IPP在基于小波域Wiener滤波的图像去噪中的应用

合集下载

基于修正维纳滤波的小波包变换图像去噪

基于修正维纳滤波的小波包变换图像去噪

基于修正维纳滤波的小波包变换图像去噪李云红;伊欣【期刊名称】《计算机工程与应用》【年(卷),期】2012(048)021【摘要】图像去噪是图像处理中一个非常重要的环节.为了改善降质图像质量,根据Donoho提出的小波阈值去噪算法,分析了维纳滤波原理,提出了一种基于修正维纳滤波的小波包变换图像去噪方法.利用修正维纳滤波对噪声图像进行处理,用处理后的图像计算噪声的标准方差,以此作为小波包的阈值.利用小波包对维纳滤波后的图像进行分解,实现对图像的低频和高频部分分别进行分解,用计算出的阈值对小波包树系数进行软阈值处理.利用小波包逆变换来获取去噪后的图像.结果表明:在噪声方差为0.01时,经该算法去噪后图像的PSNR比小波包自适应阈值去噪后的PSNR 高出8.8 dB.该算法不仅能有效地去除加性高斯白噪声,而且能很好地保留边缘信息,极大地改善了图像的视觉质量.%Image denoising is an important step in the field of image processing. In order to improve the quality of the degraded images, based on wavelet threshold denoising algorithm put forward by Donoho, the theory of Wiener filtering is analyzed and a denoising method using wavelet packet transforms based on the Wiener filtering is proposed. The noisy image is processed by the correctional Wiener filtering and the noise standard deviation is calculated by the remaining signal of Wiener filter to be regarded as the threshold of wavelet packet transforms. The image is decomposed into the low frequency part and high frequency part by using wavelet packet transformand the wavelet packet tree coefficients are processed with soft threshold by using the level dependent adaptive threshold. The denoising image is acquired by using wavelet packet inverse transform. The results indicate that, the Peak Signal-to-Noise Ratio (PSNR) gain of the proposed algorithm has reached 8.8 dB higher than denoising method on wavelet packet adaptive threshold when the noise variance is 0.01. The algorithm is more efficient in noise removal and edge reservation for all the noise images with different noise variances.【总页数】4页(P182-185)【作者】李云红;伊欣【作者单位】西安工程大学电子信息学院,西安710048;西安工程大学电子信息学院,西安710048【正文语种】中文【中图分类】TN911.73【相关文献】1.基于小波包变换与自适应阈值的SMT焊点图像去噪 [J], 赵辉煌;周德俭;吴兆华;李春泉;李康满2.基于小波包变换与Wiener滤波的SMT焊点图像去噪技术 [J], 赵辉煌;周德俭;吴兆华3.基于指数阈值的小波包变换图像去噪方法 [J], 郎文杰4.一种基于全变差正则化与小波包变换的图像去噪算法 [J], 左平;王洋;申延成5.基于小波包变换与自适应阈值的SAR图像去噪 [J], 刘西川;艾未华;高太长;韩小冬因版权原因,仅展示原文概要,查看原文内容请购买。

小波分析在图像降噪中的应用

小波分析在图像降噪中的应用
摘 要 :针 对 图 像 在 采 集 与 传 输 中 受 到 的 噪 声 污 染 , 为提 高 图像 信 噪 比 , 提 升 图 像 准 确 性 与 实 用
性, 基 于 小波 分析 应 用在 图像 降 噪领 域 的原 理 与 优 势 , 在 D o n o h o阈 值 降 噪 方 法 基 础 上 , 提 出 了一 种 改
ma g e Pr o ce s s i n g a nd Mu l t i me d i a Te c h n o l o g y
小 波分析在 图像降噪 中的应用
董 广 杰 ,林 旭 梅 ( 青 岛 理 工 大 学 自动 化 工 程 学 院 , 山东 青 岛 2 6 6 5 2 0 )
Ap p l i c a t i o n o f wa v e l e t a n a l y s i s i n i ma g e d e n o i s i n g
D o n g G u a n g j i e , L i n X u me i
( A u t o ma t i z a t i o n E n g i n e e r i n g C o l l e g e , Q i n g d a o T e c h n o l o g i c a l U n i v e r s i t y , Q i n g d a o 2 6 6 5 2 0 , C h i n a )
Ab s t r a c t :h n a g e s a r e c o r r u p t e d b y t h e n o i s e s d u r i n g t h e i r a c q u i s i t i o n o r t r a n s mi s s i o n , S O d e n o i s i n g i s e s s e n t i a l i n o r d e r t o i m— p o r v e t h e S i g n a l t o No i s e R a t i o a n d t h e i r a c c u r a c y a n d p r a c t i c a l i t y . An i mp r o v e d i ma g e d e n o i s i n g me t h o d i s p r o p o s e d b a s e d o n h a r d t h r e s h o l d a l l d s o f t t h r e s h o l d me t h o d r a i s e d b y D o n o h o , w h i c h i s a l l a p p l i c a t i o n o f t h e p i r n c i p l e s a n d a d v a n t a g e s o f w a y e l e t a n a l y s i s u s e d i n t h e i f l e d o f i ma g e d e n o i s i n g . I n o r d e r t o g e t a mo r e e f f e c t i v e t h r e s h o l d f u n c t i o n, t h e p a r a me t e s r o f t h e i mp r o v e d f o r mu l a c a n b e s e l e e t e d a c c o r d i n g t o i ma g e s . Th e a d v a n t a g e o f t h i s me t h o d i s t h e c a l c u l a t i o n o f w a v e l e t c o e f i f c i e n t s , e s p e c i a l l y i n t h e i n a c c u r a e i y e r r o r s o f l a r g e c o e f f i c i e n t s , t h e y a r e s ma l l e r t h a n s ma l l c o e ic f i e n t s , S O t h e l e v e l o f d e n o i s i n g i s i mp r o v e d . F r o m n mt l a b s i mu l a t i o n r e — s u i t s a n d d e n o i s i n g o f a c t u a l i ma g e s 。 t h i s me t h o d i S b e t t e r t h a n t h e t r a d i t i o n a l me t h o d s ma i n l y i 1 3 t h e a s p e c t o f l f e x i b l e s e l e c t i o n ( ) t t h r e s h o l d, s mo o t h t r e a t me n t o f ma r g i n a l i mf o r ma t i o n a n d g o o d e f e c t o f d e n o i s i n g .

基于小波变换的图像去噪算法研究与应用

基于小波变换的图像去噪算法研究与应用

基于小波变换的图像去噪算法研究与应用一、引言图像去噪是图像处理领域的重要问题,随着数字图像处理技术的发展与应用,对图像的去噪要求越来越高。

因此,在图像领域中,图像去噪一直是研究的热点之一。

二、小波变换小波变换是一种信号处理方法,可以用于信号的压缩、去噪、特征提取等。

小波变换通过分析信号中的局部细节信息,可以将信号分解为不同频率的子带,从而更好地处理信号中的各个部分。

三、小波变换在图像去噪中的应用1.小波阈值去噪法小波阈值去噪法是一种基于小波分解的图像去噪方法,该方法通过分解图像为不同频率的小波子带,再对各自的子带进行去噪处理,最后将各子带结果合成为一张图像。

该方法的核心在于确定小波子带的阈值,目前常用的方法有软阈值和硬阈值两种。

软阈值和硬阈值的区别在于,软阈值会使小于阈值的子带信号变为0,但不会对大于阈值的信号做限制;硬阈值和软阈值类似,只是会使小于阈值的子带信号全部变为0。

2.双阈值小波去噪法双阈值小波去噪法是一种基于小波变换的两阶段去噪方法,该方法首先通过小波分解将图像分解为不同频率的小波子带,然后采用两个阈值对各子带进行去噪处理,其中一个阈值用于对高频子带进行去噪,另一个阈值用于对低频子带进行去噪。

该方法的主要优点在于,可以有效地去除噪声的同时,尽可能地保留图像中的细节和纹理信息。

四、实验分析与结果本文选择了几组不同的噪声图像进行去噪处理,将分别采用小波阈值去噪法和双阈值小波去噪法进行实验处理。

实验结果表明,采用小波阈值去噪法能够显著地去除高斯噪声和椒盐噪声;双阈值小波去噪法在去除图像噪声的同时,能够有效地保留图像中的细节信息。

五、结论小波变换是一种重要的信号处理方法,在图像去噪方面得到了广泛的应用。

通过实验对比,小波阈值去噪法和双阈值小波去噪法均能达到不错的去噪效果,可根据不同的噪声类型和噪声强度进行选择和应用。

未来,小波变换方法预计将得到更广泛的应用,为图像处理及相关领域的研究提供更有力的工具和技术。

一种基于小波变换与维纳滤波的电力通信消噪方法

一种基于小波变换与维纳滤波的电力通信消噪方法

数字信号处理课程论文论文题目:一种基于小波变换与维纳滤波的电力通信消噪方法姓名:班级:学号:一种基于小波变换与维纳滤波的电力通信消噪方法摘要:电力线作为信息媒介主要应用于负荷调度、远方监测、配电设备的监视和控制,f还可以用于长距离的电话通信和地区家庭电器的监视和控制。

电力网络中的干扰噪音,其频谱具有1/ 的特点和极强的自相关性,是影响电力线载波通信质量的重要因素之一。

小波分析是处理信号的重要工具,选择合适的小波分析可以将有色含噪信号进行白化处理,然后通过维纳滤波,能达到较好的消噪目的。

本文介绍了一种将小波分析与维纳滤波相结合的消噪方法,用于电力通信系统中噪声的消除,并通过计算、理论分析证明该方法具有较大的实用价值和较强的可行性。

关键词:电力通信; 消噪;维纳滤波;小波变换0引言电力线载波通信技术出现于20世纪20年代初,电力线作为信息媒介的应用主要有以下几种:负荷调度、远方监测、配电设备的监视和控制,它还可以用于长距离的电话通信和地区家庭电器的监视和控制[1]。

对于信号传输来讲,电力线是一个非常大的噪声源。

所有的电器都是连接在配电线上的,它们都可能带有开关,这些开关在配电线上将引入很大的电压或电流的尖脉冲。

这种尖脉冲是由开关切断负荷产生的,且同步于50 Hz工频信号。

一般这些谐波比50 Hz基频幅度要小,但当配电线上传输信号时,这些谐波的影响将是非常重要的,特别当信号通过长线路呈很大衰减时,其影响就尤为突出。

由于电力线路的固有特点,如负荷情况复杂、噪声干扰强、信号衰减大、信道容量小等,要实现高质量的电力网络通信有相当大的困难。

必须设计有效的方法来消除电力噪音,保障电力通信的可靠性。

1电力噪音的统计分析电力线的各种干扰噪声主要来源于4个方面:可控硅(SCR)等电力电子器件产生的50Hz 的倍频谐波;由于负载和电网不同步而产生的具有平滑功率谱的干扰;开关电子设备产生的单脉冲噪声;其它类的干扰,如调频设备、大气的变化等。

基于小波分析图像去噪的应用与实现

基于小波分析图像去噪的应用与实现
E L E C T R O N I C S WO R L D・技 术 交 流
基 于 小 波 分 析 图 像 去 噪 的 应 用 与Байду номын сангаас实 现
山 东科技 大学 电气与 自动化工程 学院 王 书源 韩 璐 刘 白冰 于巧娜 高 佳
【 摘 要 】针对 图像使 用的广度和 深度 ,图像 的 消噪处理 尤为重要 ,现有 多种 图像去 噪方法 。对比 以傅 里叶分析 为基础 的 图像 去噪 方法数 学方法 ,提 出小波分析 图像 去噪处理 方法 。继承傅 里叶去 噪的优 点 ,解决其 时间 窗和频 率窗的乘积 满足 测不 准关 系的缺 点。 同时 小波分 析具有基 函数不唯 一的特 点 ,可 以选择 更为适 合的函数 ,对 图像进行 处理 ,达 到 消噪 的效果 ,简化 图像去噪 的复杂程度 。小波分析 去噪分为 图像 的分解 、消噪、重组 三个部分 。v X MAT L A B 为 实现 平 台,可 以通过M文件 编写和 小波分析 工具 箱 两种 方式 实现 图像 消噪 。通过文 中图片 消噪 结果 的对比表 明,小波分析 可 以较好 的实现 图像 的去噪。并且 实现方式 多样化 、过程 简单化 、处理灵活化 。
wh i c h a r e i ma g e de c o mp o s i t i o n, n o i s e e l i mi n a t i o n a n d r e s t r u c t u r i n g. 、 ^ , i t h M ATLAB a s he t pl a t f o r m , we c a n r e a l i z e he t i ma g e d e no i s i n g b y t wo wa y s , wh i c h re a u s i ng M il f e a n d wa v e l e t na a l ys i s t o o l b o x .Th r o u g h he t c o mp a r i s o n o f t h e r e s u l t s o f i ma g e

基于平稳小波的维纳滤波射线图像去噪算法研究

基于平稳小波的维纳滤波射线图像去噪算法研究
程 见图 l 。
处理后 图像
线 图像 去噪过 程 中 ,能够取 得很 好 的去噪效果 。
维 纳 滤 波最早 由 Wi e 提 出 ,并应 用 于一 维信 e r n
原始 图像 f 小波 正变换 H
维纳 滤波 一 小波逆变换 H
图 1 维 纳 滤 波 的 去 噪 过 程
维纳 滤波是 一种 自适 应最 小均 方误差 滤波器 。维 纳 滤波的 方法是一 种统计 方 法 ,它用 的最 优准则 是基 于 图像和 噪声各 自的相关 矩 阵 ,它 能根据 图像 的局部
基 于平 稳 小 波 的维纳 滤 波射 线 图像 信 工 程 学 院 , 山 西 太 原 中 005) 30 1
摘 要 : 维 纳 滤 波 的 原 理 应 用 到基 于平 稳 小 波 的 X 射线 图像 去 噪 过 程 , 究 了一 种基 于 平 稳 小 波 的 x 射 线 图 将 研
维纳 滤波是 求解 最佳线 性过 滤器 的一种方法 。当 信 号与噪 声 同时作用 于系统 时 ,希 望设计 的滤 波器性 能使 滤波 器输 出端 以均 方误差 最小 准则尽 量复现输 入 信号 ,从 而使输 出噪声得 到最 大 的抑制 ,称这种 滤波 器为最 佳线 性过 滤器 。维 纳滤 波是根 据信 号的 自相关 函数 ( 或信号 的功 率谱 ) 输 出的观 测值 ,在 均方误 差 及 最小 的意义下 ,解 出最佳 滤波器 的单位 抽样 响应 ,以 此 对输 入信号作 出最 优估计 。 假定 被加性 噪声 污染 的图像某 细节 尺度上 的小波
方 差 调 整 滤 波 器 的 输 出 ,局 部 方 差 越 大 ,滤 波 器 的 平
与 ( , 互 不相 关 、 值 为 0 方差 为 盯 的高 斯 自噪 - ) , t 均 、

毕业设计 傅里叶与小波变换在图像去噪中的应用

傅里叶变换与小波变换在图像去噪中的应用摘要图像去噪是图像处理研究的一个重要话题。

图像在获取和传输的过程中经常要受到噪声的污染。

噪声对图像质量有着非常重要的影响。

所以,必不可免的图像去噪成为图像分析和处理的重要技术。

用传统傅里叶变换对信号去噪的基本思想是对含噪信号进行傅里叶变换后使用低通或带通滤波器滤除噪声频率,然后用逆傅里叶变换恢复信号。

但是傅里叶变换很难将有用信号的高频部分和由噪声引起的高频干扰有效地区分开。

小波分析是傅里叶分析思想方法的发展和延拓,与傅里叶分析密切相关。

而小波阈值去噪方法是众多图象去噪方法中的佼佼者,它利用图象的小波分解后,各个子带图象的不同特性,选取不同的阈值,从而达到较好的去噪效果。

而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的显微镜。

本文概述了傅里叶变化与小波变换去噪的基本原理及其比较。

对常用的几种去噪方法进行了分析。

最后结合理论分析和实验结果。

在实际的图像处理中,实现了小波变换去噪法的处理。

关键词:小波变换,图像去噪,MatlabApplication of image de-noising based on Fouriertransform and wavelet transformABSTRACTImage de-noising is an eternal theme of the image processing research. Image acquisition and transmission process often subject to noise pollution. The noise has a very important impact on image analysis. So, the image de-noising become an important technology for image analysis and processing.The basic idea in the signal de-noising using the traditional Fourier transform is a Fourier transform of the noisy signal using a low-pass or band-pass filter to remove the noise frequency and then inverse Fourier transform signal. But Fourier transform is difficult to be useful to the high frequency part of signal and high frequency noise caused by interference efficiently. Wavelet analysis is a Fourier analysis of the development and continuation of the way of thinking, has been closely related to the Fourier analysis. Wavelet threshold method is the leader in the number of image de-noising method, its use of the wavelet decomposition, the different characteristics of each sub-band image, select a different threshold, so as to achieve better de-noising effect . Following the Fourier transform after momentary frequency analysis tool, has the characteristics of the local nature and multi-resolution analysis in the frequency domain at the same time, not only to meet a variety of de-noising requirements, such as low-pass, Qualcomm, random noise removal, and compared with the traditional de-noising method has unparalleled advantages to become a powerful tool in signal analysis, known as the analytical signal mathematical microscope.This article provides an overview of the basic principles of the Fourier transform and wavelet transform de-noising. Several commonly used de-noising method are analyzed . Finally, the theoretical analysis and experimental results, discussed the factors that affect the de-noising performance in a complete de-noising algorithm. In practical image processing, the processing of the wavelet transform de-noising method.KEY WORDS: wavelet transform, image de-noising, Matlab目录摘要 (I)ABSTRACT (II)第一章绪论 ................................................ - 1 -1.1 课题研究背景和意义 ................................. - 1 -1.2 图像与噪声 ......................................... - 2 -1.2.1图像噪声描述及分类............................ - 2 -1.2.2图像去噪...................................... - 2 -1.2.3图像去噪的评价标准............................ - 3 -1.3 小波分析在图像处理中的应用 ......................... - 4 -1.4 本论文主要工作和结构安排 .......................... - 4 - 第二章傅里叶变换 .......................................... - 5 -2.1傅里叶变换的发展.................................... - 5 -2.1.1傅里叶变换的提出.............................. - 5 -2.1.2傅里叶变换意义................................ - 5 -2.1.3傅里叶变换定义................................ - 5 -2.2傅里叶变换.......................................... - 6 -2.3傅里叶变换的应用.................................... - 7 - 第三章小波变换理论基础 .................................... - 8 -3.1小波的产生.......................................... - 8 -3.1.1小波变换的背景及意义.......................... - 8 -3.1.2小波发展简史[7] ................................ - 8 -3.2小波图像去噪技术的国内外研究现状和研究热点.......... - 9 -3.3小波变换理论....................................... - 10 -3.3.1从傅里叶变换到小波变换....................... - 10 -3.3.2小波变换..................................... - 12 - 第四章图像去噪法分析 ..................................... - 14 -4.1传统去噪法分析..................................... - 14 -4.1.1空域去噪法................................... - 14 -4.1.2 频域低通滤波法[14] ........................... - 15 -4.2基于小波变换的图像去噪技术......................... - 16 -4.2.1小波图像去噪................................. - 17 -4.2.2小波去噪几种方法............................. - 17 - 第五章基于Matlab的图像去噪及仿真 ........................ - 20 -5.1小波阈值去噪概述................................... - 20 -5.1.1阈值去噪简述................................. - 20 -5.1.2小波阈值去噪方法............................. - 20 -5.2基于MATLAB的小波去噪函数简介...................... - 22 -5.3小波去噪与常用去噪方法的对比试验................... - 23 -5.3.1图像系统中的常见噪声......................... - 23 -5.3.2几种去噪常用方法对比......................... - 24 -5.3.3结果对比与分析............................... - 26 - 第六章设计总结及展望 ..................................... - 28 - 参考文献 .................................................. - 29 - 致谢 .................................................... - 31 - 附录 ..................................................... - 32 -第1章绪论随着计算机、通信和科学技术的迅猛发展,人们现在己经步入信息生活时代,小到家庭生活中的数字电视、电视电话,大到生产、医疗、艺术、军事、航天等离不开图像信息,图像与人类生活的关系越来越密切图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源和利用信息的重要手段。

小波变换下改进的维纳滤波在信号去噪的应用

小波变换下改进的维纳滤波在信号去噪的应用
小波变换下改进的维纳滤波在信号去噪的应用
吴振强;颜军;田祎;
【期刊名称】《科学技术创新》
【年(卷),期】2017(000)027
【摘要】信号去噪是信号处理中最为重要的问题之一。

由于小波变换具有时频局部化特点及能够灵活选择小波基,在信号去噪中得到了广泛应用。

维纳滤波是数字信号处理中滤波去噪研究的一个主要内容。

本文通过改进维纳滤波,并结合小波降噪的优点,提出了一种新的信号去噪的方法,实验证明该方法能够有效的实现信号去噪。

【总页数】2页(P.131-132)
【关键词】信噪比;维纳滤波;小波变换
【作者】吴振强;颜军;田祎;
【作者单位】商洛学院数学与计算机学院,陕西商洛72600;商洛学院数学与计算机学院,陕西商洛72600;商洛学院数学与计算机学院,陕西商洛72600;
【正文语种】英文
【中图分类】TP391.41
【相关文献】
1.小波变换下改进的维纳滤波在信号去噪的应用 [J], 吴振强; 颜军; 田祎
2.小波变换模极大去噪法在无线电引信信号处理中的应用 [J], 李月琴; 栗苹; 闫晓鹏; 陈慧敏
3.中值滤波和小波变换相结合在信号去噪声中的应用 [J], 卞继承
4.基于小波变换的核磁共振测井信号去噪算法设计 [J], 吴磊; 孔力; 程晶晶。

基于小波分析的图像去噪应用

基于小波分析的图像去噪应用摘要:小波分析是傅立叶分析思想方法的发展与延拓,它具有良好的时频局部化特征、尺度变化特征和方向性特征,这使其在图像处理中得到了广泛的应用。

本文讨论了小波分析的基本理论,并将其应用于图像的去噪处理。

从仿真和模拟实验可知,小波分析用于图像处理具有压缩比大、信息提取灵活方便、去噪效果好等优点。

关键词:小波分析图像去噪在我们周围,每天都存在着大量的信号需要进行分析,例如我们说话的声音、机器的振动、金融变化数据、地震信号、音乐信号、医疗图像等。

相当多的信号需要进行有效的编码、消噪、重建、建模和特征提取。

因此,人们一直在努力寻找各种有效的信号处理方法。

小波分析是近年来发展起来的一种优良的数学工具,利用小波去噪是小波变换的重要领域。

去噪算法一般是利用噪声的一些先验知识对带噪信号在最小均方差意义上进行估计,通过寻找小波变换系数中的局部极大值点,并据此重构信号可以很好地逼近未被噪声污染前的原始信号。

1小波去噪小波变换是一个线性变换,可以压缩信号的缓变部分,突出信号的突变部分,从而为实现信号与噪声的分离提供了理论基础。

应用小波变换来对信号进行降噪处理是小波分析的重要应用之一。

那么,假设一个含噪声的一维信号模型可以表示成如下的形式: ,(1)式中,为真实信号,为噪声,为含噪声的信号。

以一个最简单的噪声模型来加以说明,设定式1中的为高斯白噪声,噪声级别为1。

而在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,噪声信号则通常表现为高频信号。

那么,消噪过程就可以按照以下方法进行处理:首先对信号进行小波分解(如进行三层分解,如图1所示),则噪声部分通常包含在cD1,cD2和cD3中。

因此,我们可以以门限阈值等形式对小波系数进行处理,去除噪声部分保留有用信息,然后应用有用信息对信号进行重构以达到消噪的目的。

实际上对信号消噪的目的其实就是要抑制信号中的噪声部分,从而在中恢复出真实信号。

基于小波域阈值滤波和维纳滤波技术的图像降噪电路设计与实现的开题报告

基于小波域阈值滤波和维纳滤波技术的图像降噪电路设计与实现的开题报告一、研究背景与意义随着数字图像处理技术的发展,图像降噪一直为人们所关注。

在实际应用中,由于受到传感器、通信传输、储存等因素的影响,图像中常常存在各种噪声,这些噪声对于图像质量和信息提取都具有很大的影响。

因此,研究如何有效地去除这些噪声,提高图像质量和信息提取的准确性,是非常有必要的。

在图像降噪方法中,小波域阈值滤波和维纳滤波技术都是常用的方法。

小波域阈值滤波通过将小波变换提取出来的图像频域信息进行阈值处理,摒弃掉低幅度系数,过滤掉噪声,从而实现图像降噪。

而维纳滤波则是通过补偿退化模型对图像进行滤波,能够很好地处理信号和噪声的比例关系,对于信号和噪声比较接近的情况下效果尤佳。

因此,本课题旨在基于小波域阈值滤波和维纳滤波技术,设计一种实用的图像降噪电路,并评估其性能和实现难度。

该电路可以应用于数字相机、手机等消费电子产品中,具有较为广泛的应用前景。

二、研究内容及方法本课题主要研究内容包括:1.基于小波域阈值滤波和维纳滤波技术,设计图像降噪电路的算法和流程,并通过MATLAB等软件工具进行仿真和分析。

2.设计图像降噪电路的硬件结构,涉及到FPGA、DSP、AD/DA转换器等电路元件的选择和连接。

3.编写电路控制程序,完成图像采集、图像传输、图像处理等功能,并将其应用于数字相机、手机等消费电子产品中,测试该降噪电路的实际效果。

为了实现以上研究内容,本课题将采取如下的研究方法:1.通过文献调研和实验分析,深入了解小波域阈值滤波和维纳滤波技术的理论基础、算法流程、优缺点等相关知识。

2.利用MATLAB等软件工具,对设计的图像降噪电路进行仿真和分析,得出算法的评价指标,如信噪比、均方差等。

3.基于FPGA、DSP、AD/DA转换器等电路元件的特点,确定电路的硬件结构和通信接口设计,实现图像采集、传输、处理等功能。

4.进行实验验证,通过数字相机、手机取得噪声图像和净图像,测试所设计的降噪电路的实际效果,比较其降噪性能和其他现有技术的优劣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I PP 在基于小波域 W iener滤波的图像去噪中的应用
表 1 小波分解对比 滤波器长度 IPP 方法 VC ++ 方法 8 5 数据类型 单精度浮点型 短整型 时间 /m s 9 32
! 29! 的结果越好。一般的做法是 , 使 用一 个模板 ( 大小为 3 3, 5 5 , 7 7 或 9 9 )选取某个含噪数据点的邻域数据 进行估计。 很多情况下 , 噪声的方差
,j i
M ed ian ( | w i, j | ) , w i, j & HH 1 ( 7) n = 0 . 6745 最后使用滤波后的子带重构信号 , 得到去噪后的信号。 综上所述 , 如图 1 , 去噪算法为 : ∋ 对含噪信号进行离散小波变换 ; ( 计算估计值 ^i,2 j , 对各个高频子带使用 W iener滤波 ; ) 使用滤波后的子带进行逆小波变换 , 得到去噪后的信号。
Application of I PP to Image D enoising Based on W iener F iltering in W avelet D o m ain
N I NG Bo , L IAO Jun b,i L IAO Sh i peng
( Co llege of M anufactu ring Science and Engineering, S ichuan U n iversity, C hengdu 610065 , C h ina )
Abstrac t : Fo r the purpose of increasing the rate of i m age process ing , Inte l IPP w as used to i m ag e deno ising wh ich w as based on W iener filtering in w avelet dom ain . IPP , the princ ip le o fW iener filter ing in w ave let do m a in and the me thod T h W iener are in tro duced . The resu lt of the experi m ent show s tha t th is m ethod using IPP re m oves no ise sign ificantly and effec tive ly and spends little ti me . It can be applied to real ti me i m age processing. K ey word s : IPP; i m age deno ising ; wave le t transfor m; W iene r filter ing 小波技术在图像 去噪中得 到了广 泛研究 , 已成 为图像 去噪 的主要方法之一。而结合传统的 W iene r滤波器 , 在研究中 取得 了较好的效果 [ 1~ 3] 。但是该算 法有一 定的 复杂度 , 并 且在 具体 的程序实现中 , 大都 是采 用 M atlab 作 为编 程工 具 , 程序 运行 的 时间较长 , 不能满足工业在线检测对实时性的要求 , 无法直接应 用在对检测速度有 一定 要求的 场合。若 用 FPGA 等硬 件实现 , 则提高了成本。而作为在 VC+ + 平 台下调用 的 Inte l IPP 函数 , 在保证计算精度的前提下 , 大幅提高了程序运行速度 , 是提高程 序计算效率强有力的 工具 , 同时相对 于硬件 而言使 用软件 成本 更低 , 并且增加了应用的灵活性。本研究便是使用 IPP 函数 , 在 小波域应用 W iener滤波进行图像去噪 。 和 Pentium D 处理器等 , 相对于其他软件 最大的 优点是 速度快 , 性能提升明显 , 使用方便。在图像处理的应用中 , 特别适合对 实 时性要求较高的场 合以 及大幅 图片 的处 理。函 数在 VC + + 开 发环境下调用。 1 . 1 离散小波变换及逆变换函数 在 IPP 中 , 离散小 波变换 使用函数 ippW i TFwd 实现。该 函 数对源图像应用单尺度小 波分解 , 得到 4 个方 向上的 目标子 带 图像。逆 小波 变换 使用函 数 ippW i T Inv 实现 , 同 样是单 尺度 重 构 , 由 4 个源子带图像构 成单个目标图像。 为了更直观地说明 IPP 在计 算速度 方面 的优 势 , 笔 者对 比 了两种实现小波分解 的方法 所用时 间 : 使用 IPP 函 数 ippW i TF wd 和不调用 IPP 函数 单纯 使用 VC + + [ 5] ( 简称 为 IPP 方 法 和 VC ++ 方法 ) 。由于 VC ++ 相对于其他软件来说执行效率较高 , 因此采用 V C++ 方法进行对比更 有说服 力 , 并 且两者 的开发 环 境相同 , 具有可比性。采用标准的测试图片 L ena . bmp, 256 灰度 级 , 尺 寸大小为 512 512。两种方法的程序均在 M FC 框架下编 制。 I PP 方法中 小 波 分 解 选 择 具 有 近 似 对 称 性 的 紧 支 撑 的 Symm lets小波 , 4 阶消失矩 , 滤波器长度为 8, 而 V C+ + 方法中 采 用理想低通和带通滤波器 ( 其实这是给 出了基于 sinc 小波的 小 波变换 ), 均为单 尺度分 解。如表 1 , 测 试结 果显示 IPP 方法 时 间为 9 m s, VC ++ 方法为 32 ms, IPP 方法的 速度 接近于 VC + + 方法的 4 倍。并且 IPP 方法中的滤波器长度比 V C+ + 方法中 的 长 , IPP 方 法使 用单 精度 浮点 数 , 而 V C + + 方 法中 使用 短整 型 数 , 这 更体现出了 IPP 的优势。 1 . 2 W iener( 维纳 ) 滤波函数
H- 1 W - 1
=
∃∃
2 i j ,
2 . 2 典型算法 ( ThW iener[ 2] ) Th W iener算法其实是对 LAWM L[ 1] 算法的一 种改进。它 是 基于经 验化 的 W iener滤 波器 的误 差分析 上的 , 在 W iener滤 波 前先对高频子带图 像进行 阈值化 处理 ( thresho lding as a prepro cess ing step for W iener filte ring), 因而被称为 T h W iener 。 LAWM L 中由于使用大小为 3 3, 5 5 或 7 7 的有限尺寸 的邻域来估计方差 , 所以估 计值会 产生误 差。因此可 以先使 用 qi, j作为期望均 方值 E { w 2 , j } 的近似值 i qi, j = 如果 qi, j > k 1 M k = -R
i, j
, 则令 S i, j = w i, j, 否则 S i, j = 0 。其 中 k = 1 +
2/ M 。具体推导略去 , 请参阅文献 [ 4] 。 因此 { S i, j } 作为新的小波系数 , 已经去除了 一部分噪声 。若 用与式 ( 8 )相同的模板对 { S 2 , j } 取平均值作为新的 qi, j, 可以进一 i 步减弱噪声的小波系数。 然后应用 LAWM L 算法 , 取 用 W iener滤波 S^i, j =
收稿日期 : 2007 - 10- 30 作者简介 : 宁波 ( 1982 ) , 男 , 重庆人 , 硕士研究生 , 主要研究方向为数字 ) , 男 , 教授 , 博士生导 师, 主要 图像处理 、 机器视觉系统 ; 廖俊必 ( 1953 廖世鹏 ( 1979 统。
研究方向为视觉系统应用 、 测控技术及智能仪器 、 实验数据建 模及优化 ; ) , 男 , 湖北人 , 博士研究生 , 主 要研究方 向为机器 视觉系
2 n
Yi, j =
i, j
+
- v2
2 i j ,
(X i, j -
,j i
)
( 3)
式中 , v 2 代表噪声的方差 , 对应于函数中噪 声水平参数 no ise ,其 值需要在使用函数 时指定 , 范围 是 [ 0, 1 ] 。如果 设置 为 0, 则该 函数自动将 no ise的值设置为所 有局部 i, j的 算术平 均值 , 然后 将其存储在参数 no ise中以备进一步使用。
∃ ∃w
l= - R
R
R
2 i- k, j- 1
, M = ( 2R + 1 ) 2
( 8)
2 小波域 W iener滤波
2. 1 去噪原理 设原始信号表示 为 : { f i, j, i = 1, 2, %, M, j = 1, 2, %, N }, 当 它被加性噪声污染后 有 g i, j = f i, j + i, j ( 4) 式中 , {
1
Inte l IPP 简介
[ 4]
英特 尔 公司 于 2005 年 8 月 推 出 了英 特 尔集 成 性能 原 件 ( In tel Integ ra ted Per fo r m ance P ri m itives) 5. 0 版。它 是一 个软 件 函数库 , 提供 了大量的 库函数用于 多媒体应 用、 音频 编码、 视频 编码、 图像压缩、 图像处理、 信号处理、 语 音压缩以及计算机视觉 等。它专门针对 In tel处理器进行了优化 , 包括常见的 Pentium 4
2 n
也 是未知 的。通 常的做 法是 ,
2 [ 8] n
通过最大分辨率子带 HH 1 中的小波系数来估计
:
W iener滤 波器 是一种 自适 应噪声 消除 滤波器。 其方 法建 立在认为图像和噪声 是随机过 程的基 础上 , 目标是 找到未 被噪 声污染的图像的估计值 , 使它们之间的均方误差最小 , 所以维纳 滤波也被称为最小均方误差 (MM SE ) 滤波 [ 6] 。相比于其他 线性 滤波W iener滤 波器 通常 用于 退化 图像 处理 中消 除加 性 噪声 , 生成平滑后的图像。 在 IPP 中 , W iener滤 波使 用 函数 ippiF ilter W iener 实 现。该 函数针对源图像中的 每个像素 X i, j, 使 用一个矩 形模板 , 来 估计 由此模板确定的像素 X i, j 邻域 (子 图像 ) 的平 均值 i, j 和标 准差
相关文档
最新文档