图像的灰度变换及代数运算
图像灰度变换原理

图像灰度变换原理
图像灰度变换原理是指通过对图像的像素点进行灰度值的变换,从而改变图像的亮度和对比度。
灰度变换可以通过增加或减少像素值来改变图像的灰度级,并根据需求来调整图像的亮度和对比度。
灰度变换可以用以下数学公式表示:
g(x, y) = T(f(x, y))
其中,f(x, y)表示输入图像的灰度级,g(x, y)表示输出图像的
灰度级,T表示灰度变换函数。
常见的灰度变换函数有线性变换、非线性变换和直方图均衡化等。
线性灰度变换函数是最简单的一种灰度变换方式,通过对输入图像的每一个像素点应用一个线性方程来实现灰度的线性变换。
线性变换可以改变图像的对比度和亮度。
常见的线性灰度变换函数有平方根变换、指数变换和对数变换等。
非线性灰度变换函数则是通过对输入图像的每一个像素点应用一个非线性方程来实现灰度的非线性变换。
非线性变换可以实现更加复杂的灰度调整,例如增强图像的细节或者减少图像的噪声。
常见的非线性灰度变换函数有伽马变换和分段线性变换等。
直方图均衡化是一种特殊的灰度变换方法,通过对输入图像的
灰度级进行重新分配,使得输出图像的灰度级分布更加均匀。
直方图均衡化可以提高图像的对比度,使得图像的细节更加清晰。
总的来说,图像灰度变换原理是通过对图像的像素点进行灰度值的变换,来改变图像的亮度和对比度。
不同的灰度变换函数可以实现不同的灰度调整效果,根据需求选择合适的灰度变换方法可以获得满足要求的图像效果。
数字灰度图像的基本运算处理 正文讲解

1前言介绍一种用可视化数值计算软件MATLAB实现的数字图像处理系统平台,系统使用MATLAB中提供的GUI设计系统可视化的用户界面,下拉式的菜单方便用户选择对图像的处理。
用户可以随意选择要处理的图片。
但是该系统只支持灰度图片,可实现内容主要包括灰度图像的代数运算、几何运算。
基于数字图像处理的一些基本原理,利用MATLAB 设计程序进行对灰度图像的处理。
有部分处理运算有很多种方法,我选择了最简单、最明了的方法。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
二维图像进行均匀采样,就可以得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的了。
随着计算机的发展,图像处理技术在许多领域得到了广泛应用,用于图像处理的软件也很多,如PHOTOSHOP、PAINTSHOP、GIMP、SaperaProcessing、MATLAB等,其中大部分软件都是基于广告策划和图像修饰处理而设计的应用软件,进行图像处理时并不是很方便。
而MATLAB(矩阵实验室) 它在矩阵运算上有自己独特的特点,在矩阵运算处理具有很大的优势,因此用MATLAB处理数字图像非常的方便。
不仅如此,MATLAB提供了丰富的图形命令和图形函数,而且其面向对象的图形系统具有强大的用户界面(GUI)生成能力。
这样,用户就可以充分利用系统提供的 GUI 特性,编写自己需要的图形界面,从而可以高效地进行图像处理。
MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP、GIF、HDF、JPEG、PCX、PNG、TIFF、XWD、CUR、ICO等图像文件格式的读,写和显示。
图像灰度变换实验报告

实验2a 图像的灰度变换一、实验目的:学会用Matlab软件对图像进行运算和灰度变换。
二、实验内容:用+、-、*、/、imabsdiff、imadd、imcomplment、imdivide、imlincomb、immultiply、imsubtract和imadjust等函数生成各类灰度变换图像。
三、实验相关知识1、代数运算两幅图像之间进行点对点的加、减、乘、除运算后得到输出图像。
我们可以分别使用MA TLAB的基本算术符+、-、*、/来执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型(命令函数为double())。
为了更方便对图像进行操作,图像处理工具箱中也包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。
如下所示:imabsdiff:计算两幅图像的绝对差值imadd:两个图像的加法imcomplment:一个图像的补imdivide:两个图像的除法imlincomb:计算两幅图像的线性组合immultiply:两个图像的乘法imsubtract:两个图像的减法使用图像处理工具箱中的图像代数运算函数无需再进行数据类型间的转换,这些函数能够接受uint8和uint16数据,并返回相同格式的图像结果。
代数运算的结果很容易超出数据类型允许的范围。
图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。
2、灰度变换点运算也称为灰度变换,是一种通过对图像中的每个像素值进行运算,从而改善图像显示效果的操作。
对于特定变换函数f的灰度变换,用户可以利用MATLAB强大的矩阵运算能力,对图像数据矩阵调用各种MATLAB计算函数进行处理。
需要注意的是由于MATLAB不支持uint8类型数据的矩阵运算,所以首先要将图像数据转换为双精度类型,计算完成后再将其转换为uint8类型(命令为uint8( ))。
Python图像运算之图像灰度线性变换详解

Python图像运算之图像灰度线性变换详解⽬录⼀.灰度线性变换⼆.图像灰度上移变换三.图像对⽐度增强变换四.图像对⽐度减弱变换五.图像灰度反⾊变换六.总结⼀.灰度线性变换图像的灰度线性变换是通过建⽴灰度映射来调整原始图像的灰度,从⽽改善图像的质量,凸显图像的细节,提⾼图像的对⽐度。
灰度线性变换的计算公式如(12-1)所⽰:该公式中DB表⽰灰度线性变换后的灰度值,DA表⽰变换前输⼊图像的灰度值,α和b为线性变换⽅程f(D)的参数,分别表⽰斜率和截距[1-4]。
当α=1,b=0时,保持原始图像当α=1,b!=0时,图像所有的灰度值上移或下移当α=-1,b=255时,原始图像的灰度值反转当α>1时,输出图像的对⽐度增强当0<α<1时,输出图像的对⽐度减⼩当α<0时,原始图像暗区域变亮,亮区域变暗,图像求补如图12-1所⽰,显⽰了图像的灰度线性变换对应的效果图。
⼆.图像灰度上移变换该算法将实现图像灰度值的上移,从⽽提升图像的亮度。
DB=DA+50具体实现代码如下所⽰。
由于图像的灰度值位于0⾄255区间之内,所以需要对灰度值进⾏溢出判断。
# -*- coding: utf-8 -*-# By:Eastmountimport cv2import numpy as npimport matplotlib.pyplot as plt#读取原始图像img = cv2.imread('luo.png')#图像灰度转换grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#获取图像⾼度和宽度height = grayImage.shape[0]width = grayImage.shape[1]#创建⼀幅图像result = np.zeros((height, width), np.uint8)#图像灰度上移变换 DB=DA+50for i in range(height):for j in range(width):if (int(grayImage[i,j]+50) > 255):gray = 255else:gray = int(grayImage[i,j]+50)result[i,j] = np.uint8(gray)#显⽰图像cv2.imshow("Gray Image", grayImage)cv2.imshow("Result", result)#等待显⽰cv2.waitKey(0)cv2.destroyAllWindows()其输出结果如图12-2所⽰,图像的所有灰度值上移50,图像变得更⽩了。
数字图像处理-图像基本运算

数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
1_代数运算可以分为哪几类,各有什么意义?

1_代数运算可以分为哪⼏类,各有什么意义?
代数运算可以分为哪⼏类,各有什么意义?
代数运算可以分为对两幅或两幅以上输⼊图像的加、减、乘、除运算四⼤类
加法运算通常⽤于平均值降噪等多种场合。
图像相加⼀般⽤于同⼀场景的多幅图像求平均,以便有效降低加性噪声。
减法运算常⽤于检测变化及运动的物体,图像减法运算⼜称为图像差分运算。
在可控环境下,或者在很短的时间内,可以认为背景是固定不变的,可以直接使⽤差分运算检测变化或者运动的物体。
简单的乘法运算,可以⽤来改变图像的灰度级,实现灰度级变换。
乘法运算也可以⽤来遮住图像的某些部分,其典型应⽤是⽤于获得掩模图像。
对于要保留下来的区域,掩模图像的值置为1,⽽在需要被抑制掉的区域,掩模图像的值置为0。
此外,由于时间域的卷积和相关运算与频率域的乘积运算对应,所以乘法运算有时也被⽤来作为⼀种技巧来实现卷积和相关处理。
简单的除法运算可⽤于改变图像的灰度级。
除法运算的典型运⽤是⽐值图像处理。
例如,除法运算可以⽤于校正成像设备的⾮线性影响,在特殊形态的图像(如以CT为代表的医学图像)处理中被⽤到。
此外,除法运算还经常⽤于消除图像数字化设备随空间所产⽣的影响。
图像处理技术中的灰度变换算法解析

图像处理技术中的灰度变换算法解析图像处理技术在如今的数字时代扮演着至关重要的角色。
从电视和电影制作到医学图像分析,图像处理技术已经成为了各行各业的关键技术。
其中一个重要的图像处理技术就是灰度变换算法,它被广泛应用于图像增强、对比度调整和直方图均衡化等领域。
灰度变换算法是一种将输入图像的灰度级转换为不同灰度级的过程。
它的核心思想是通过映射函数来改变图像中各个像素点的灰度级别。
下面我们将介绍几种常见的灰度变换算法。
线性变换是最简单的灰度变换算法之一。
它通过线性映射函数来实现灰度级的变换。
具体来说,线性变换将输入图像中的每个像素点,根据灰度级的线性变化关系进行映射。
这种算法的一个常见应用是对比度增强,通过扩展原始图像的灰度范围,使得图像更加锐利和清晰。
伽玛变换是另一种常见的灰度变换算法。
它通过非线性映射函数来改变图像的对比度。
与线性变换不同的是,伽玛变换在不同的灰度级别上应用不同的指数函数。
这种算法通常用于对高动态范围图像进行处理,以提高细节的可见性。
例如,在医学图像处理中,通过使用伽玛变换可以突出显示微弱的病灶。
直方图均衡化是一种常见的增强图像对比度的灰度变换算法。
直方图均衡化的目标是使原始图像的灰度级分布更加均匀。
它通过重新分布图像的灰度级来增强图像的对比度。
具体来说,直方图均衡化通过计算原始图像的累积分布函数,然后将其映射到均匀分布函数来实现。
这种算法常用于改善图像细节和增强图像中的低对比度区域。
除了上述算法,还有其他一些特殊的灰度变换算法。
例如,阈值变换算法可以将图像二值化,将像素的灰度级变为只有两个值的二值图像。
这种算法在物体检测和分割中被广泛应用。
反转变换算法可以颠倒图像的亮度级别,使图像的深色变为浅色,浅色变为深色。
在实际应用中,选择合适的灰度变换算法非常重要。
要根据具体的应用需求和图像特征来选择最合适的算法。
同时,还可以使用组合灰度变换算法来实现更加复杂的图像处理效果。
无论是简单的线性变换还是复杂的直方图均衡化,灰度变换算法都为图像处理和分析提供了强大的工具。
数字逻辑 灰度变换

数字逻辑灰度变换数字逻辑中的灰度变换数字逻辑是计算机科学中的一个重要分支,它涉及到数字电路、逻辑门、布尔代数等知识。
在数字逻辑中,灰度变换是一种常见的图像处理方法,用于调整图像的亮度和对比度,使图像更加清晰和易于观察。
灰度变换是将图像中的像素值进行线性或非线性变换,从而改变图像的亮度和对比度。
在数字图像处理中,通常将灰度值定义为0到255之间的整数,其中0表示黑色,255表示白色。
灰度变换可以用以下公式表示:g(x,y) = T[f(x,y)]其中,f(x,y)表示原始图像中像素点的灰度值,g(x,y)表示变换后的灰度值,T是变换函数。
灰度变换的常见类型包括线性变换、对数变换、伽马变换等。
线性变换是最基本、最常见的灰度变换,它将原始图像中的灰度值映射到一个新的灰度级范围中,常用的线性变换有拉伸变换、压缩变换、反转变换等。
对数变换是一种非线性变换,它能够将图像中亮度较低的区域放大,以便更好地观察图像中的细节。
对数变换的公式为:g(x,y) = c × log[1 + f(x,y)]其中,c是常数,f(x,y)表示原始图像中像素点的灰度值。
伽马变换也是一种非线性变换,它能够增强图像中的对比度和细节,并且可以根据需求进行调整。
伽马变换的公式为:g(x,y) = A × f(x,y)^γ其中,A和γ是常数,f(x,y)表示原始图像中像素点的灰度值。
除了上述常见的灰度变换类型之外,还有一些特殊的灰度变换,如直方图均衡化、直方图匹配等。
直方图均衡化是一种可以提高图像对比度和亮度的方法,它能够使图像中的灰度级分布更加均匀。
直方图匹配是一种将图像的灰度级映射到一个指定的灰度范围的方法,以便更好地观察和分析图像。
总的来说,灰度变换是数字图像处理中的一项基本技术,它能够改善图像的质量,并且可以根据需求进行调整。
在实际应用中,我们需要根据具体的需求选择合适的灰度变换方法,并且需要进行参数调整和优化,以确保处理效果最佳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字图像处理》实验报告
学院计算机科学与技术学院
年级2013级
专业计算机科学与技术
学号2013434026
姓名__ _ 许林青_____ _____
日期_________2015.10.14____________
实验四图像的灰度变换及代数运算
一、实验目的
1、学习使用Matlab中的图像处理工具箱;
2、使用Matlab中的图像处理工具箱实现图像文件的读、写和显示;
3、使用Matlab中的图像处理工具箱实现获取图像文件的基本信息。
二、实验内容
1、利用Matlab的Help功能,查找并学会使用图像处理工具箱中的如下命令或函数:(1)图像的剪切imcrop()
(2)图像的加imadd()
(3)图像的减imsubtract()
(4)图像的乘immultiply()
(4)图像的除imdivide()
2、编程实现:
(1)读入2幅图像并显示;
>> I=imread('H:\数字图像\图片1.jpg');
subplot(211);
imshow(I)
J=imread('H:\数字图像\图片2.jpg');
subplot(212);
imshow(J);
(2)将2幅图像剪切成相同大小;
I=imread('I:\数字图像\图片1.jpg');
J=imread('I:\数字图像\图片2.jpg');
I1=imcrop(I,[100, 100, 100, 100])
J1=imcrop(J,[100, 100, 100, 100])
figure(1);
subplot(211);
imshow(I1);
subplot(212);
imshow(J1);
h=imadd(I1,J1)
(3)将2幅图像叠加并显示,灰度变换(变暗)后再显示;
I=imread('I:\数字图像\图片1.jpg');
J=imread('I:\数字图像\图片2.jpg');
I1=imcrop(I,[100, 100, 100, 100])
J1=imcrop(J,[100, 100, 100, 100])
figure(1);
subplot(211);
imshow(I1);
subplot(212);
imshow(J1);
h=imadd(I1,J1)
figure(3), imshow(h);
A=rgb2gray(h); imshow(h);
figure,imshow(A)
(4)从叠加图像中恢复原来2幅图像并显示;
I=imread('I:\数字图像\图片1.jpg');
J=imread('I:\数字图像\图片2.jpg');
I1=imcrop(I,[100,100,100,100])
J1=imcrop(J,[100,100,100,100])
K=imadd(I1/2,J1/2);
subplot(221)
imshow(K);
I2=imsubtract(K,J1/2);
subplot(223)
imshow(I2);
J2=imsubtract(K,I1/2)
subplot(224)
imshow(J2)
4、思考:
(1)2幅图像大小不同能否直接相加?
答:不能。
(2)用矩阵加和用imadd()结果是否一样?
答:一样,imadd()函数将相应矩阵X中的元素与相应矩阵 Y 中的元素进行叠加,
返回一个叠加结果作为输出数列 Z 中对应的元素,与矩阵相加相同。
但imadd不
支持3张及以上图。
(3)叠加后的图像和2幅原图的颜色一样吗?为什么?
答:不一样,超出255的部分自动处理。
(4)从叠加图像中恢复出的2幅图像和原图比有变化吗?为什么?
答:图像变暗,清晰度降低。