型数字式电子电位差计预热 5 分钟。
原电池电动势的测定实验报告

原电池电动势的测定实验报告原电池电动势的测定实验报告引言:电动势是描述电池或电源驱动电流流动的能力的物理量,对于电池的性能评估和电路设计有着重要的意义。
本实验旨在通过测定原电池的电动势,探究电池的内部特性并分析其性能。
实验目的:1. 测定原电池的电动势。
2. 分析原电池的内部特性。
实验原理:原电池是指由两种不同金属和它们的离子溶液构成的电池。
根据电化学原理,两种金属与其离子溶液之间的电位差会产生电动势。
实验中,我们将使用铜和锌作为金属极板,硫酸铜和硫酸锌作为离子溶液。
实验步骤:1. 准备工作:清洗铜和锌极板,确保其表面干净。
2. 将铜和锌极板分别插入硫酸铜和硫酸锌溶液中,使其完全浸泡。
3. 连接电路:将铜极板与锌极板分别与电流表和电阻相连。
4. 测定电流:打开电路开关,记录电流表示数。
5. 测定电动势:断开电路开关,用万用表分别测量铜极板和锌极板的电位差,并计算电动势。
实验数据:1. 电流测量结果:- 铜极板电流:0.25 A- 锌极板电流:0.15 A2. 电动势测量结果:- 铜极板电位差:0.8 V- 锌极板电位差:-0.4 V实验结果分析:根据实验数据,可计算原电池的电动势为:电动势 = 铜极板电位差 - 锌极板电位差= 0.8 V - (-0.4 V)= 1.2 V结论:本实验测定得到的原电池电动势为1.2 V。
通过实验数据分析可知,铜极板的电位高于锌极板,说明铜具有较强的氧化还原能力。
而电流测量结果显示,铜极板的电流大于锌极板,表明电流是由铜极板向锌极板流动的。
这与我们对原电池的认识相符。
实验总结:通过本实验,我们成功测定了原电池的电动势,并分析了其内部特性。
实验结果表明,原电池的电动势与金属极板的电位差有关,且电流是由高电位向低电位流动的。
本实验为我们深入了解电池的工作原理和性能提供了实验基础。
附注:本实验中测量的电动势仅为一个示例,实际电池的电动势可能会受到多种因素的影响,如温度、浓度等。
原电池电动势的测定实验报告

原电池电动势的测定实验报告一、实验目的1、掌握用对消法测定原电池电动势的原理和方法。
2、学会使用电位差计、检流计等仪器。
3、加深对可逆电池、可逆电极等概念的理解。
二、实验原理原电池是由两个“半电池”组成的,在半电池中进行的氧化还原反应是可逆的。
当原电池处于平衡态时,两个半电池的电极电势之差即为原电池的电动势。
在测量原电池电动势时,不能直接用伏特计来测量,因为伏特计与原电池接通后,整个电路中有电流通过,此时原电池不再处于可逆状态,所测量的电动势值不准确。
因此,需要采用对消法来测定原电池的电动势。
对消法的原理是在待测电池上并联一个方向相反、电动势大小相等的外加电源,这样待测电池中就没有电流通过,此时测量的外加电源的电动势就等于待测原电池的电动势。
三、实验仪器与试剂1、仪器电位差计检流计标准电池工作电池盐桥电极管烧杯等2、试剂01000mol/L CuSO₄溶液01000mol/L ZnSO₄溶液铜电极锌电极四、实验步骤1、组装电池将锌电极插入盛有 01000mol/L ZnSO₄溶液的电极管中,铜电极插入盛有 01000mol/L CuSO₄溶液的电极管中。
用盐桥将两个电极管连接起来,组成一个原电池:Zn|ZnSO₄(01000mol/L)‖CuSO₄(01000mol/L)|Cu2、校准电位差计根据标准电池的电动势值,对电位差计进行校准。
3、测量原电池电动势将组装好的原电池与电位差计连接,通过调节电位差计的旋钮,使检流计指针指零,此时电位差计上显示的数值即为原电池的电动势。
重复测量三次,取平均值。
五、实验数据记录与处理|测量次数|电动势(V)||||| 1 |____ || 2 |____ || 3 |____ |平均值:____根据能斯特方程,可以计算出理论电动势,将实验值与理论值进行比较,计算相对误差。
六、注意事项1、电极表面要处理干净,避免杂质影响电极反应。
2、盐桥内要充满饱和溶液,不能有气泡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 原电池电动势的测定及应用一、实验目的1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。
2.学会几种电极的制备和处理方法。
3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。
二、实验原理原电池由正、负两极和电解质组成。
电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。
电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。
从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系:G nFE ∆=- (9-1)式中G ∆是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -⋅);E 为电池的电动势。
所以测出该电池的电动势E 后,进而又可求出其它热力学函数。
但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。
在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。
原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。
由(9-1)式可推导出电池的电动势以及电极电势的表达式。
下面以铜-锌电池为例进行分析。
电池表示式为:符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。
当电池放电时, 负极起氧化反应: {}22()()2Zn Zn s Zn a e ++-+正极起还原反应: 22()2()Cu Cu a e Cu s ++-+电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++电池反应的吉布斯自由能变化值为:22lnCu Zn ZnCu a a G G RT a a ++∆=∆- (9-2)上述式中G ∆为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。
而在标态时,221Cu Zn a a ++==,则有:G G nFE ∆=∆=- (9-3)式中E 为电池的标准电动势。
由(9-1)至(9-1)式可得:22lnZn Cu a RT E E nF a ++=-(9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为:E ϕϕ+-=- (9-5)对铜-锌电池而言22,1ln 2CuCuCu RT F a ϕϕ+++=-(9-6) 22,1ln 2ZnZnZn RT F a ϕϕ++-=-(9-7) 式中2,CuCuϕ+和2,ZnZnϕ+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。
对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和平均活度系数之间有以下关系:21Zn a m γ+±= (9-8)22Cu a m γ+±= (9-9)γ±是离子的平均离子活度系数,其数值大小与物质浓度、离子的种类、实验温度等因数有关。
在电化学中,电极电势的绝对值至今无法测定,在实际测量中是以某一电极的电极电势作为零标准,然后将其它的电极(被研究电极)与它组成电池,测量其间的电动势,则该电动势即为该被测电极的电极电势。
被测电极在电池中的正、负极性,可由它与零标准电极两者的还原电势比较而确定。
通常将氢电极在氢气压力为101325Pa ,溶液中氢离子活度为1时的电极电势规定为零伏,即2,0H H ϕ+=,称为标准氢电极,然后与其它被测电极进行比较。
由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极,常用的参比电极有甘汞电极。
以上所讨论的电池是在电池总反应中发生了化学变化,因而被称为化学电池。
还有一类电池叫做浓差电池,这种电池在净作用过程中,仅仅是一种物质从高浓度(或高压力)状态向低浓度(或低压力)状态转移,从而产生电动势,而这种电池的标准电动势E 等于零伏。
例如电池33()(0.01000)(0.1000)()Cu s Cu mol dm Cu mol dm Cu s --|⋅||⋅|就是浓差电池的一种。
电池电动势的测量工作必须在电池可逆条件下进行,必须指出,电极电势的大小,不仅与电极种类、溶液浓度有关,而且与温度有关。
本实验是在实验温度下测得的电极电势T ϕ,由(9-6)式和(9-7)式可计算T ϕ。
为了比较方便起见,可采用下式求出298K 时的标准电极电势298K ϕ。
式中α、β为电极电势的温度系数。
对于Cu -Zn 电池来说:铜电极231(,),0.01610,0Cu Cu V K αβ+--=-⨯⋅=锌电极23162[,()],0.10010,0.6210Zn Zn Hg V K V K αβ+----=⨯⋅=⨯⋅ 三、仪器和试剂电位差计(UJ-25) 1台检流计(AC-15/4) 1台标准电池 1只 饱和甘汞电极 1只铜、锌电极 各1支饱和KCl 100ml 硫酸锌(0.1M ) 100ml硫酸锌(0.01M )100ml 硫酸铜(0.1M )100ml硫酸铜(0.01M ) 100ml 四、实验步骤1.电池组合将饱和KCl 溶液注入50mL 的小烧杯内,制盐桥,再将锌电极和铜电极 置于小烧杯内,即成Cu -Zn 电池:电池装置如图9-1所示。
同法组成下列电池: 3.电动势的测定(1)按照电位差计电路图,接好电动势测量线路。
(2)根据标准电池的温度系数,计算实验温度下的标准电池电动势。
以此对电位差计进行标定。
(3)分别测定以上电池的电动势。
五、数据记录及处理1、饱和甘汞电极的电势 T=20.5℃=293.5K =0.2449V2、根据g l g (l 1000.0(2214H C H KC L mol ZnSO Zn 饱和))-•,电动势E=1.0550V Zn 电极铜电极盐桥图9-1 Cu-Zn 电池装置示意图3、根据u mol 1000.0(u l l g g 1422C L SO C KC C H H )(饱和)-•,电动势E=0.0512V 4、Zn-Cu 电池的理论电动势E 实=1.1044V附录 SDC -Ⅲ数字电位差计一、SDC-Ⅲ数字电位差计的特点一体设计:将UJ 系列电位差计、光电检流计、标准电池等集成一体,体积小,重量轻,便于携带。
数字显示:电位差值七位显示,数值直观清晰、准确可靠。
内外基准:即可使用内部基准进行测量,又可外接标准作基准进行测量,使用方便灵活。
误差较小:保留电位差计测量功能,真实体现电位差计对检测误差微小的优势。
性能可靠:电路采用对称漂移抵消原理,克服了元器件的温漂和时漂,提高测量的准确度。
二、使用条件电源:~220V ±10%;50Hz环境:温度-10℃~40℃;湿度≤85% 三、使用方法 1.开机用电源线将仪表后面板的电源插座与~220V 电源连接,打开电源开关(ON ),预热15分钟。
2.以内标或外标为基准进行测量(1)将被测电动势按“+、-”极性与测量端子对应连接好。
(2)采用“内标”校验时,将“测量选择”至于“内标”位置,将100位旋置于1,其余旋钮和补偿旋钮逆时针旋到底,此时“电位指标”显示为“1.00000V ”,待检零指示数值稳定后,按下“采零”键,此时,检零指示应显示“0000”。
(3)采用“外标”校验时,将外标电池的“+、-”极性按极性与“外标”端子接好,将“测量选择”置于“外标”,调节“100~10-4”和补偿电位器,使“电位指示”数值与外标电池数值相同,待“检零指示”数值稳定之后,按下“采零”键,此时“检零指示”为“0000”。
(4)仪器用“内标”或“外标”,校验完毕后将被测电动势按“+、-”极性与“测量”端子接好,将“测量选择”置于“测量”,将“补偿”电位器逆时针旋到底,调节“100~10-4”五个旋钮,使“检零指示”为“-”,且绝对值最小时,再调节补偿电位器,使“检零指示”为“0000”,此时,“电位指示”数值即为被测电动势的大小。
3.关机:首先关闭电源开关(OFF),然后拔下电源线。
四、注意事项1.置于通风、干燥、无腐蚀性气体的场合。
2.不宜放置在高温环境,避免靠近发热源如电暖气或炉子等。
3.为了保证仪表工作正常,请勿打开机盖进行检修,更不允许调整和更换元件,否则将无法保证仪表测量的准确度。
4.若波段开关旋纽松动或旋纽指示错位,可打开旋纽盖,用备用呆扳手对准槽口拧紧即可。