2019七年级下册数学期末考试试题(含答案)

合集下载

北京市东城区景山学校2019-2020学年七年级(下)期末数学试卷(含解析)

北京市东城区景山学校2019-2020学年七年级(下)期末数学试卷(含解析)

2019-2020学年北京市东城区景山学校七年级(下)期末数学试卷一.选择题(共8小题)1.下列各组二次根式中,同类二次根式的是()A.B.C.D.2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB=()A.2B.C.D.1.53.能使有意义的实数x的值有()A.0个B.1个C.2个D.3个4.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则等腰三角形的腰长为()A.2cm B.8cmC.2cm或8cm D.以上答案都不对5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.若三个正方形的面积如图所示,则正方形A的面积为()A.6B.36C.64D.87.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.8.化简二次根式的结果是()A.B.C.D.二.填空题(共10小题)9.在实数范围内分解因式:3a2﹣9=.10.若等腰三角形的两条边分别长2,5,则此三角形的周长是.11.如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE=7cm,AE=5cm,则AC=cm.12.已知直角三角形的两条直角边的长度分别是6cm和8cm,则第三边上的高为.13.关于x的分式方程的解为正数,则m的取值范围是.14.如图,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=cm.15.有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为尺.16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是.17.如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,则AC=,∠ECD=.18.如图,线段OA的长为2,它的一个端点O是数轴的原点,OA与数轴正半轴的夹角为45度,以OA为一边作等腰三角形OAB,使项点B在数轴上,则数轴上点B所表示的数是.三.解答题19.(1);(2);(3);(4);(5);(6)()();(7)(2﹣)(2+);(8)()2.20.解方程:21.解方程:+1=22.下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….(1)假如你也在课堂中,你的意见如何,为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)23.已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.24.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.25.“五•一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km,小东家到公园的路程为12km,小明骑车的平均速度比小东快3.5km/h,结果两人同时到达公园.求小东从家骑车到公园的平均速度.26.如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K 是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.2019-2020学年北京市东城区景山学校七年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题)1.下列各组二次根式中,同类二次根式的是()A.B.C.D.【分析】将选项中的二次根式化为最简,然后根据同类二次根式的被开方数相同即可得出答案.【解答】解:A、与3的被开方数不同,不是同类二次根式,故本选项错误;B、3与的被开方数不同,不是同类二次根式,故本选项错误;C、=,=,被开方数相同,是同类二次根式,故本选项正确;D、=2,=,被开方数不同,不是同类二次根式,故本选项错误;故选:C.2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,则AB=()A.2B.C.D.1.5【分析】根据含30°角的直角三角形的性质定理得出AB=2BC,代入求出即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC,∵BC=1,∴AB=2,故选:A.3.能使有意义的实数x的值有()A.0个B.1个C.2个D.3个【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵二次根式有意义,∴﹣x2≥0,解得:x=0,即符合题意的只有一个值.故选:B.4.等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.则等腰三角形的腰长为()A.2cm B.8cmC.2cm或8cm D.以上答案都不对【分析】设腰长为x,得出方程(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,求出x 后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故选:B.5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.6.若三个正方形的面积如图所示,则正方形A的面积为()A.6B.36C.64D.8【分析】根据算术平方根的概念分别求出两个正方形的边长,根据勾股定理求出正方形A 的边长,求出正方形A的面积.【解答】解:面积为100的正方形的边长为10,面积为64的正方形的边长为8,由勾股定理得,正方形A的边长==6,∴正方形A的面积为36,故选:B.7.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等.若设甲班每天植树x棵,则根据题意列出方程是()A.B.C.D.【分析】设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,根据甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,列方程即可.【解答】解:设甲班每天植树x棵,则乙班每天植树(x﹣5)棵,由题意得,=.故选:D.8.化简二次根式的结果是()A.B.C.D.【分析】根据二次根式找出隐含条件a+2≤0,即a≤﹣2,再化简.【解答】解:若二次根式有意义,则﹣≥0,﹣a﹣2≥0,解得a≤﹣2,∴原式==.故选:B.二.填空题(共10小题)9.在实数范围内分解因式:3a2﹣9=3(a+)(a﹣).【分析】首先提取公因式3,进而利用平方差公式进行分解即可.【解答】解:3a2﹣9=3(a2﹣3)=3(a+)(a﹣).故答案为:3(a+)(a﹣).10.若等腰三角形的两条边分别长2,5,则此三角形的周长是10+2.【分析】分类讨论即可解决问题.【解答】解:当等腰三角形腰为2,底为5时,等腰三角形周长为:2+2<5,不能构成三角形;当等腰三角形腰为5,底为2时,等腰三角形周长为:5+5+2=10+2,故答案为:10+2.11.如图所示,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于E,若DE=7cm,AE=5cm,则AC=12cm.【分析】由CD是角平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE,从而求出AC的长.【解答】解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD,又∵DE∥BC,∴∠BCD=∠EDC.∴∠ACD=∠EDC.∴DE=CE.∴AC=AE+CE=5+7=12.故填12.12.已知直角三角形的两条直角边的长度分别是6cm和8cm,则第三边上的高为 4.8cm.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,∴直角三角形斜边上的高为4.8cm.故答案为4.8cm.13.关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.14.如图,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=12cm.【分析】首先连接AD,由DE垂直平分AC,可得AD=CD,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠DAC=30°,继而求得AD与CD的长,则可求得BD 的长,继而求得答案.【解答】解:连接AD,∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AC,∴AD=CD,∴∠DAC=∠C=30°,∴AD=CD=2DE=2×2=4(cm),∴∠BAD=∠BAC﹣∠DAC=90°,∴BD=2AD=8(cm),∴BC=BD+CD=12(cm).故答案为:12.15.有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为13尺.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故答案为:1316.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是10.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为:10.17.如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,则AC=9cm,∠ECD=60°.【分析】根据等边三角形性质得出AB=AC,AD=AE,∠BAC=∠EAD=∠B=60°,求出∠BAD=∠CAE,根据SAS证△BAD≌△CAE,推出∠ACE=∠B=60°,BD=CE=15cm,求出BC和∠ECD即可.【解答】解:∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=∠B=60°,∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,BD=CE=15cm,∴BC=BD﹣CD=15cm﹣6cm=9cm,∵△ABC是等边三角形,∴AC=BC=9cm,∵∠B+∠BAC=∠ACD=120°,∠ACE=∠B=60°,∴∠ECD=60°,故答案为:9cm,60°18.如图,线段OA的长为2,它的一个端点O是数轴的原点,OA与数轴正半轴的夹角为45度,以OA为一边作等腰三角形OAB,使项点B在数轴上,则数轴上点B所表示的数是﹣2或或2或2.【分析】如图,在数轴上取点B1,B2,B3,B4,使OB1=OA=2,OB3=OA=2,AB4=OA=2,进而可得数轴上点B所表示的数.【解答】解:如图,在数轴上取点B1,B2,B3,B4,使OB1=OA=2,OB3=OA=2,AB4=OA=2,根据题意可知:OA=2,∠AOB2=45°,作AB2⊥x轴于点B2,则OB2=AB2=,∴OB4=2,∴数轴上点B所表示的数是:﹣2,,2,2.故答案为:﹣2或或2或2.三.解答题19.(1);(2);(3);(4);(5);(6)()();(7)(2﹣)(2+);(8)()2.【考点】6E:零指数幂;6F:负整数指数幂;76:分母有理化;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)根据二次根式的除法可以解答本题;(2)根据二次根式的加减法可以解答本题;(3)根据二次根式的的乘法和减法可以解答本题;(4)先化简,然后合并同类二次根式即可解答本题;(5)根据负整数指数幂、零指数幂和分母有理化可以解答本题;(6)根据二次根式的乘法和加减法可以解答本题;(7)根据平方差公式和完全平方公式可以解答本题;(8)根据完全平方公式可以解答本题.【解答】解:(1)=2×÷=2×=;(2)=4﹣+=4﹣+3﹣2=+1;(3)=﹣3﹣=﹣;(4)==﹣;(5)=+1+﹣1=+1+﹣1=2;(6)()()=2﹣4﹣3+=3﹣7;(7)(2﹣)(2+)=[2﹣()][2+()]=4﹣()2=4﹣(3﹣2+5)=4﹣8+2=﹣4+2;(8)()2=2+﹣2+2﹣=2+﹣2+2﹣=2.20.解方程:【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.21.解方程:+1=【考点】B3:解分式方程.【专题】11:计算题.【分析】本题考查解分式方程的能力,因为x2﹣1=(x+1)(x﹣1),所以可得最简公分母为(x+1)(x﹣1).去分母后解整式方程即可,注意检验.【解答】解:方程两边同乘以(x2﹣1),得x2﹣4x+x2﹣1=2x(x﹣1),2x2﹣4x﹣1=2x2﹣2x,﹣2x=1,∴x=﹣.经检验:x=﹣是原方程的解,∴原方程的解为x=﹣.22.下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….(1)假如你也在课堂中,你的意见如何,为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)【考点】KH:等腰三角形的性质.【专题】21:阅读型;32:分类讨论.【分析】乍一看两个同学说的都对,但是细分析我们就能看出两个人的回答都不全面,而正确的应该是两者的结合,即结果有两种情况.通过此题教我们养成考虑问题要全面考虑的好习惯.【解答】答:(1)上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.理由如下:①当∠A是顶角时,设底角是α.∴30°+α+α=180°,α=75°.∴其余两角是75°和75°.②当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°.∴其余两角分别是30°和120°.(2)感受为:解题时,思考问题要全面,有的题目要进行分类讨论,分类时要做到不重不漏.23.已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.【考点】KI:等腰三角形的判定.【专题】14:证明题.【分析】由∠1=∠2,∠3=∠4,根据三角形外角的性质,易证得∠B=∠C,然后由等角对等边,证得:△ABC是等腰三角形.【解答】证明:∵∠B=∠3﹣∠1,∠C=∠4﹣∠2,又∵∠1=∠2,∠3=∠4,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.24.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.【考点】KF:角平分线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】延长AD交BC于F,由AD是∠BAC的平分线,∠B=∠EAC,易证得∠DFE =∠DAE,可得AE=FE,又由ED⊥AD,根据三线合一的性质,即可证得ED平分∠AEB.【解答】证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠FDE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.25.“五•一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km,小东家到公园的路程为12km,小明骑车的平均速度比小东快3.5km/h,结果两人同时到达公园.求小东从家骑车到公园的平均速度.【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设小东从家骑车到公园的平均速度为xkm/h,,解得,x=14,经检验x=14是原分式方程的解,答:小东从家骑车到公园的平均速度14km/h.26.如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K 是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【考点】KY:三角形综合题.【专题】152:几何综合题;67:推理能力.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,∵∠MFN=∠BFC,∴∠MFN=∠Q,同理,∠NMF=∠APQ,∴∠MFN=∠FMN,∴NM=NF;(3)连接CE,∵AC⊥PQ,PC=CQ,∴AP=AQ,∴∠P AC=∠QAC,∵BD⊥AQ,∴∠DBQ+∠Q=90°,∵∠Q+∠CAQ=90°,∴∠CAQ=∠QBD,∴∠P AC=∠FBC,∵AC=BC,∠ACP=∠BCF,∴△APC≌△BFC(AAS),∴CP=CF,∵AM=CP,∴AM=CF,∵∠CAB=∠CBA=45°,∴∠EAB=∠EBA,∴AE=BE,∵AC=BC,∴直线CE垂直平分AB,∴∠ECB=∠ECA=45°,∴∠GAM=∠ECF=45°,∵∠AMG=∠CFE,∴△AGM≌△CEF(ASA),∴GM=EF,∵BN=BE+EF+FN=AE+GM+MN,∴BN=AE+GN.。

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

2019-2020学年四川省成都市新都区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年四川省成都市新都区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年四川省成都市新都区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. m3⋅m3=2m3B. 5m2n−4mn2=mnC. (m+1)(m−1)=m2−1D. (m−n)2=m2−mn+n22.∠A的补角为125°12′,则它的余角为()A. 54°18′B. 35°12′C. 35°48′D. 以上都不对3.如图,AB//CD,∠B=75°,∠E=27°,则∠D的度数为()A. 45°B. 48°C. 50°D. 58°4.直径为0.00000008米,用科学记数法表示为()米.A. 0.8×10−7B. 8×10−8C. 8×10−9D. 8×10−75.下列剪纸作品中,不是轴对称图形的是()A. B. C. D.6.已知x a=2,x b=−3,则x3a−2b=()A. 23B. 89C. −23D. −897.温度(℃)−20−100102030声速(m/s)318324330336342348下列说法中,错误的是().A. 在这个变化中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为20℃时,声音5s可以传播1740mD. 当温度每升高10℃,声速增加6m/s8.下列语句正确的是()A. 一个角小于它的补角B. 相等的角是对顶角C. 同位角互补,两直线平行D. 同旁内角互补,两直线平行9.下列事件中,属于不确定事件的是()A. 科学实验,前100次实验都失败了,第101次实验会成功B. 投掷一枚骰子,朝上面出现的点数是7点C. 太阳从西边升起来了D. 用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形10.如图所示,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,∠1=()度.A. 55B. 65C. 70D. 75二、填空题(本大题共9小题,共36.0分)11.已知:a+b=2,a2−b2=12,那么a−b=______ .12.若4x2−kx+9(k为常数)是完全平方式,则k=______.13.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红,那么袋中的球共有______个.球的概率为1314.如图,AB//CD,一副三角板按如图所示放置,∠AEG=30∘.则∠HFD度数为.15.已知2x+5y−3=0,则4x·32y的值为________.16.+已知(x+1)(x+q)的结果中不含x的一次项,则常数q=.17.如图,四边形ABCD的对角线AC、DB交于点E,AB=CD,AC=DB,图中全等的三角形共有______对.×1×2218.已知:13=1=14×22×3213+23=9=14×32×4213+23+33=36=1413+23+33+43=100=1×42×524 …根据上述规律计算:13+23+33+⋯+193+203=______ .19.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,那么S3=______ ,则S n=______ .(用含n的式子表示)三、解答题(本大题共9小题,共84.0分)20.计算:(1)(−2)0+(−2)2−(−2)−2.(2)a3⋅a2⋅a−a7÷a+(−2a2)3.(3)1013×923−(−3)2017⋅(13)2019.(4)(a−b+2)(a+b−2).21.计算:(1)[x(x2y2−xy)−y(x2−x3y)]÷3x2y(2)(x−1)(2x+1)−2(x−5)(x+2)22.已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.23.25.如图,在长度为1个单位长度的小正方形组成的大正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为_________________;(3)△ABC的周长为_________________;(保留根号)(4)在直线l上找一点P,使PB+PC的长最短.(保留痕迹)24.某种汽车油箱可储油60升,加满油并开始行驶,油箱中的余油量y(升)与行驶里程x(千米)之间的关系是一次函数关系(如图).(1)求y关于x的函数表达式(不要求写出自变量的取值范围);(2)加满一箱油汽车可行驶多少千米?25.如图,在△ABC中,AD是∠BAC的平分线,交BC于点D,CE是AB边上的高,若∠B=30°,∠BDA=130°,求∠ACE的度数.26.当k为何值时,关于x,y的多项式x2+2kxy−3y2−6xy−y中不含xy项?27.(1)你能求出(a−1)(a99+a98+a97+⋯+a2+a+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情况入手,分别计算下列各式的值:(a−1)(a+1)=_________,(a−1)(a2+a+1)=_________,(a−1)(a3+a2+a1)=_________,…由此我们可得到:(a−1)(a99+a98+a97+⋯+a2+a+1)=_________;(2)利用(1)中的结论,完成下列计算:①2199+2198+2197+⋯+22+2+1;②(−2)49+(−2)48+(−2)47+⋯+(−2)+1.28.如图,在△ABC中,点D在边AB上,点E在边AC上,CE=BD,连接CD,BE,BE与CD相交于点F.(1)如图1,若△ACD为等边三角形,且CE=DF,求∠CEF的度数;(2)如图2,若AC=AD,求证:EF=FB;(3)如图3,在(2)的条件下,若∠CFE=45°,△BCD的面积为4,求线段CD的长.-------- 答案与解析 --------1.答案:C解析:【分析】本题考查了同底数幂乘法,合并同类项,平方差公式和完全平方公式,根据它们各自的法则分别判断即可.【解答】解:A.根据同底数幂乘法法则,m3⋅m3=m6,故A错误;B.5m2n−4mn2不能合并,故B错误;C.根据平方差公式可得(m+1)(m−1)=m2−1,故C正确;D.根据完全平方公式可得(m−n)2=m2−2mn+n2,故D错误.故选C.2.答案:B解析:解:∵∠A=180°−125°12′,∴∠A的余角为90°−∠A=90°−(180°−125°12′)=125°12′−90°=35°12′.故选:B.两角互补和为180°,互余和为90°,先求出∠A,再用90°−∠A即可解出本题.此题考查的是角的性质,两角互余和为90°,互补和为180°.3.答案:B解析:【分析】此题考查平行线的性质,关键是根据平行线的性质解答.根据平行线的性质解答即可.【解答】解:如图,∵AB//CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75°−27°=48°,故选:B.4.答案:B解析:【分析】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000008=8×10−8,故选:B.5.答案:D解析:解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.答案:B解析:解:∵x a=2,x b=−3,∴x3a−2b=(x a)3÷(x b)2=8÷9=8.9故选:B.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.7.答案:C解析:【分析】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324−318=6(m/s),330−324=6(m/s),336−330=6(m/s),342−336=6(m/s),348−342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选C.8.答案:D解析:解:A、一个角和它的补角的大小没有关系,故错误;B、相等的角不一定是对顶角,故错误;C、同位角相等,两直线平行,故错误;D正确;故选:D.根据补角的定义即可判断A;根据对顶角的定义即可判断B;根据平行线的判定方法即可判断C、D.本题考查角互补的概念:和为180度的两个角互为补角.同时考查了平行的判定方法,解题的关键是熟记定义.9.答案:A解析:[分析]根据事件发生的可能性大小判断相应事件的类型即可.[详解]解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选:A.[点睛]本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.答案:C解析:解:∵四边形ABCD为长方形,∴AD//BC.∴∠DEF=∠EFG=55°.∵由翻折的性质可知:∠DEF=∠GED=55°,∴∠DEG=110°.∴∠1=180°−∠DEG=180°−110°=70°.故选:C.由平行线的性质可求得∠DEF的度数,然后依据翻折的性质可求得∠GEF的度数,最后依据∠1= 180°−∠DEG求解即可.本题主要考查的是翻折的性质、平行线的性质的应用,熟练掌握相关性质是解题的关键.11.答案:6解析:解:a2−b2=12,(a−b)(a+b)=122(a−b)=12a−b=6.故答案为:6.利用平方差公式,即可解答.本题考查了平方差公式,解决本题的关键是熟记平方差公式.12.答案:±12解析:【分析】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵4x2−kx+9=(2x)2−kx+32,∴−kx=±2×2×3x,解得k=±12,故答案为±12.13.答案:12解析:解:设袋中的球共有m个,其中有4个红球,则摸出红球的概率为4m,根据题意有4m =13,解得:m=12.故答案为:12.根据红球的概率公式列出方程求解即可.本题考查的是随机事件概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.答案:45°解析:【分析】本题主要考查了平行线的性质.根据平行线的性质结合三角板的角度和可求出∠AEF= 75°,从而可得∠EFD=∠AEF=75°,进而可求∠HFD的度数.【解答】解:∵AB//CD,∴∠EFD=∠AEF,又∵∠AEG=30°,∠GEF=45°,∠AEF=∠AEG+∠GEF,∴∠EFD=75°,又∵∠EFH=30°,∴∠HFD=∠EFD−∠EFH=45°.故答案为45°.15.答案:8解析:【分析】本题是对同底数的乘法和幂的乘方的性质的考查.根据同底数的乘法和幂的乘方的性质,先都化成以2为底数的幂相乘的形式,再代入已知条件计算即可.【解答】解:∵2x+5y−3=0,∴2x+5y=3,∴4x⋅32y=22x⋅25y=22x+5y=23=8.故答案为8.16.答案:−1解析:解:(x+1)(x+q)=x2+(q+1)x+q,由结果不含x的一次项,得到q+1=0,解得:q=−1,故答案为:−1.原式利用多项式乘以多项式法则计算,整理后根据结果不含x的一次项,求出q的值即可.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.答案:3解析:解:∵AB=CD,AC=DB,BC=BC,∴△ABC≌△DBC,∴∠BAC=∠BDC,∵∠AEB=∠DEC,AB=DC,∴△ABE≌△DEC,∴BE=CE,AE=DE,∵AB=DC,BD=AC,AD=AD,∴△ABD≌△ADC,∴图中全等的三角形共有3对,故答案为:3根据全等三角形的判定解答即可.本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”.18.答案:44100×12×22,解析:解:(1)∵13=14×22×32,13+23=1413+23+33=14×32×42,∴13+23+33+⋯+193+203=14×202×212=44100; 故答案为:44100.观察不难发现,从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4.本题主要考查数字的变化规律,根据题意得出数字的规律是从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方,再除以4是解题的关键.19.答案:√32(34)3;√32(34)n解析:解:∵等边三角形ABC 的边长为2,AB 1⊥BC ,∴BB 1=1,AB =2,根据勾股定理得:AB 1=√3,∴S 1=12×√34×(√3)2=√32(34)1; ∵等边三角形AB 1C 1的边长为√3,AB 2⊥B 1C 1,∴B 1B 2=√32,AB 1=√3,根据勾股定理得:AB 2=32,∴S 2=12×√34×(32)2=√32(34)2; 依此类推,S n =√32(34)n ; ∴S 3=√32(34)3, 故答案为:√32(34)3,√32(34)n . 由AB 1为边长为2的等边三角形ABC 的高,利用三线合一得到B 1为BC 的中点,求出BB 1的长,利用勾股定理求出AB 1的长,进而求出S 1,同理求出S 2,依此类推,得到S n .此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键. 20.答案:解:(1)原式=1+4−14=434(2)原式=a 6−a 6−8a 6=−8a 6;(3)原式=(10+13)×(10−13)+32017×132017×132=100−19+19=100;(4)原式=[a −(b −2)][a +(b −2)]=a 2−(b −2)2=a2−b2+4b−4;解析:(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据实数的运算法则即可求出答案.(4)根据平方差公式以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21.答案:解:(1)[x(x2y2−xy)−y(x2−x3y)]÷3x2y=[x3y2−x2y−x2y+x3y2]÷3x2y=(2x3y2−2x2y)÷3x2y=23xy−23;(2)原式=2x2−2x+x−1−2(x2−3x−10)=2x2−x−1−2x2+6x+20=5x+19.解析:本题考查了整式的混合运算的应用,能灵活运用运算法则进行化简是解此题的关键,注意运算顺序.(1)先算乘法,再合并同类项,最后算除法即可;(2)先利用多项式乘以多项式的法则进行计算,然后去括号和合并同类项即可.22.答案:解:∠1=∠2,理由:∵∠CDG=∠B,∴DG//BA(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵AD⊥BC,EF⊥BC(已知),∴AD//EF(在同一平面内,垂直于同一直线的两条直线平行),∴∠2=∠BAD(两直线平行,同位角相等),∴∠1=∠2(等量代换).解析:根据平行线的判定推出DG//AB和AD//EF,根据平行线的性质得出∠1=∠BAD和∠2=∠BAD,即可得出答案.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.23.答案:(1)见解析;(2)3;(3)2√2+√5+√17;(4)见解析.解析:【分析】(1)利用轴对称图形的性质得出各对应点的位置,进而作出图形即可;(2)利用△ABC所在矩形的面积减去周围三角形的面积进行求解即可;(3)利用勾股定理求△ABC的周长即可;(4)连接BC’交直线l于点P,则点P即为所求.【详解】解:(1)如图所示:△AB′C′即为所求;(2)△ABC 的面积为:2×4−12×2×2−12×2×1−12×1×4=3;故答案为:3;(3)△ABC 的周长为:√22+22+√22+12+√12+42=2√2+√5+√17,故答案为:2√2+√5+√17;(4)如图所示:P 点即为所求.【点睛】此题主要考查了轴对称变换以及勾股定理等知识,熟练掌握轴对称的性质是解题关键.24.答案:解:(1)设油箱中的剩余油量y(升)与汽车行驶里程x(km)的解析式为y =kx +b , 由于图象经过(50,55)(80,52),∴{50k +b =5580k +b =52解之得{k =−0.1b =60∴y 与x 之间的函数关系是y =−0.1x +60;(2)由题意,−0.1x +60=0,解得x =600,即加满一箱油汽车可行驶600km .解析:本题考查了一次函数的应用,掌握待定系数法求一次函数的解析式是解决问题的关键.(1)设油箱中的剩余油量y 升与汽车行驶里程xkm ,把已知坐标代入,依题意列出函数解析式;(2)令y =0求解x ,即为答案.25.答案:解:∵∠B =30°,∠BDA =130°,∴∠BAD =180°−∠B −∠BDA =20°,∵AD 是∠BAC 的平分线,∴∠BAC =2∠BAD =40°,∵CE 是AB 边上的高,∠ACE +∠BAC =90°,∴∠ACE=90°−∠BAC=50°.解析:本题考查了三角形的内角和,角平分线的性质,熟练掌握三角形的内角和是解题的关键.根据已知条件得到∠BAD=180°−∠B−∠BDA=20°,根据角平分线的定义得到∠BAC=2∠BAD= 40°,根据三角形的内角和即可得到结论.26.答案:解:x2+2kxy−3y2−6xy−y=x2+(2k−6)xy−3y2−y,∵多项式x2+2kxy−3y2−6xy−y中不含xy项,∴2k−6=0,解得:k=3.解析:此题考查了多项式,熟练掌握运算法则是解本题的关键.多项式合并得到结果,根据结果不含xy项,即可确定出k的值.27.答案:解:(1)a2−1;a3−1;a4−1;a100−1;(2)①原式=(2−1)(2199+2198+2197+⋯+22+2+1),=2200−1;×(−2−1)[(−2)49+(−2)48+(−2)47+⋯+(−2)2+(−2)+1],②原式=−13[(−2)50−1],=−13(250−1).=−13解析:【分析】此题考查了平方差公式,多项式乘以多项式,找出题中的规律是解本题的关键.(1)已知等式利用平方差公式,多项式乘以多项式法则计算,以此类推得到一般性规律,即可求出所求式子的值;(2)利用(1)中计算将原式变形,计算即可得到结果.【解答】解:(1)(a−1)(a+1)=a2−1;(a−1)(a2+a+1)=a3−1;(a−1)(a3+a2+a+1)=a4−1;…由此我们可以得到:(a−1)(a99+a98+a97+⋯+a2+a+1)=a100−1;故答案为a2−1;a3−1;a4−1;a100−1;(2)见答案.28.答案:(1)解:∵CE=BD,CE=DF,∴BD=DF,∴∠DFB=∠B,∵△ACD为等边三角形,∴∠ADC=∠C=60°,∴∠DFB=∠B=30°,∴∠CEF=90°;(2)证明:作BG//AC交CD的延长线于G,∴∠C=∠G,∵AC=AD,∴∠C=∠ADC,∴∠BDG=∠G,∴BD=BG,∵CE=BD,∴BD=CE,∵BG//AC,在△CFE和△GFB中,{∠CFE=∠GFB ∠FCE=∠GCE=GB,∴△CFE≌△GFB,∴EF=FB;(3)解:作EP⊥CD于P,BH⊥CD交CD的延长线于H,设EP=x,GH=a,∵∠CFE=45°,∴FP=EP=x,∵△CFE≌△GFB,∴BH=EP=x,则FH=BH=x,∵BD=BG,BH⊥CD,∴DH=GH=a,∴CF=FG=x+a,DF=x−a,∴CD=CF+DF=2x,由题意得,12×CD×BH=4,即12×2x×x=4,解得,x=2,则CD=2x=4.解析:(1)根据等边三角形的性质得到∠ADC=∠C=60°,根据三角形的外角的性质计算;(2)作BG//AC交CD的延长线于G,证明△CFE≌△GFB,根据全等三角形的性质证明;(3)作EP⊥CD于P,BH⊥CD交CD的延长线于H,设EP=x,GH=a,根据全等三角形的性质得到BH=EP=x,根据三角形的面积公式计算.本题考查的是等边三角形的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

【北师大版】七年级下册数学《期末考试题》(含答案解析)

【北师大版】七年级下册数学《期末考试题》(含答案解析)

2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。

2019葫芦岛市建昌县七年级下期末数学试卷(有答案).doc

2019葫芦岛市建昌县七年级下期末数学试卷(有答案).doc

七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2 B.﹣2 C.±2 D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).=,=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于、y的方程组的解比y的值大1,求方程组的解及的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.辽宁省葫芦岛市建昌县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数,使得2=a,则就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数,y,.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式+3<2的解集是<﹣1 .【分析】不等式经过移项即可得到答案.【解答】解:+3<2,移项得:<﹣1,即不等式的解集为:<﹣1,故答案为:<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为 5 .【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”解即可.17.点A在轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1 .【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).=12 ,=8 ,C=20% ,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000 ,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350 户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4﹣1<5+1,得:>﹣2,解不等式﹣2≤5﹣,得:≤,则不等式组的解集为﹣2<≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB ∥CD ,若∠B =55°,∠D =125°,请根据所学的知识判断BC 与DE 的位置关系,并证明你的结论.解:BC ∥DE证明:∵AB ∥CD (已知)∴∠C =∠B ( 两直线平行,内错角相等 )又∵∠B =55°(已知)∠C = 55 °( 等量代换 )∵∠D =125°(已知)∴ ∠C +∠D =180°∴BC ∥DE ( 同旁内角互补,两直线平行 )【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7 ;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于、y的方程组的解比y的值大1,求方程组的解及的值.【分析】把看做已知数表示出方程组的解,根据比y的值大1,确定出的值,进而求出方程组的解即可.【解答】解:,把=y+1代入①得:2y+1=③,代入②得:y+1﹣2y=3﹣④,联立③④,解得:,把y=1代入①得:=2,则方程组的解为,的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。

2018-2019学年七年级下学期期末考试数学试卷含答案解析

2018-2019学年七年级下学期期末考试数学试卷含答案解析
19、计算(5 分)0.04 3 27 1 4
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间

2019--2020第二学期期末考试七年级数学试题(附答案)

2019--2020第二学期期末考试七年级数学试题(附答案)
pOPq#$-$%$'4+ %!$0,'0#,4"
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷 解析版

2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7 4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x75.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)26.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠210.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于°.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是,因变量是;(2)无人机在75米高的上空停留的时间是分钟;(3)在上升或下降过程中,无人机的速度为米/分;(4)图中a表示的数是;b表示的数是;(5)图中点A表示.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是.(填正确结论的番号)二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6﹣2(ax+b)(mx+n)am bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.2019-2020学年四川省成都市青羊区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下面的四个汉字可以看作是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:A.2.(3分)3﹣1的值等于()A.﹣3B.3C.﹣D.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:3﹣1=,故选:D.3.(3分)新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.00000008=8×10﹣8;故选:A.4.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x7【分析】根据同底数幂的乘法计算法则进行计算即可.【解答】解:∵x2•x7=x9,∴“□”所表示的代数式为x7,故选:D.5.(3分)下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)2【分析】利用完全平方公式进行判断即可.【解答】解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.6.(3分)如图用尺规作“与已知角相等的角”的过程中,作出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,根据SSS证明三角形全等即可解决问题,【解答】解:由作图可知,OD=OC=O′D′=O′C′,CD=C′D′,∴△DOC≌△D′O′C′(SSS),∴∠BOA=∠B′O′A′.故选:D.7.(3分)下列说法正确的是()A.若x>y,则x2>y2B.对顶角相等C.两直线平行,同旁内角相等D.两边及一角相等的两三角形全等【分析】根据不等式的性质判断A;根据对顶角的性质判断B;根据平行线的性质判断C;根据全等三角形的判定定理判断D.【解答】解:A、当x=0,y=﹣3时,满足x>y,但是不满足x2>y2,故本选项说法错误,不符合题意;B、对顶角相等,故本选项说法正确,符合题意;C、两直线平行,同旁内角互补,故本选项说法错误,不符合题意;D、两边及夹角对应相等的两三角形全等,故本选项说法错误,不符合题意.故选:B.8.(3分)如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是()A.10°B.20°C.30°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a绕点O顺时针旋转的度数.【解答】解:如图.∵∠AOC=∠2=40°时,OA∥b,∴要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是70°﹣40°=30°.故选:C.9.(3分)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠2【分析】根据直角三角形的定义、直角三角形两锐角互余和同角的余角相等解答.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠A+∠1=∠1+∠2=90°,∴∠A=∠2;∵∠1+∠A=∠A+∠B=90°,∴∠1和∠B都是∠A的余角;∵直角有∠ACB、∠ADC、∠BDC共3个,∴图中有三个直角三角形;∠1与∠2只有△ABC是等腰直角三角形时相等,综上所述,错误的结论是∠1=∠2.故选:B.10.(3分)如图,点P是边长为2cm的正方形ABCD的边上一动点,O是对角线的交点,当点P由A→D→C运动时,设P点运动的路程为xcm,则△POD的面积y(cm2)随x (cm)变化的关系图象为()A.B.C.D.【分析】由题意可知,△POD的面积可分两种情况讨论:P由点A移动到D时,面积逐渐减小;P由点D移动到C时,面积逐渐增大,据此判定即可.【解答】解:∵正方形ABCD的边长为2cm,O是对角线的交点,∴点O到AD或CD的距离为1cm,当P由点A移动到D时,y=PD•h=(2﹣x)×1=1﹣x(0≤x≤2);当P由点D移动到C时,y=PD•h=(x﹣2)×1=x﹣1(2<x≤4);故符合条件的图象只有选项C.故选:C.二、填空题:(每题4分,共16分)11.(4分)已知a m=4,a n=5,则a m+n的值是20.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:a m+n=a m•a n=4×5=20,故答案为:20.12.(4分)一个长方形的面积为(27ab2﹣12a2b),若长为3ab,则它的宽为9b﹣4a.【分析】根据长方形的面积公式先列出算式,再进行计算即可得出答案.【解答】解:它的宽为:(27ab2﹣12a2b)÷3ab=9b﹣4a;故答案为:9b﹣4a.13.(4分)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=50°.【分析】利用“8字型”求出∠CAD=∠DEB=25°,再根据角平分线的定义求出∠CAB 即可.【解答】解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=25°,∵AE平分∠CAB,∴∠CAB=2∠CAD=50°,故答案为50°.14.(4分)如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,若∠AEH=30°,则∠EFC等于105°.【分析】根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【解答】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∵∠AEH=30°,∴∠DEF=∠HEF=(180°﹣∠AEH)=75°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°﹣75°=105°,故答案为:105.三、计算题:(15题(1)、(2)小题各6分,16题8分,共20分)15.(12分)(1)()﹣3+(2020+π)0﹣|﹣3|;(2)(﹣3a2)3﹣4a2•a4+5a9÷a3.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【解答】解:(1)原式=8+1﹣3=6;(2)原式=﹣27a6﹣4a6+5a6=﹣26a6.16.(8分)先化简,再求值:[(2a+b)(2a﹣b)﹣3(a+b)2+4b2]÷(a),其中a=2,b =﹣1.【分析】直接利用乘法公式以及整式的混合运算法则化简得出答案.【解答】解:原式=(4a2﹣b2﹣3a2﹣3b2﹣6ab+4b2)÷a=(a2﹣6ab)÷a=3a﹣18b,当a=2,b=﹣1时,原式=6+18=24.四、解答题(17题、18题、19题各8分,20题10分,共34分)17.(8分)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点的连线为边的多边形称为“格点多边形”.如图中四边形ABCD就是一个“格点四边形”.(1)求图中四边形ABCD的面积;(2)在图中的方格纸中画一个格点四边形,使该四边形与原四边形ABCD关于直线l成轴对称.【分析】(1)对角线垂直的四边形的面积=对角线乘积的一半.(2)分别画出A,B,C,D的对应点A′,B′,C′,D′即可.【解答】解:(1)S四边形ABCD=×3×4=6.(2)如图,四边形A′B′C′D′即为所求.18.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,BE∥DF,求证:BC∥AD.【分析】根据角平分线的定义得出∠EBC=ABC,∠FDA=ADC,求出∠EBC =∠FDA,根据平行线的性质得出∠EBC=∠CFD,求出∠CFD=∠FDA,根据平行线的判定得出即可.【解答】证明:∵BE,DF分别是∠ABC,∠ADC的角平分线,∴∠EBC=ABC,∠FDA=ADC,∵∠ABC=∠ADC,∴∠EBC=∠FDA,∵BE∥DF,∴∠EBC=∠CFD,∴∠CFD=∠FDA,∴BC∥AD.19.(8分)某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是5分钟;(3)在上升或下降过程中,无人机的速度为25米/分;(4)图中a表示的数是2;b表示的数是15;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留的时间12﹣7=5分钟即可;(3)根据速度=路程除以时间计算即可;(4)根据速度的汽车时间即可;(5)根据点的实际意义解答即可.【解答】解:(1)横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是12﹣7=5分钟;(3)在上升或下降过程中,无人机的速度=25米/分;(4)图中a表示的数是分钟;b表示的数是分钟;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米;故答案为:时间(或t);高度(或h);5;25;2;15;在第6分钟时,无人机的飞行高度为50米.20.(10分)如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH ⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连结MD,过点D作DN⊥DM交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.【分析】(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD =DA=BD,则∠OAD=45°,证出∠DAN=∠MOD.证△ODM≌△ADN(ASA),得S=S△ADN,进而得出答案.△ODM【解答】(1)解:∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠DOM.∵MD⊥ND,即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM和△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××3×3=.一.填空题:(每题4分,共20分)21.(4分)已知x2+x=3,则代数式(x+4)(x﹣3)的值为﹣9.【分析】先根据多项式乘以多项式法则进行计算,再合并同类项,最后代入求出即可.【解答】解:∵x2+x=3,∴(x+4)(x﹣3)=x2﹣3x+4x﹣12=x2+x﹣12=3﹣12=﹣9,故答案为:﹣9.22.(4分)如果a2+b2+2+2a﹣2b=0,那么3a+b﹣1的值为﹣3.【分析】将已知等式左边配方得出(a+1)2+(b﹣1)2=0,利用非负数的性质求出a、b,代入3a+b﹣1,计算即可.【解答】解:∵a2+b2+2+2a﹣2b=0,∴(a+1)2+(b﹣1)2=0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1,∴3a+b﹣1=3×(﹣1)+1﹣1=﹣3.故答案为:﹣3.23.(4分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和20个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4左右,则a的值约为30.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【解答】解:根据题意得:=0.4,解得:a=30,则a的值约为30.故答案为:30.24.(4分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=112°.【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB 于E′,交BC于F′,则点E′,F′即为所求,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣34)=34°∴∠ADE′+∠CDF′=∠P+∠Q=34,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣68°=112°故答案为:112°.25.(4分)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论是①②⑤.(填正确结论的番号)【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.②正确.证明△ABP≌△FBP,推出P A=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.③错误.利用反证法,假设成立,推出矛盾即可.④错误,可以证明S四边形ABDE=2S△ABP.⑤正确.由DH∥PE,利用等高模型解决问题即可.【解答】解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,∴AD=AP+PD=PF+PH.故②正确.∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故⑤正确,∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正确.若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故③错误,故答案为①②⑤.二、解答题(26题8分、27题10分,28题12分,共30分)26.(8分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写表格:二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)61﹣2(ax+b)(mx+n)am an+bm bn(2)若关于x的代数式(x+2)•(x2+mx+n)化简后,既不含二次项,也不含一次项,求m+n的值.【分析】(1)根据多项式乘多项式的计算法则即可求解;(2)先根据多项式乘多项式的计算法则展开,合并同类项后使二次项系数和一次项系数为0即可求解.【解答】解:(1)(2x﹣1)(3x+2)=6x2+4x﹣3x﹣2=6x2+x﹣2,(ax+b)(mx+n)=amx2+anx+bm)x+bn=amx2+(an+bm)x+bn,二次项系数一次项系数常数项(x+1)(x+2)132(2x﹣1)(3x+2)6 1 ﹣2(ax+b)(mx+n)am an+bm bn故答案为:1、an+bm;(2)(x+2)(x2+mx+n)=x3+mx2+nx+2x2+2mx+2n=x3+(m+2)x2+(2m+n)x+2n,∵既不含二次项,也不含一次项,∴,解得:,∴m+n=﹣2+4=2.故m+n的值为2.27.(10分)如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.【分析】(1)在EF上截取EH=BE,由“SAS”可证△ACF≌△AHF,可得CF=HF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF≌△ANF,可得CF=NF,可得结论.【解答】证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AD,∴AC=AH,∵∠EAF═∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠F AH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF═∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠F AN=∠CAN,∴∠F AN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.28.(12分)如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.【分析】(1)根据平行线的性质可得∠AEF+∠CFE=180°,再利用角平分线的定义可求解∠FEG+∠GFE=90°,进而证明结论;(2)分别过M,N作MG∥AB,NH∥AB,根据平行线的性质可得∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,再根据角平分线的定义结合∠AEP=∠AEF,∠CFP=∠EFC,可求解;(3)根据垂线的定义可求得∠FGQ=90°﹣∠GFQ,再根据角平分线的定义可求解∠FGQ=∠EHF.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵GE平分∠AEF,GF平分∠EFC,∴∠AEG=∠FEG=∠AEF,∠CFG=∠GFE=∠CFE,∴∠FEG+∠GFE=90°,即EG⊥FG;(2)∵分别过M,N作MG∥AB,NH∥AB,∵AB∥CD,∴AB∥MG∥NH∥CD,∴∠AEM=∠EMG,∠GMF=∠MFC,∠AEN=∠ENH,∠HNF=∠NFC,∴∠EMF=∠AEM+∠MFC,∠ENF=∠AEN+∠NFC,同理:∠EPF=∠AEP+∠PFC,∴∠EMF+∠ENF=∠AEM+∠MFC+∠AEN+∠NFC,∵EM平分∠AEN,FN平分∠MFC,∴∠AEM=∠AEN,∠NFC=∠MFC,∴∠EMF+∠ENF=∠AEN+∠MFC+∠MFC+∠AEN=(∠MFC+∠AEN),∵∠AEP=∠AEF,∠CFP=∠EFC,∴∠MFC+∠AEN=(∠AEF+∠EFC)=×180°=72°,∴∠EMF+∠ENF=(∠MFC+∠AEN)=×72°=108°;(3)∠FGQ=∠EHF.证明:∵AB∥CD,∴∠EHF+∠CFH=180°,∵GQ⊥MF,∴∠FGQ=90°﹣∠GFQ,∵FG平分∠EFH,MF平分∠EFC,∴∠GFE=∠EFH,∠QFE=∠CFE,∴∠GFQ=∠CFH=(180°﹣∠EHF)=90°﹣∠EHF,∴∠FGQ=90°﹣(90°﹣∠EHF)=∠EHF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下学期期末水平测试试卷题号 一二三四 五 总 分 11 12 13 14 15 16 17 18 19 20 21 22 得分一、单项选择题(共5个小题,每小题3分,满分15分)1.在平面直角坐标系中,点P (2,3)在 ( )A .第一象限B .第二象限C .第二象限D .第二象限 2.下列长度的三条线段能组成三角形的是( )A .1、2、3B .4、5、9C .20、15、8D .5、15、83.不等式32 x ≥5的解集在数轴上表示正确的是 ( )4. 将题图所示的图案通过平移后可以得到的图案是 ( )5. 下列调查中,适宜采用全面调查(普查)方式的是 ( )A .对全国中学生心理健康现状的调查B .对我国首架大型民用飞机零部件的检查C .对我市市民实施低碳生活情况的调查D .对市场上的冰淇淋质量的调查二、填空题(共5个小题,每小题3分,满分15分) 6. 十边形的外角和是_____________度.A .B .C .D .第4题图A B C D78. 如图,B 、A 、E 三点在同一直线上,请你添加一个条件,使AD //BC .你所添加的条件是______________(不允许添加任何辅助线).9. 若不等式组⎩⎨⎧>->024x ax 的解集21<<-x 是,则a = .10.线段AB 两端点的坐标分别为A (2,4),B (5,2),若将线段AB 平移,使得点B 的对应点为点C (3,-1).则平移后点A 的对应点的坐标为 . 三、解答题(每小题5分,共5个小题,满分25分) 11.(5分)解方程组:⎩⎨⎧-==+1422x y y x12.(5分)解方程组:⎩⎨⎧=--=+1923932y x y x13.(5分)解不等式312-x ≤643-x ,并把它的解集在数轴上表示出来.14.(5分)直线AB ,CD 相交于点O ,∠BOC =40º,(1)写出∠BOC 的邻补角;(2)求∠AOC ,∠AOD ,∠BOD 度数.15.(5分)某农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm ).对样本数据适当分组后,列出了如下频数分布表:(1)分组的组距是______________,组数是_____________;(2)估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比.四、解答题(共5个小题,每小题6分,满分30分)16.(5分)解不等式组⎪⎩⎪⎨⎧>--<+5)1(32)4(21x x x17.(6分)如图,已知∠1=∠2=∠3=62º,求∠4.18.(6分)已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向 右平移6个单位长度,再向下平移6 个单位长度得到△A 1B 1C 1.(图中每 个小方格边长均为1个单位长度) . (1)在图中画出平移后的△A 1B 1C 1; (2)直接写出△A 1B 1C 1各顶点的坐标.19.(6分)如图,在△ABC 中,CD 是∠ACB 的平分线,∠A=80º,∠B=40º,求∠BDC 的度数.4132abDABC20.(6分)某中学计划对本校七年级480名学生按“学科”、“文体”、“手工”三个项目安排课外兴趣小组,小明从所有学生中随机抽取50名学生进行问卷调查,并将统计结果制成如下的统计表和统计图.(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估计该校七年级学生参加“手工”的人数.学科文体手工项目五.解答题(共2个小题,满分15分)21.(7分)老师布置了一个探究活动:用天平和砝码测量壹元硬币和伍角硬币的质量.(注:同种类的每枚硬币质量相同).聪明的孔明同学经过探究得到以下记录:请你用所学的数学知识计算出一枚壹元硬币多少克,一枚伍角硬币多少克.22.(8分)如图,六边形ABCDEF 的内角都相等,∠DAB =60º. (1)证明:AB //DE ;(2)写出图中其它平行的线段(不要求证明).1. A ;2.C ;3.D ;4.A ;5.B.6.360;7.140;8.∠EAD=∠B 或∠DAC=∠C 或∠B+∠DAB=180°; 9.-1;10.(0,1).11.解:把②代入①得:2142=-+x x …………………………1分解得:21=x . ………………………………………………………3分把21=x 代入②得:11214=-⨯=y ………………………………4分∴方程组的解为⎪⎩⎪⎨⎧==121y x . …………………………………………………………5分12.解:①×2得:1864-=+y x ③……………………………………1分②×3得:5769=-y x ④ ………………………………………………2分 ③+④得:3913=x∴3=x ……………………………………………………………………3分 把3=x 代入①得:9332-=+⨯y ∴5-=y………………………………………………………………4分∴原方程组的解是⎩⎨⎧-==53y x………………………………………………5分13.解:原不等式可以化为22134()x x -≤- ……………………………1分即4324-≤-x x …………………………………………2分∴2-≤x……………………………………………………3分(数轴上表示正确得2分)14.解:(1)∠BOC 的邻补角是∠BOD 与∠AOC.……………2分(2)∵∠BOC=40°∴∠AOD=∠BOC=40° ………………………………………………3分 ∵∠BOC+∠AOC=180°∴∠AOC=180°-∠BOC=180°-40°=140°………………………4分 ∴∠BOD=∠AOC=140°. …………………………………………5分 ∴∠AOC 、∠AOD 、∠BOD 的度数分别为140°、40°、140°.15.解:(1)0.5cm ;6.……………………………………………2分(2)(12+13+10)÷50=70%.………………………………………4分答:估计这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比为70%.……………………………………………5分 16.解:由①得:0<x……………………………………………2分 由②得:1-<x………………………………………4分 ∴不等式组的解集为1-<x .………………………………………6分17.解:∵∠1=∠3∴a ∥b………………………2分 ∴∠5=∠2=62°…………………4分∴∠4=180°-∠5=180°-62°=118°……6分18.解:(1)(图略)………………………………………3分(2)A 1(4,-2),B 1(1,-4),C 1(2,-1). …………………6分 (每写对1个顶点坐标得1分)19.解:∵∠A+∠B+∠ACB=180°∴∠ACB=180°-∠A -∠B=180°-80°-40°=60° ……………2分∵CD 是∠ACB 的平分线 ∴0011603022ACD ACB ∠=∠=⨯= …………………………………4分∴∠BDC=∠ACD+∠A=30°+80°=110°………………………6分5a b20.解:(1)统计表2分,统计图2分.(2)480×30%=144(人)答:参加 “手工”的人数144人.…………………………………6分21.解:设一枚壹元硬币x 克,一枚伍角硬币y 克,……………1分依题意得:10152010154x yx y +=⎧⎨=+⎩……………………………………………4分解得:⎩⎨⎧==8.31.6y x…………………………………………………6分答:一枚壹元硬币6.1克,一枚伍角硬币3.8克. ………………………7分22.(1)证明:六边形的内角和为:00720180)26(=⨯-……………1分∵六边形ABCDEF 的内角都相等 ∴每个内角的度数为:720°÷6=120°……………………………2分又∵∠DAB =60°,四边形ABCD 的内角和为360°∴∠CDA =360°-∠DAB -∠B -∠C =360°-60°-120°-120°=60°……………………………………………………………………………4分∴∠EDA =120°-∠CDA =120°-60°=60° ∴∠EDA =∠DAB=60°……………………………………………5分∴AB DE //(内错角相等,两直线平行) ……………………………6分 (2)EF ∥BC ,AF ∥CD ,EF ∥AD ,BC ∥AD.……………………………8分(写出2对平行线得1分,写出4对平行线得2分)。

相关文档
最新文档