3第三章理想气体的热力性质和热力过程详解
合集下载
热工基础 第三章.理想气体的性质与热力过程

CV ,m McV xi M i cV ,i xi CV ,m,i
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p
气体的热力性质和热力过程

p2 = v1 p1 v2
由过程方程得
p∝
2' v
1
2'
q<0 q>0
s
12
3-4 理想气体的热力过程
4)功和热量
定容过程的功和热量的计算
内能变化量 焓的变化量 容积功
∆u = u2 − u1 = cv∆T ∆h = h2 − h1 = cp∆T w=0
热量
q = ∆u = ∫ cvdT
3-4 理想气体的热力过程
2.定压过程
1) 过程方程 p = 定值
ln T2 T1
−
Rg
ln
p2 p1
5. 迈耶公式
Rg
= cp − cV
∆s
=
cV
ln
T2 T1
+
Rg
ln
v2 v1
比热比
γ = cp cV
P39例题3-3,3-4
10
3-4 理想气体的热力过程
0.分析热力过程的内容和方法(假定过程是可逆过程) 1) 确定过程方程
2) 确定状态参数(基本状态参数)的变化规律 而对与任何过程有
−
Rg
ln
p2 p1
若取真实比热容,积分后的精确值查P308附表5
9
3-3 气体的热力性质
∆s
=
cp
ln T2 T1
−
Rg
ln
p2 p1
续8
由 p1v1 = RgT1 p2v2 = RgT2
可得 代入上式
即
p2v2 = T2 p1v1 T1
∆s
=
cp
ln
p2v2 p1v1
− Rg
ln
机械热力学第03章 理想气体的性质

注意: 不是标况时,1标准立方米的气体量不变,但体积变化。
三种比热的关系:
C m = Mc = 0.022414C'
比热与过程有关。常用的有:
定压热容(比定压热容)
cp
及
Cmp , c
' p
定容热容(比定容热容)
cV
' CmV , cV
1. c v
c= δq du + δw du pdv = = + dT dT dT dT ( A)
cv =
1 γ R g , cp = Rg γ 1 γ 1
理想气体可逆绝热过程的绝热指数k=γ
二、用比热计算热量
原理:
对c作不同的技术处理可得精度不同的热量计算方法: 1.定值比热容 工程计算,不用气体分子运动理论导出的结果,误差太大。 工程上,建议参照附表3提供的 常用气体在各种温度下的比热容值
u = u (T , v )
u u du = dT + dv T v v T
定容过程 dv=0
u cV = T v
若为理想气体
u = u(T)
du u du = cV = ( du = cVdT) dT T v dT
cV 是温度的函数
2.
cp
定压过程,dp = 0
第三章 理想气体的性质
基本概念和定律 热力学内容 工质热力性质 过程和循环 状态方程 理想气体 实际气体 比热 内能、焓和 内能、 熵的计算
§3-1 理想气体的概念
理想气体: 理想气体:满足 pv=RgT 理想气体是实际气体在低压高温时的抽象。 理想气体是实际气体在低压高温时的抽象。 实际气体可以近似看作理想气体的条件: 实际气体可以近似看作理想气体的条件: 通常压力下, T>(2.5-3)Tcr时 一般可看作理想气体。 通常压力下,当T>(2.5-3)Tcr时,一般可看作理想气体。 微观上讲,理想气体分子间没有力的作用,故U=U(T) 微观上讲,理想气体分子间没有力的作用,
工程热力学 第三章 理想气体的性质

11
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
比热容的概念
比热容是单位物量的物质升高1K或1℃所需 的热量。 根据物质的数量和经历的过程不同,可分为:
(1)比热容(质量热容) : 1kg物质的热容,c ,J/(kg·K)。 c q q dT dt
12
比热容的概念
(2)摩尔热容
1 mol物质的热容,Cm,J/(kmol· K)。 Cm Mc
s isi
❖1kg混合气体的比熵变为
d s
c i p,i
dT T
R i g,i
dip pi
❖1mol混合气体的熵变为
dmpp
49
课后思考题
❖理想气体的热力学能和焓是温度的单值函 数,理想气体的熵也是温度的单值函数吗?
❖气体的比热容cp、cv究竟是过程量还是状态 量
pp1p2 pK pi i1
41
道尔顿分压力定律
pi p
ni n
xi
pi xi p
即分压力与总压力之比等于摩尔分数(即气 体组分的摩尔数与总摩尔数之比)
42
亚美格分体积定律
❖混合气体中第 i 种组元处于与混合气体压力 和温度时所单独占据的体积称为该组元的 分体积,用 Vi 表示。
❖亚美格分体积定律:理想混合气体的总体 积等于各组元的分体积之和(仅适用于理 想气体)
的关系式
17
cv和cp的关系式
比热容比: c p cV
得 cp 1 Rg
联立式 cp cV Rg
cV
1
1
Rg
18
比热容和温度的关系
❖理想气体的 u 和 h 是温度的单值函数,所 以理想气体的 cV 和 cp 也是温度的单值函 数。
c ft a b t d t2 e t3
第三章__理想气体热力性质及过程

容积成分: i
Vi V
, i
1
摩尔成分: xi
ni n
, xi
1
换算关系:
i xi
i
xi M i xi M i
xi M i M eq
xi Rg,eq Rg ,i
,
xi
i Rg,i
Rg ,e q
分压力的确定:
由
piV=ni RT PVi=ni RT
ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T
ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)
cV
ln
T2 T1
Rg
ln
2 1
s
c
p
ln
T2 T1
Rg
ln
p2 p1
s
c
p
ln
2 1
cV
ln
p2 p1
理想气体

∆h = ∫ c p dT
T1
T2
平均比热容 平均比热容( 平均比热容(表) 定值比热容 热力性质表
∆u = cV ∆u = cV
t2
t1
⋅ (t 2 − t 1 ) ⋅ t 2 − cV
t1
∆h = c p
∆h = c p
t2 t1
⋅ (t 2 − t1 )
⋅ t2 − c p
t1 0° C
t2
0° C
热力学能 焓和熵
T p ∆s = c p ln 2 − Rg ln 2 T1 p1
∆h = c p ∆T = c p ∆t
ct =
t2
1
c 02°C ⋅t2 −c 01°C ⋅t1
t t
t2 −t1
定值比热容表
单原子气体
cV (C ,m) V
c p (Cp,m)
3 3 Rg ( R ) 2 2
双原子气体
0° C
⋅ t1
t2 0° C
⋅ t1
∆u = cV ∆T = cV ∆t
∆u = u 2 (T2 ) − u1 (T1 )
∆h = c p ∆T = c p ∆t
∆h = h2 (T2 ) − h1 (T1 )
西安交通大学热流中心
热工基础与应用 第三章
2、 理想气体的熵
ds =
δqre
T
=
du + pdv cV dT + pdv dT dv p / T = Rg / v = ds = cV + Rg → T T T v
混合气体 组成气体
1、分压力定律 : 分压力 :各组元在混合物温度
下单独占据混合物所占体积时 所产生的压力。
热工基础-3-(1)-第三章 理想气体

∆T
若比热容取定值或平均值,有: ∆ h = c p ∆ T
∆h = c p
T2 T1
∆T
3. 理想气体熵变化量的计算:
δ q du + pdv cv dT p ds = = = + dv T T T T cv dT p v cv dT dv = + dv = + Rg T T v T v
同理:
δ q dh − vdp c p dT v ds = = = − dp T T T T c p dT p v c p dT dp = − dp = − Rg T T p T p
Rg ,eq = ∑ wi Rg ,i
i
作业:P103-104
3-10 3-15
思考题: P102
10
五. 理想气体的基本热力过程 热力过程被关注的对象:
1) 参数 ( p, T, v, u, h, s ) 变化 2) 能量转换关系, q , w, wt 。
思路:
1) 抽象分类:
p
v T
s
n
基本过程 2) 简化为可逆过程 (不可逆再修正)
R = 8.314 J/(mol ⋅ K)
R 是一个与气体的种类
无关,与气体的状态也 无关的常数,称为通用 (摩尔)气体常数。
R = M ⋅ Rg
例题3.1: 已知体积为0.03m3的钢瓶内装有氧气,初 始压力p1=7×105Pa,温度t1=20℃。因泄漏,后 压力降至p2=4.9×105Pa ,温度未变。问漏去多少 氧气? 解:取钢瓶的容积为系统(控制容积),泄漏过 程看成是一个缓慢的过程。初终态均已知。假定 瓶内氧气为理想气体。根据状态方程:
V
0 m
= 22 . 414 m
工程热力学理想气体的热力性质及基本热力过程

气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p
令
cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
•
知道多变过程是热力过程从特殊到一般的更普遍的表达式,会运用
多变过程的规律进行过程的分析、计算。 能将理想气体的各种热力过程表示在p-v图和T-s图上。
本章难点
1. 比热容的种类较多,理解起来有一定的难度。应
注意各种比热容的区别与联系。在利用比热容计算过程 热量及热力学能和ቤተ መጻሕፍቲ ባይዱ的变化量时应注意选取正确的比热 容,不要相互混淆,应结合例题与习题加强练习。 2. 理想气体各种热力过程的初、终态基本状态参数
物质的量:n ,单位: mol(摩尔)。
摩尔质量: M ,1 mol物质的质量,kg/mol。
m 物质的量与摩尔质量的关系: n M
理想气体状态方程
1kmol物质的质量在数值上等于该物质的相对分子质量。
-3 M = 32.00 10 kg/mol 如 : O2
摩尔体积: Vm ,1 mol物质的体积, m3/mol。
p0Vm 0 101325 22.4141 103 R 8.314 T0 273.15
〔J/(mol· K) 〕
• 不同气体的气体常数Rg与通用气体常数R的关系:
R Rg M
例3-1 氧气瓶内装有氧气,其体积为0.025m3,压力表 读数为0.5MPa,若环境温度为20℃,当地的大气压力为0.1 MPa,求:(1)氧气的比体积;(2)氧气的物质的量。
解:(1)瓶中氧气的绝对压力为 p(0.50.1)1060.6106(Pa) 气体的热力学温度为 T273.1520293.15 ( K ) 气体常数为 R 8.314 Rg 259.8 J/(kgK)
M
32 10 3
根据公式(3-1)得氧气的比体积为 3/kg) RgT 259.8 293.15 ( m v 0.127 p 0.6 106 (2)根据公式(3-4)得氧气物质的量为 pV 0.6 106 0.025 n 0.6 106 6.154 (mol)
二、 理想气体状态方程
当理想气体处于任一平衡状态时,三个基本状态参 数之间满足:
称为理想气体状态方程 又称克拉贝龙方程式
pv RgT
Rg 气体常数,单位为J/(kg·K),其数值取决
于气体的种类,与气体状态无关。
理想气体状态方程
对于质量为mkg 的理想气体,有
pV mRg T
SI制中,物质的量以mol (摩尔)为单位,因此, 还 有其它形式的理想气体状态方程式。
第三章 理想气体的热力性质和热力过程
学习导引
理想气体是一种假想的物理模型,对于研究热力现 象具有重要意义。 本章的主要内容分为两大部分:理想气体的热力性 质,包括理想气体状态方程、理想气体的比热容及热 量计算、理想气体的热力学能和焓变化量的计算;理 想气体的热力过程,包括基本热力过程和多变过程的 过程方程式、状态参数变化规律、能量交换规律及在 p-v图和T-s图上的表示。
间的关系式以及过程中热力系与外界交换的热量和功量
的计算式较多,如何记忆和运用是一难点,应结合例题 与习题加强练习。
第一节 理想气体及状态方程
一、理想气体与实际气体
1. 什么是理想气体 ? ——所谓理想气体是一种经过科学抽象的假想气体,这种 气体必须符合两个假定: (1)气体的分子是一些弹性的、不占体积的质点。 (2)分子间没有相互作用力。 • 实验证明,当气体的压力不太高,温度不太低时,气体分子间 的作用力及分子本身的体积可以忽略,此时这些气体可以看作 理想气体。 • 如在常温下,压力不超过5MPa的O2、N2、H2、CO、CO2 等 及其混合物、大气或燃气中所含的少量水蒸气,都可作为理想 气体处理。 • 否则为实际气体, 如蒸汽动力装置中的水蒸汽、各种制冷剂蒸 汽。
∵ pv RgT
若令RMRg , n V
Vm
∴
pVm MRgT
,则有
pV nRT
R摩尔气体常数(又称为通用气体常数), J/(molK)。
理想气体状态方程
根据阿佛加德罗定律:同温、同压力下,同体积的各 种气体具有相同的分子数。它表明:同温度、同压下,各 种气体的摩尔体积都相同。所以R的值是和气体的状态无 关,也是和气体的性质无关的常量。可由任意气体在任一 状态下的参数确定。 已 知 在 物 理 标 准 状 态 ( 压 力为 101325Pa , 温 度 为 273.15K) 下, 1kmol 任何气体所占有的体积为 22.41410 m3。故有
•三种比热容的关系:
CmMc0.0224c
二、影响比热容的主要因素
1.热力过程特性对比热容的影响
气体的比热容与热力过程的特性有关。在热力过程中, 最常见的情况是定容加热过程或定压加热过程。因此,比 热容相应的分为比定容热容和比定压热容。 • 比定容热容
—— 单位质量气体在定容过程中(即容积不变)
学习要求
• 理解理想气体的含义,熟练掌握并正确应用理想气体的状态方程。
•
理解比热容的物理意义以及影响比热容的主要因素;理解真实比热
容、定值比热容和平均比热容的含义,能正确使用定值比热容和平 均比热容计算过程热量。
•
•
掌握理想气体热力学能和焓变化量的计算。
掌握理想气体基本热力过程的过程方程式和基本状态参数变化的关 系式,能正确计算理想气体基本热力过程的热量和功量。
RT 8.314 293.15
第二节 理想气体的比热容及热量计算
一、比热容的定义和单位
——物体温度变化1K(或1℃)所需要吸收或放
出的热量称为该物体的热容。
• 根据不同的物量,存在三种比热容:
比热容(质量热容 ): 1kg物质的热容 , 符号为c ,单位为J/(kg· K)或kJ/(kg· K); 摩尔热容: lmol物质的热容, 符号为Cm,单位为J/(mol· K)或kJ/(mol· K); 体积热容: 标准状态(1atm,273.15K)下1m3物质的热容,符号为c,单位为 J/(m3· K)或kJ/(m3· K)。
温度变化 1K (或 1℃)所需要吸收或放出的热量称为比 定容热容,也称为质量定容热容,用符号cV表示。 δqV δqV cV 或 cV dt dT