第三章理想气体的性质与热力过程讲义
合集下载
热工基础 第三章.理想气体的性质与热力过程

CV ,m McV xi M i cV ,i xi CV ,m,i
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p
气体的热力性质和热力过程

p2 = v1 p1 v2
由过程方程得
p∝
2' v
1
2'
q<0 q>0
s
12
3-4 理想气体的热力过程
4)功和热量
定容过程的功和热量的计算
内能变化量 焓的变化量 容积功
∆u = u2 − u1 = cv∆T ∆h = h2 − h1 = cp∆T w=0
热量
q = ∆u = ∫ cvdT
3-4 理想气体的热力过程
2.定压过程
1) 过程方程 p = 定值
ln T2 T1
−
Rg
ln
p2 p1
5. 迈耶公式
Rg
= cp − cV
∆s
=
cV
ln
T2 T1
+
Rg
ln
v2 v1
比热比
γ = cp cV
P39例题3-3,3-4
10
3-4 理想气体的热力过程
0.分析热力过程的内容和方法(假定过程是可逆过程) 1) 确定过程方程
2) 确定状态参数(基本状态参数)的变化规律 而对与任何过程有
−
Rg
ln
p2 p1
若取真实比热容,积分后的精确值查P308附表5
9
3-3 气体的热力性质
∆s
=
cp
ln T2 T1
−
Rg
ln
p2 p1
续8
由 p1v1 = RgT1 p2v2 = RgT2
可得 代入上式
即
p2v2 = T2 p1v1 T1
∆s
=
cp
ln
p2v2 p1v1
− Rg
ln
机械热力学第03章 理想气体的性质

注意: 不是标况时,1标准立方米的气体量不变,但体积变化。
三种比热的关系:
C m = Mc = 0.022414C'
比热与过程有关。常用的有:
定压热容(比定压热容)
cp
及
Cmp , c
' p
定容热容(比定容热容)
cV
' CmV , cV
1. c v
c= δq du + δw du pdv = = + dT dT dT dT ( A)
cv =
1 γ R g , cp = Rg γ 1 γ 1
理想气体可逆绝热过程的绝热指数k=γ
二、用比热计算热量
原理:
对c作不同的技术处理可得精度不同的热量计算方法: 1.定值比热容 工程计算,不用气体分子运动理论导出的结果,误差太大。 工程上,建议参照附表3提供的 常用气体在各种温度下的比热容值
u = u (T , v )
u u du = dT + dv T v v T
定容过程 dv=0
u cV = T v
若为理想气体
u = u(T)
du u du = cV = ( du = cVdT) dT T v dT
cV 是温度的函数
2.
cp
定压过程,dp = 0
第三章 理想气体的性质
基本概念和定律 热力学内容 工质热力性质 过程和循环 状态方程 理想气体 实际气体 比热 内能、焓和 内能、 熵的计算
§3-1 理想气体的概念
理想气体: 理想气体:满足 pv=RgT 理想气体是实际气体在低压高温时的抽象。 理想气体是实际气体在低压高温时的抽象。 实际气体可以近似看作理想气体的条件: 实际气体可以近似看作理想气体的条件: 通常压力下, T>(2.5-3)Tcr时 一般可看作理想气体。 通常压力下,当T>(2.5-3)Tcr时,一般可看作理想气体。 微观上讲,理想气体分子间没有力的作用,故U=U(T) 微观上讲,理想气体分子间没有力的作用,
工程热力学 第三章 理想气体的性质

11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
工程热力学理想气体性质

h dh , T p dT
理想气体的比热容
du cV dT
dh
c
,
p
dT
理想气体的cV 和cp仅仅是温度的函数
定压热容与定容热容的关系
迈耶公式
c p cV Rg
,C p,m CV ,m R
比热容比:比值cp/cV称为比热容比,或质量热 容比,用γ表示
Cm xiCm,i
C iCi
Cm M eqc 0.0224141 C
t2 cdt
t1
t2 t1
q
t2 cdt
00C
t1 00C
cdt
c
t2 00C
t2
c
t1 00C
t1
c
t2 t1
c
t t2
0oC 2
t2
c
t1 0oC
t1
t1
附表5列有几种常用气体的平均比定压热容,平均 比定容热容可由平均比定压热容按迈耶公式确定
平均比热容直线关系式
气体
混合气体的比定压热容和比定容热容之间也满足 迈耶公式
混合气体的折合摩尔质量和折合气体常数
混合气体的成分是指各组成的含量占总量的百分
数,有质量分数、摩尔分数和体积分数三种表示
方法
wi
mi m
,xi
ni n
,i
Vi V
假拟单一气体分子数和总质量恰与混合气体相同,
其摩尔质量和气体常数就是混合气体的折合摩尔
第三章 理想气体的性质
3-1 理想气体的概念
理想气体
理想气体是一种实际上不存在的假想气体,其分子 是弹性的、不具体积的质点,分子间相互没有作用 力
第三章__理想气体热力性质及过程

容积成分: i
Vi V
, i
1
摩尔成分: xi
ni n
, xi
1
换算关系:
i xi
i
xi M i xi M i
xi M i M eq
xi Rg,eq Rg ,i
,
xi
i Rg,i
Rg ,e q
分压力的确定:
由
piV=ni RT PVi=ni RT
ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T
ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)
cV
ln
T2 T1
Rg
ln
2 1
s
c
p
ln
T2 T1
Rg
ln
p2 p1
s
c
p
ln
2 1
cV
ln
p2 p1
热工基础-3-(1)-第三章 理想气体

∆T
若比热容取定值或平均值,有: ∆ h = c p ∆ T
∆h = c p
T2 T1
∆T
3. 理想气体熵变化量的计算:
δ q du + pdv cv dT p ds = = = + dv T T T T cv dT p v cv dT dv = + dv = + Rg T T v T v
同理:
δ q dh − vdp c p dT v ds = = = − dp T T T T c p dT p v c p dT dp = − dp = − Rg T T p T p
Rg ,eq = ∑ wi Rg ,i
i
作业:P103-104
3-10 3-15
思考题: P102
10
五. 理想气体的基本热力过程 热力过程被关注的对象:
1) 参数 ( p, T, v, u, h, s ) 变化 2) 能量转换关系, q , w, wt 。
思路:
1) 抽象分类:
p
v T
s
n
基本过程 2) 简化为可逆过程 (不可逆再修正)
R = 8.314 J/(mol ⋅ K)
R 是一个与气体的种类
无关,与气体的状态也 无关的常数,称为通用 (摩尔)气体常数。
R = M ⋅ Rg
例题3.1: 已知体积为0.03m3的钢瓶内装有氧气,初 始压力p1=7×105Pa,温度t1=20℃。因泄漏,后 压力降至p2=4.9×105Pa ,温度未变。问漏去多少 氧气? 解:取钢瓶的容积为系统(控制容积),泄漏过 程看成是一个缓慢的过程。初终态均已知。假定 瓶内氧气为理想气体。根据状态方程:
V
0 m
= 22 . 414 m
工程热力学理想气体的热力性质及基本热力过程

气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p
令
cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
2. 通用气体常数 R (也叫摩尔气体常数)
气体常数之所以随气体种类不同而不同,是因为在同 温、同压下,不同气体的比容是不同的。如果单位物 量不用质量而用摩尔,则由阿伏伽德罗定律可知,在 同温、同压下不同气体的摩尔体积是相同的,因此得
到通用气体常数 R 表示的状态方程式:
1mol方程 pVm RT 或 pV nRT n mol方程
14
(3)cp与cv关系
气体在定压下受热时,由于温度升高的同时, 还要克服外力膨胀做功,而在定容过程中,并 不膨胀对外做功,故同样升高1K,定压时比定 容下受热需要更多的热量,也就意味着定压比 热比定容比热大。
对理想气体,两者关系为:
迈耶公式
cp cv Rg
C p,m CV ,m R
K为比热容比 (绝热指数)
6
二、理想气体 状态方程
1、理想气体的状态方程式
理想气体在任一平衡状态时p、v、T之间关系的函数关 系即理想气体状态方程式,或称克拉贝龙(Clapeyron)
方程。
pv RgT 或 pV mRgT
•式中:Rg为气体常数(单位J/kg·K),与气体所
处的状态无关,随气体的种类不同而异。 •应用时注意单位:p的单位pa;v的单位m3/kg;T 的单位K。
第三章 理想气体的性质
1
本章基本要求
1.掌握理想气体的概念及理想气体状态方程的各种 表达形式,并能熟练运用;
2.理解理想气体比热容的概念及影响因素,掌握理 想气体比热容的分类;能够熟练利用平均比热容 表或定值比热容进行热量的计算;
3.掌握理想气体的热力学能及焓的特点,能够进行 理想气体的热力学能、焓及熵变化量的计算;
4
哪些气体可当作理想气体
当实际气体 p 很小, V 很大, T不 太低时, 即处于远离液态的稀薄状态 时, 可视为理想气体。
T>常温,p<7MPa
的双原子分子
理想气体
O2,发动机和航空发动机以空气为主的燃气等
三原子分子(H2O, CO2)一般不能当作理想气体 特殊,如空调的湿空气,高温烟气的CO2 ,可以
12
比热容分类
定压 比热容
比热容
定容 比热容
定压质量
c 比热容 p
定压容积
c 比热容 p’
定压摩尔 定容质量
c c 比热容 pm 比热容 v
定容容积
c 比热容 v’
定容摩尔
c 比热容 vm
比热容名称 质量比热容 千摩尔比热容
容积比热容
物质量的单位 千克
千摩尔 标准状态下立
方米
符号表示
单位
c
J/(kg·K)或kJ/(kg·K)
物量
1 kg 理想气体 m kg 理想气体 1 mol 理想气体 n mol 理想气体
方p1程v1应用p2v2
T1
T2
p1V1 p2V2
T1
T2
10
3-2 理想气体的比热容
一、比热容的定义及单位 1、比热容定义
热容量:物体温度升高1K(或1℃)所需的热量
称为该 物体的热容量,单位为J/K.
mc Q 单位:J / K
dT
比热容:单位物量的物体温度升高1K (1℃)所
需的热量称为比热容,用 c表示,单位由物量 单位决定。
c q 单位:J /(单位物量 K )
dT
11
2、比热容分类及单位
质量比热容:单位质量物质的热容量,用c
按 物
表示,单位为J/(kg·K);
量 单
摩尔比热容:1mol物质的热容量,用Cm表
2.实际气体:实际气体是真实气体,在工程使用范 围内离液态较近,分子间作用力及分子本身体 积不可忽略,热力性质复杂,工程计算主要靠 图表。如:电厂中的水蒸气、制冷机中的氟里 昂蒸汽、氨蒸汽等。
理想气体是实际气体p0的极限情况。
3
理想气体模型
1. 分子之间没有作用力 2. 分子本身不占容积
现实中没有理想气体
•式中:Vm=MV—气体摩尔体积(m3/mol); • R=MRg—通用气体常数[J/(mol.K)] •通用气体常数不仅与气体状态无关,与气体的种类
也无关。 R 8.314J /(mol K)
8
气体常数与通用气体常数的关系
pV
nRT
m M
RT
pV mRgT
Rg
R M
8314 M
或
R MRg
4.掌握理想气体的四个基本热力过程(即定容、定 压、定温及绝热过程)的状态参数和能量交换特 点及基本计算,以及上述过程在p-v 图和T-s图上 的表示;
2
3-1 理想气体及其状态方程
一、实际气体与理想气体
1.理想气体:是一种假象的气体模型,气体分子是 一些弹性的、不占体积的质点,分子之间没有 相互作用力。
5
提出理想气体概念的意义
简化了物理模型,不仅可以定性分析气体某些热现象, 而且可定量导出状态参数间存在的简单函数关系。
下列情况下,可将实际气体视为理想气体 温度较高、压力较低、远离液态,比体积较大时。 如:在常温、常压下H2、O2、N2、CO2、CO、He及空气、燃
气、烟气等均可作为理想气体处理,误差不超过百分之 几。因此理想气体的提出具有重要的实用意义。
Cm J/(mol·K)或kJ/(mol·K)
c′
J/(m3·K)或Kj/(m3·K
13
二、影响比热容的因素
1、过程特性对比热容的影响 同一种气体在不同条件下,如在保持容积不变
或压力不变的条件下加热,同样温度升高1K所 需的热量是不同的。 (1)定容比热容(cv):在定容情况下,单位物 量的气体,温度升高1K所吸收的热量。 (2)定压比热容(cp):在定压情况下,单位 物量的气体,温度升高1K所吸收的热量。
Rm=8314[J/kmol.K],与气体种类和状态无关, 而Rg与气体种类有关,与状态无关。
M 为气体的摩尔质量,单位为(kg/kmol)
例:空气的气体常数为
R 8314
Rg
M
287J /(kg.K) 28.96
9
不同物量下理想气体的状态方程式及应用
方程式
pv RgT pV mRgT pVm RT pV nRT
位 示,单位J/(mol·K);
分
容积比热容:标准状态下,1m3 的物质的热
容量,用c’表示,单位为J/(m3·K);
按 三者之间的关系: Cm M c 22.4 c
加 定容比热容(cv):在定容情况下,单位物量的气
热
体,温度升高1K所吸收的热量。
条 件 分
定压比热容(cp):在定压情况下,单位物量的 气体,温度升高1K所吸收的热量。
2. 通用气体常数 R (也叫摩尔气体常数)
气体常数之所以随气体种类不同而不同,是因为在同 温、同压下,不同气体的比容是不同的。如果单位物 量不用质量而用摩尔,则由阿伏伽德罗定律可知,在 同温、同压下不同气体的摩尔体积是相同的,因此得
到通用气体常数 R 表示的状态方程式:
1mol方程 pVm RT 或 pV nRT n mol方程
14
(3)cp与cv关系
气体在定压下受热时,由于温度升高的同时, 还要克服外力膨胀做功,而在定容过程中,并 不膨胀对外做功,故同样升高1K,定压时比定 容下受热需要更多的热量,也就意味着定压比 热比定容比热大。
对理想气体,两者关系为:
迈耶公式
cp cv Rg
C p,m CV ,m R
K为比热容比 (绝热指数)
6
二、理想气体 状态方程
1、理想气体的状态方程式
理想气体在任一平衡状态时p、v、T之间关系的函数关 系即理想气体状态方程式,或称克拉贝龙(Clapeyron)
方程。
pv RgT 或 pV mRgT
•式中:Rg为气体常数(单位J/kg·K),与气体所
处的状态无关,随气体的种类不同而异。 •应用时注意单位:p的单位pa;v的单位m3/kg;T 的单位K。
第三章 理想气体的性质
1
本章基本要求
1.掌握理想气体的概念及理想气体状态方程的各种 表达形式,并能熟练运用;
2.理解理想气体比热容的概念及影响因素,掌握理 想气体比热容的分类;能够熟练利用平均比热容 表或定值比热容进行热量的计算;
3.掌握理想气体的热力学能及焓的特点,能够进行 理想气体的热力学能、焓及熵变化量的计算;
4
哪些气体可当作理想气体
当实际气体 p 很小, V 很大, T不 太低时, 即处于远离液态的稀薄状态 时, 可视为理想气体。
T>常温,p<7MPa
的双原子分子
理想气体
O2,发动机和航空发动机以空气为主的燃气等
三原子分子(H2O, CO2)一般不能当作理想气体 特殊,如空调的湿空气,高温烟气的CO2 ,可以
12
比热容分类
定压 比热容
比热容
定容 比热容
定压质量
c 比热容 p
定压容积
c 比热容 p’
定压摩尔 定容质量
c c 比热容 pm 比热容 v
定容容积
c 比热容 v’
定容摩尔
c 比热容 vm
比热容名称 质量比热容 千摩尔比热容
容积比热容
物质量的单位 千克
千摩尔 标准状态下立
方米
符号表示
单位
c
J/(kg·K)或kJ/(kg·K)
物量
1 kg 理想气体 m kg 理想气体 1 mol 理想气体 n mol 理想气体
方p1程v1应用p2v2
T1
T2
p1V1 p2V2
T1
T2
10
3-2 理想气体的比热容
一、比热容的定义及单位 1、比热容定义
热容量:物体温度升高1K(或1℃)所需的热量
称为该 物体的热容量,单位为J/K.
mc Q 单位:J / K
dT
比热容:单位物量的物体温度升高1K (1℃)所
需的热量称为比热容,用 c表示,单位由物量 单位决定。
c q 单位:J /(单位物量 K )
dT
11
2、比热容分类及单位
质量比热容:单位质量物质的热容量,用c
按 物
表示,单位为J/(kg·K);
量 单
摩尔比热容:1mol物质的热容量,用Cm表
2.实际气体:实际气体是真实气体,在工程使用范 围内离液态较近,分子间作用力及分子本身体 积不可忽略,热力性质复杂,工程计算主要靠 图表。如:电厂中的水蒸气、制冷机中的氟里 昂蒸汽、氨蒸汽等。
理想气体是实际气体p0的极限情况。
3
理想气体模型
1. 分子之间没有作用力 2. 分子本身不占容积
现实中没有理想气体
•式中:Vm=MV—气体摩尔体积(m3/mol); • R=MRg—通用气体常数[J/(mol.K)] •通用气体常数不仅与气体状态无关,与气体的种类
也无关。 R 8.314J /(mol K)
8
气体常数与通用气体常数的关系
pV
nRT
m M
RT
pV mRgT
Rg
R M
8314 M
或
R MRg
4.掌握理想气体的四个基本热力过程(即定容、定 压、定温及绝热过程)的状态参数和能量交换特 点及基本计算,以及上述过程在p-v 图和T-s图上 的表示;
2
3-1 理想气体及其状态方程
一、实际气体与理想气体
1.理想气体:是一种假象的气体模型,气体分子是 一些弹性的、不占体积的质点,分子之间没有 相互作用力。
5
提出理想气体概念的意义
简化了物理模型,不仅可以定性分析气体某些热现象, 而且可定量导出状态参数间存在的简单函数关系。
下列情况下,可将实际气体视为理想气体 温度较高、压力较低、远离液态,比体积较大时。 如:在常温、常压下H2、O2、N2、CO2、CO、He及空气、燃
气、烟气等均可作为理想气体处理,误差不超过百分之 几。因此理想气体的提出具有重要的实用意义。
Cm J/(mol·K)或kJ/(mol·K)
c′
J/(m3·K)或Kj/(m3·K
13
二、影响比热容的因素
1、过程特性对比热容的影响 同一种气体在不同条件下,如在保持容积不变
或压力不变的条件下加热,同样温度升高1K所 需的热量是不同的。 (1)定容比热容(cv):在定容情况下,单位物 量的气体,温度升高1K所吸收的热量。 (2)定压比热容(cp):在定压情况下,单位 物量的气体,温度升高1K所吸收的热量。
Rm=8314[J/kmol.K],与气体种类和状态无关, 而Rg与气体种类有关,与状态无关。
M 为气体的摩尔质量,单位为(kg/kmol)
例:空气的气体常数为
R 8314
Rg
M
287J /(kg.K) 28.96
9
不同物量下理想气体的状态方程式及应用
方程式
pv RgT pV mRgT pVm RT pV nRT
位 示,单位J/(mol·K);
分
容积比热容:标准状态下,1m3 的物质的热
容量,用c’表示,单位为J/(m3·K);
按 三者之间的关系: Cm M c 22.4 c
加 定容比热容(cv):在定容情况下,单位物量的气
热
体,温度升高1K所吸收的热量。
条 件 分
定压比热容(cp):在定压情况下,单位物量的 气体,温度升高1K所吸收的热量。