理想气体的热力学过程
理想气体的热力学过程

6
dV d p 0 V p
式中
Cp CV
, 在温度变化不很大时,可以看作常量。
将上式积分,得
ln V + ln p = 恒量
pV γ 恒量 或 这个关系称为泊松 (S.D.Poisson)公式。
根据泊松公式和理想气体物态方程, 可以分别得到
TV γ 1 恒量
T γ pγ 1 恒量
Qp = H 气 H水
= (2676.3103 419.06103 ) Jkg1
= 2257.2103 Jkg1
16
17
经绝热过程压缩气体做的功:
CV 20.44J mol K
1
1
m 4 A CV T2 T1 4.70 10 J M
在等压过程中,系统从外界获得的热量,一部分用 以增大内能,一部分用以对外作功。 三、等温过程 (isothermal process) 等温过程 特征: 过程方程: 系统的温度保持恒定的过程。 T=0
p1V1 p2V2
p p1
T=恒量
恒温热源
1(p1,V1,T)
过程曲线:
内能增量:
等温线为等轴双曲线。
=1.40,可得:
p2 T2 T1 p 1
1 /
1 300 50
0.286
98.0K
19
例6 一定质量的理想气体先后经历 P 两个绝热过程即1态到2态,3态到4
态(如图所示)且T1=T3、T2=T4,在 1态与3态,2态与4态之间可分别连 接 两 条 等 温 线 。 求 证 :
考虑到 T1=T3,T2=T4,
T2 V1 1 2 T1 V2
《热力学》理想气体的热力过程

p2 p1
v1 v2
n
T2 T1
v1 v2
n1
T2 T1
p2 p1
(n1) / n
n lnp2 lnp1 lnv2 ln v1
(2)利用已知或可求的与n有关的能量求解
2020年10月20日
第四章 理想气体的热力过程
28
例4-3(p80) 有一台空气压缩机,压缩前空气的温度为27 ℃、 压力为0.1 MPa,气缸的容积为5 000 cm3;压缩后空气的温度升 高到213 ℃。压缩过程消耗的功为1.166 kJ。试求压缩过程的多变 指数n。
15
(2)图表法 由
ds
cp0
dT T
Rg
dp p
对可逆绝热过程可得
ln
p2 p1
1 Rg
T2
T1
c
p
0
dT T
A:利用热力性质表中的标准状态熵
ln
p2 p1
1 Rg
T1
T0
c
p
0
dT T
c T2
T0
p0
dT T
1 Rg
s0 T2
s0 T1
T2 工质的热力性质表中还提供了u与h的数值。
2020年10月20日
第四章 理想气体的热力过程
19
例4-2 (p76) 一台燃气轮机装置,从大气吸入温度为17 ℃、压 力为0.1 MPa的空气,然后在压气机中进行绝热压缩,使空气 的压力提高到0.9MPa。试求压气机消耗的轴功:(1)按定值比 热容计算;(2)按空气热力性质表计算。
思路:
定值比热容
2020年10月20日
第四章 理想气体的热力过程
14
变比热容分析
工程热力学第四章理想气体热力过程

03
CHAPTER
等容过程
等容过程是指气体在变化的整个过程中,其容积保持不变的过程。
定义
特点
适用场景
气体在等容过程中,气体温度和压力会发生变化,但容积保持不变。
等容过程常用于高压、高温或低温等极端条件下的气体处理。
03
02
01
等容过程定义
在等容过程中,气体吸收的热量等于气体所做的功和气体温度升高所吸收的热量之和。
多变过程的具体形式取决于气体所经历的压力和温度的变化规律。
多变过程定义热力学第一定律 Nhomakorabea热力学第二定律
理想气体状态方程
热效率
多变过程的热力学计算
01
02
03
04
能量守恒定律,用于计算多变过程中气体吸收或释放的热量。
熵增原理,用于分析多变过程中气体熵的变化。
描述气体压力、体积和温度之间的关系,可用于多变过程的计算。
衡量多变过程能量转换效率的指标,通过比较输入和输出的热量来计算。
提高热效率的方法
优化多变过程参数,如压力和温度的变化规律,以减少不可逆损失和提高能量转换效率。
热效率与熵增的关系
根据熵增原理,不可逆过程会导致熵的增加,从而降低热效率。因此,减少不可逆损失是提高多变过程热效率的关键。
热效率计算公式
$eta = frac{Q_{out}}{Q_{in}}$,其中$Q_{out}$为输出热量,$Q_{in}$为输入热量。
计算公式
通过优化气体的初态和终态,以及选择合适的加热和冷却方式,可以提高等容过程的热效率。同时,也可以通过改进设备结构和操作方式来提高热效率。
提高热效率的方法
等容过程的热效率
04
CHAPTER
热力学理想气体状态方程与热力学过程

热力学理想气体状态方程与热力学过程热力学是研究物质的能量转化和能量交换规律的学科。
理想气体是热力学中常用的模型,它的状态方程和热力学过程是热力学理论的基础。
本文将深入探讨热力学理想气体状态方程和热力学过程,并解释它们的概念和关系。
一、理想气体状态方程理想气体状态方程描述了理想气体在不同条件下的状态。
理想气体状态方程的公式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量(摩尔数),R为气体常数,T表示气体的温度。
这个方程是根据实验结果和理论推导得出的,它表明在给定的条件下,理想气体的压强、体积和温度是互相关联的。
通过这个方程,我们可以计算理想气体在不同状态下的其他物理量,如摩尔质量、摩尔体积等。
二、热力学过程热力学过程是指气体在不同条件下发生的能量转化和能量交换过程。
常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。
1. 等温过程等温过程是指气体在恒定温度下发生的过程。
在等温过程中,气体的温度保持恒定,根据理想气体状态方程,可得:P1V1 = P2V2其中,P1和V1分别表示气体初始时的压强和体积,P2和V2分别表示气体最终时的压强和体积。
2. 绝热过程绝热过程是指气体在无热量交换的条件下发生的过程。
在绝热过程中,气体的内能发生变化,但温度不一定保持恒定。
根据绝热条件和理想气体状态方程,可以得到:P1V1^γ = P2V2^γ其中,γ为气体的绝热指数,对于单原子理想气体,γ=5/3;对于双原子理想气体,γ=7/5。
3. 等容过程等容过程是指气体在恒定体积下发生的过程。
在等容过程中,气体的体积保持恒定,根据理想气体状态方程,可得:P1/T1 = P2/T2其中,T1和T2分别表示气体初始时和最终时的温度。
4. 等压过程等压过程是指气体在恒定压强下发生的过程。
在等压过程中,气体的压强保持恒定,根据理想气体状态方程,可得:V1/T1 = V2/T2其中,T1和T2分别表示气体初始时和最终时的温度。
气体主要热力过程的基本公式

气体主要热力过程的基本公式1.等容过程(isochoric process)在等容过程中,气体体积保持不变。
根据理想气体状态方程PV=nRT,结合理想气体的内能U=C_vT(其中C_v表示摩尔定容热容量),可以得到气体的内能和温度的关系为U2-U1=C_v(T2-T1)2.等压过程(isobaric process)在等压过程中,气体的压强保持不变。
根据理想气体状态方程PV=nRT,结合理想气体的焓H=U+PV(其中H表示焓),可以得到气体的焓和温度的关系为H2-H1=C_p(T2-T1)其中C_p表示摩尔定压热容量。
3. 绝热过程(adiabatic process)在绝热过程中,气体在没有与外界交换热量的情况下发生压缩、膨胀等过程。
根据绝热条件PV^γ=常数,可以得到气体压强和体积的关系为P2V2^γ=P1V1^γ其中γ=C_p/C_v表示绝热指数。
4.等温过程(isothermal process)在等温过程中,气体的温度保持不变。
根据理想气体状态方程PV=nRT,可以得到气体的压强和体积的关系为P1V1=P2V2综合以上各种过程,可以得到气体的理想热力方程为C_p(T2 - T1) - R(ln(V2/V1)) = 0其中 R 表示气体常数,对于摩尔气体,R = 8.314 J/(mol·K)。
另外,对于理想气体的内能和焓,还可以利用摩尔定热容量和摩尔焓的定义进行计算:U=nC_vTH=nC_pT其中C_v和C_p分别为摩尔定容热容量和摩尔定压热容量,n表示气体的物质量。
需要注意的是,以上公式都是在理想气体的情况下推导得到的,在实际情况下可能需要考虑相对论效应、分子间相互作用等因素。
此外,还有其他一些非常特殊的热力过程,如绝热绝热过程、多孔气体的热力过程等,其公式推导及应用较为复杂,对于一般的热力学应用来说已经足够。
理想气体的等温过程与绝热过程

理想气体的等温过程与绝热过程理想气体是指在一定温度下,气体分子之间完全没有相互作用的气体模型。
在理想气体的热力学过程中,等温过程和绝热过程是两个重要的概念。
本文将分别介绍理想气体的等温过程和绝热过程,并探讨它们的特点和应用。
一、理想气体的等温过程等温过程是指在气体发生变化的过程中,温度保持不变。
对于理想气体而言,等温过程可以用以下方程来描述:PV = 常数(1)式中,P表示气体的压强,V表示气体的体积。
根据理想气体状态方程,PV = nRT,式中,n表示气体的物质的量,R是气体常数,T是气体的绝对温度。
结合方程(1)和PV = nRT,我们可以得到:nRT = 常数(2)由方程(2)可知,在等温过程中,气体的物质的量n和体积V是成反比的关系。
也就是说,在体积增大的同时,物质的量会减少,反之亦然。
这说明了在等温过程中,气体分子会随着体积的改变而发生数量的变化。
等温过程还有一个重要的特点是气体对外做功。
根据热力学的能量守恒定律,气体所做的功等于外界对气体做的功。
在等温过程中,气体扩大或收缩的功可以通过以下公式计算:W = - nRT * ln(V2/V1) (3)式中,W表示气体所做的功,V1和V2分别表示气体的初始体积和最终体积。
二、理想气体的绝热过程绝热过程是指在气体发生变化的过程中,没有热量的交换。
绝热过程的特点是温度和压强同时变化。
对于理想气体而言,绝热过程可以用以下方程来描述:PV^γ = 常数(4)式中,γ表示气体的绝热指数,对于大多数单原子理想气体而言,γ约等于5/3。
根据理想气体状态方程,PV = nRT,我们可以推导出绝热过程中,温度和压强的关系:T = (Pv^(γ-1))/(nR) (5)式中,Tv表示绝热过程中气体的温度。
由方程(5)可知,在绝热过程中,随着气体体积的减小,气体的温度也会随之降低。
反之,体积的增大会导致温度的升高。
这与等温过程中温度保持不变的特点形成了鲜明的对比。
理想气体的热力性质及其热力过程

第三节 理想气体的热力学能与焓 理想气体的状态方程及比热容确定后,利用热力学第一定律就可方便地求得理想气体的热力学能和焓的计算式。
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-3 例7-3图
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-7 绝热过程在p-v、T-s图上的表示
Cycle Diagram
Text
Text
Text
Text
Text
Cycle name
Add Your Text
Diagram
Your Slogan here
第七章 理想气体的热力性质及其热力过程
二、四个基本热力过程分析 1.定容过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
图7-4 定容过程在p-v、T-s图上的表示
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
2.定压过程
第七章 理想气体的热力性质及其热力过程
第七章 理想气体的热力性质及其热力过程
热工设备中实际进行的热力过程均是多变过程,且通常要比理论的多变过程更为复杂。例如,制冷压缩机气缸中制冷剂蒸汽的压缩过程,在整个过程中指数n是变化的。压缩开始时,工质温度低于缸壁温度,工质是吸热的,随着对工质不断地压缩,温度升高,高于缸壁温度后开始放热,瞬时多变指数约从1.4左右变化到1.0左右。制冷压缩机压缩过程的多变指数大小还与制冷剂的种类、制冷剂蒸汽与气缸壁的热交换情况、活塞与气缸壁的密封情况等因素有关。通常,制冷压缩机压缩多变指数要小于活塞式空气压缩机压缩多变指数。对多变指数n是变化的实际过程,热工计算中为简便起见常常这样处理:若n的变化范围不大,则用一个不变的平均多变指数近似地代替实际变化的n;如果n的变化较大,可将实际过程分段,每段近似为n值不变,各力性质及其热力过程
理想气体基本热力过程

理想气体的基本热力过程热力设备中,热能与机械能的相互转化,通常是通过气态工质的吸热、膨胀、放热、压缩等热力过程来实现的。
实际的热力过程都很复杂,而且几乎都是非平衡、非可逆的过程。
但若仔细观察会发现,某些常见过程非常近似一些简单的可逆过程。
常见的主要有四种简单可逆过程-基本热力过程,指系统某一状态参数保持不变的可逆过程。
包括定容过程、定压过程、定温过程和绝热过程。
我们以1kg理想气体的闭口系统为例来分析这几种基本热力过程,分析方法包括5点:(1)依据过程特点建立过程方程式;(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系,即P1、v1、T1和P2、v2、T2之间的关系;(3)绘制过程曲线;我们主要绘制两种坐标图P-v图和T-s图,因为P-v图上可以表示过程中做功量的多少,而T-s图上可以表示过程中吸收或放出热量的多少;(4)分析计算△u,△h,△s;(5)分析计算过程的热量q和功w。
一、定容过程定容过程即工质的容积在整个过程中维持不变,dv=0,通常是一定量的气体在刚性容器中进行定容加热或定容放热。
(1)依据过程特点建立过程方程式定容过程的特点是体积保持不变,所以建立过程方程式:v=常数;或dv=0或v1=v2(2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系过程方程式:v1=v2理想气体状态方程:112212Pv P v T T = 由以上两个方程可以得到初末基本状态参数之间的关系:122211v v P T P T =⎧⎪⎨=⎪⎩ 即定容过程中工质的压力与温度成正比。
(3)绘制过程曲线;定容过程有两种情况:定容加热和定容放热。
(4)分析计算△u ,△h ,△s ;2211v v u u u c dT c T ∆=-==∆⎰ 2211p p h h h c dT c T ∆=-==∆⎰ 222111ln ln ln p v v v P P s c c c v P P ∆=+=或222111ln ln ln v v T v T s c R c T v T ∆=+= (5)分析计算过程的热量q 和功w 。