小波变换去噪基础知识整理
小波变换地震波去噪

小波变换地震波去噪
小波变换地震波去噪是一种常用的地震信号处理方法。
该方法利用小波变换将地震波分解成不同频率和时间分辨率的小波系数,通过对小波系数的处理来实现地震波去噪。
具体步骤如下:
1. 对地震波信号进行小波分解:使用小波变换将地震波信号分解成不同频率和时间尺度的小波系数。
2. 去除小波系数中的噪声:通过对小波系数进行阈值处理,将小于设定阈值的小波系数置为0,从而去除噪声。
3. 进行小波重构:使用小波系数进行小波重构,得到去噪后的地震波信号。
4. 可选的后处理:对于需要进一步去除噪声的情况,可以进行迭代处理,重复以上步骤。
小波变换地震波去噪的关键是如何选择合适的阈值来对小波系数进行处理。
常用的阈值选择方法包括固定阈值和基于信噪比的阈值选择方法。
此外,还可以使用小波包变换、小波域阈值软硬阈值等方法来进行地震波去噪。
同时,了解地震波的频率特性和噪声特点,合理选择合适的小波基函数也是提高地震波去噪效果的重要因素。
小波变换去噪原理

小波变换去噪:如何去除噪声效果更好?
随着现代技术的发展,许多领域都需要处理各种类型的信号。
有些信号可能会受到不同类型的噪声干扰,导致信号质量下降,影响信号分析和处理的结果。
小波变换是一种有用的信号处理技术,可以通过多尺度分析和快速计算来检测和提取信号中的有用信息。
小波变换还可以用于去除噪声,这是通过提取信号中的高频噪声并将其过滤掉来实现的。
小波变换去噪的基本原理是将信号转换成时频域,使用小波变换在不同尺度下分解信号。
然后将信号的高频噪声过滤掉,并将其他部分重新综合起来。
这样可以保留信号中的有用信息并且去除噪声。
使用小波变换去噪的步骤如下:
1. 将信号进行小波变换,得到小波系数
2. 将小波系数进行阈值处理,使高频小波系数为0
3. 对处理后的小波系数进行反变换,得到去除噪声后的信号
在进行小波变换去噪时,有几个关键因素需要考虑,如选择合适的小波基函数、设置合适的阈值、以及在多个尺度下分解信号。
这些因素可以影响去噪的效果,需要根据具体情况进行调整。
因此,小波变换去噪是一种强大的信号处理技术,可以有效地处理不同类型的噪声,并保留信号中的有用信息。
掌握其基本原理和步骤可以为信号处理提供更好的结果。
如何使用小波变换进行图像去噪处理

如何使用小波变换进行图像去噪处理图像去噪是数字图像处理中的重要任务之一,而小波变换作为一种常用的信号处理方法,被广泛应用于图像去噪。
本文将介绍如何使用小波变换进行图像去噪处理。
1. 理解小波变换的基本原理小波变换是一种多尺度分析方法,它将信号分解成不同频率的子信号,并且能够同时提供时域和频域的信息。
小波变换使用一组基函数(小波函数)对信号进行分解,其中包括低频部分和高频部分。
低频部分表示信号的整体趋势,而高频部分表示信号的细节信息。
2. 小波去噪的基本思想小波去噪的基本思想是将信号分解成多个尺度的小波系数,然后通过对小波系数进行阈值处理来去除噪声。
具体步骤如下:(1)对待处理的图像进行小波分解,得到各个尺度的小波系数。
(2)对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。
(3)对去噪后的小波系数进行小波逆变换,得到去噪后的图像。
3. 选择合适的小波函数和阈值选择合适的小波函数和阈值对小波去噪的效果有重要影响。
常用的小波函数包括Haar小波、Daubechies小波和Symlet小波等。
不同的小波函数适用于不同类型的信号,可以根据实际情况选择合适的小波函数。
阈值的选择也是一个关键问题,常用的阈值处理方法有固定阈值和自适应阈值两种。
固定阈值适用于信噪比较高的图像,而自适应阈值适用于信噪比较低的图像。
4. 去噪实例演示为了更好地理解小波去噪的过程,下面以一张含有噪声的图像为例进行演示。
首先,对该图像进行小波分解,得到各个尺度的小波系数。
然后,对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。
最后,对去噪后的小波系数进行小波逆变换,得到去噪后的图像。
通过对比原始图像和去噪后的图像,可以明显看出去噪效果的提升。
5. 小波去噪的优缺点小波去噪方法相比于其他去噪方法具有以下优点:(1)小波去噪能够同时提供时域和频域的信息,更全面地分析信号。
(2)小波去噪可以根据信号的特点选择合适的小波函数和阈值,具有较好的灵活性。
matlab小波变换信号去噪

matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
如何使用小波变换进行信号去噪处理

如何使用小波变换进行信号去噪处理信号去噪是信号处理领域中的一个重要问题,而小波变换是一种常用的信号去噪方法。
本文将介绍小波变换的原理和应用,以及如何使用小波变换进行信号去噪处理。
一、小波变换的原理小波变换是一种时频分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换相比,小波变换具有更好的时域分辨率和频域分辨率。
小波变换的基本思想是通过选择不同的小波函数,将信号分解成不同尺度的波形,并通过对这些波形的加权叠加来重构信号。
二、小波变换的应用小波变换在信号处理中有着广泛的应用,其中之一就是信号去噪处理。
信号中的噪声会影响信号的质量和准确性,因此去除噪声是信号处理的重要任务之一。
小波变换可以通过将信号分解为不同尺度的波形,利用小波系数的特性来区分信号和噪声,并通过滤波的方式去除噪声。
三、小波变换的步骤使用小波变换进行信号去噪处理的一般步骤如下:1. 选择合适的小波函数:不同的小波函数适用于不同类型的信号。
选择合适的小波函数可以提高去噪效果。
2. 对信号进行小波分解:将信号分解成不同尺度的小波系数。
3. 去除噪声:通过对小波系数进行阈值处理,将小于一定阈值的小波系数置零,从而去除噪声成分。
4. 重构信号:将去噪后的小波系数进行逆变换,得到去噪后的信号。
四、小波阈值去噪方法小波阈值去噪是小波变换中常用的去噪方法之一。
它的基本思想是通过设置一个阈值,将小于该阈值的小波系数置零,从而去除噪声。
常用的阈值去噪方法有软阈值和硬阈值。
软阈值将小于阈值的小波系数按照一定比例进行缩小,而硬阈值将小于阈值的小波系数直接置零。
软阈值可以更好地保留信号的平滑性,而硬阈值可以更好地保留信号的尖锐性。
五、小波变换的优缺点小波变换作为一种信号处理方法,具有以下优点:1. 可以提供更好的时域分辨率和频域分辨率,能够更准确地描述信号的时频特性。
2. 可以通过选择不同的小波函数适用于不同类型的信号,提高去噪效果。
3. 可以通过调整阈值的大小来控制去噪的程度,灵活性较高。
(完整版)小波变换去噪基础知识整理

1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
单片机小波去噪-概述说明以及解释

单片机小波去噪-概述说明以及解释1.引言1.1 概述单片机小波去噪是一种在单片机系统中利用小波变换技术对信号进行去噪处理的方法。
随着单片机在各种领域的广泛应用,如智能家居、智能交通、工业控制等,对信号处理的需求越来越高。
而信号往往会受到各种干扰和噪声的影响,影响系统的性能和稳定性,因此需要对信号进行去噪处理。
小波变换作为一种有效的信号处理技术,可以在时域和频域同时对信号进行分析,具有多分辨率和局部性等优点。
通过小波变换可以将信号分解成不同频率和尺度的成分,实现对信号的去噪处理。
在单片机系统中实现小波去噪,可以有效地提高系统的性能和稳定性,同时减少系统的计算复杂度和资源消耗。
本文将介绍单片机小波去噪的原理、实现步骤和实验结果分析,展望其在各种应用领域的前景,总结其在信号处理领域的重要意义和应用价值。
1.2 文章结构本文主要分为三大部分。
首先是引言部分,介绍了本文的概述、文章结构以及目的,为读者提供了对本文的整体了解。
接下来是正文部分,主要包括单片机的应用、小波去噪原理以及单片机小波去噪实现步骤。
通过对单片机在实际应用中的重要性进行介绍,以及小波去噪原理的解释,读者可以更好地理解单片机小波去噪的实现过程。
最后是结论部分,对实验结果进行分析,展望单片机小波去噪在未来的应用前景,并对全文内容进行总结,使读者对本文的主要内容有一个清晰的概念。
1.3 目的:本文旨在介绍单片机小波去噪技术在信号处理领域的应用。
通过深入解析小波去噪原理,探讨单片机如何实现小波去噪处理,为读者提供一种有效的信号处理方法。
同时,通过实验结果的分析和对应用前景的展望,希望读者能够深入了解小波去噪技术的优势和局限性,为今后在实际工程中的应用提供参考和借鉴。
最终,总结本文的重点内容,让读者对单片机小波去噪有一个清晰的认识并且能够将其灵活运用于实际工程中。
2.正文2.1 单片机的应用单片机是一种微型计算机系统,主要由微处理器、内存、输入输出接口和定时器等组成。
小波去噪原理

小波去噪原理
小波去噪是一种信号处理的方法,通过将信号分解为不同频率的小波系数,并对这些小波系数进行处理,来实现去除噪声的目的。
其原理主要包括以下几个步骤:
1. 小波分解:利用小波变换将原始信号分解为不同频率的小波系数。
小波变换是通过将信号与一组小波基函数进行卷积运算得到小波系数的过程,可以得到信号在时频域上的表示。
2. 阈值处理:对于得到的小波系数,通过设置一个阈值进行处理,将小于该阈值的小波系数置零,而将大于该阈值的小波系数保留。
这样做的目的是去除噪声对信号的影响,保留主要的信号成分。
3. 逆小波变换:通过将处理后的小波系数进行逆小波变换,将信号从小波域恢复到时域。
逆小波变换是通过将小波系数与小波基函数的逆进行卷积运算得到恢复信号的过程。
4. 去噪效果评估:通过比较原始信号和去噪后信号的差异,可以评估去噪效果的好坏。
常用的评价指标包括信噪比、均方根误差等。
小波去噪的原理基于信号在小波域中的稀疏性,即信号在小波系数中的能量主要分布在较少的小波系数上,而噪声的能量主要分布在较多的小波系数上。
因此,通过设置适当的阈值进行处理,可以去除噪声对信号的影响,保留原始信号的主要成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.小波变换的概念小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
有人把小波变换称为“数学显微镜”。
2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么?有几种定义小波(或者小波族)的方法:缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。
在双正交小波的情况,分解和重建的滤波器分别定义。
高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。
例如Daubechies和Symlet 小波。
缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。
小波函数实际上是带通滤波器,每一级缩放将带宽减半。
这产生了一个问题,如果要覆盖整个谱需要无穷多的级。
缩放函数滤掉变换的最低级并保证整个谱被覆盖到。
对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。
例如Meyer小波。
小波函数:小波只有时域表示,作为小波函数。
例如墨西哥帽小波。
3.小波变换分类小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。
两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。
DWT用于信号编码而CWT用于信号分析。
所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。
4.小波变换的优点从图像处理的角度看,小波变换存在以下几个优点:(1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性(3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)(4)小波变换实现上有快速算法(Mallat小波分解算法)另:1) 低熵性变化后的熵很低;2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性3) 去相关性域更利于去噪;4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。
小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。
噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。
图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。
5.小波变换的科学意义和应用价值小波分析是目前数学中一个迅速发展的新领网域,它同时具有理论深刻和应用十分广泛的双重意义。
小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪声、压缩、传递等。
在图象处理方面的图象压缩、分类、识别与诊断,去污等。
在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。
它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。
基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。
它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。
包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。
6.图像去噪的目的和原理现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。
减少数字图像中噪声的过程称为图像去噪。
图像降噪的主要目的是在能够有效地降低图像噪声的同时尽可能地保证图像细节信息不受损失,。
图像去噪有根据图像的特点、噪声统计特性和频率分布规律有多种方法,但它们的基本原理都是利用图像的噪声和信号在频域的分布不同,即图像信号主要集中在低频部分而噪声信号主要分布在高频部分,采取不同的去噪方法。
传统的去噪方法,在去除噪声的同时也会损害到信号信息,模糊了图像。
7.传统去噪方法有哪些?原理,优缺点。
(1)均值滤波器采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图象中的颗粒噪声。
领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与领域半径成正比。
几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图象细节。
谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。
它善于处理像高斯噪声那样的其他噪声。
逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果(2)自适应维纳滤波器它能根据图象的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。
它的最终目标是使恢复图像f^(x,y)与原始图像f(x,y)的均方误差e2=E[(f(x,y)-f^(x,y)2]最小。
该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。
维纳滤波器对具有白噪声的图象滤波效果最佳。
(3)中值滤波器它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。
中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图象的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图象不宜采用中值滤波的方法。
(4)形态学噪声滤除器将开启和闭合结合起来可用来滤除噪声,首先对有噪声图象进行开启操作,可选择结构要素矩阵比噪声的尺寸大,因而开启的结果是将背景上的噪声去除。
最后是对前一步得到的图象进行闭合操作,将图象上的噪声去掉。
根据此方法的特点可以知道,此方法适用的图像类型是图象中的对象尺寸都比较大,且没有细小的细节,对这种类型的图像除噪的效果会比较好。
(5)小波变换小波变换主要是利用其特有的多分辨率性、去相关性和选基灵活性特点,使得它在图像去噪方面大有可为,清晰了图像。
经过小波变换后,在不同的分辨率下呈现出不同规律,设定阈值门限,调整小波系数,就可以达到小波去噪的目的。
这种方法保留了大部分包含信号的小波系数,因此可以较好地保持图象细节。
小波分析进行图像去噪主要有3个步骤:(1)对图象信号进行小波分解。
(2)对经过层次分解后的高频系数进行阈值量化。
(3)利用二维小波重构图象信号。
8.小波变换去噪的基本思路小波变换去噪的基本思路可以概括为:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。
其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。
9.基于小波变换的图像去噪方法1.基于小波的中值滤波去噪,;(中值滤波是一种常用的抑制噪声的非线性方法, 它可以克服线性滤波如最小均方滤波和均值滤波给图像边缘带来的模糊, 从而获得较为满意的复原效果; 它能较好地保护边界, 对于消除图像的椒盐噪声非常有效, 但有时会失掉图像中的细线和小块的目标区域。
其原理非常简单, 就是将一个包含有奇数个像素的窗口在图像上依次移动,在每一个位置上对窗口内像素的灰度值由小到大进行排列, 然后将位于中间的灰度值作为窗口中心像素的输出值,小波变换的一个最大的优点是函数系很丰富,可以有多种选择,不同的小波系数生成的小波会有不同的效果。
噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。
图像经小波分解后可得到低频部分和高频部分,低频部分体现了图像的轮廓,高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪,只需要对其高频系数进行量化处理即可。
具体消噪步骤: 1) 对图像进行小波变换分解, 小波系数记为w j , 其中j为小波变换的尺度, i 表示该小波系数的位置; 2) 根据中值滤波技术对小波分解中各高频分进行中值滤波;3) 重构图像, )2.维纳滤波和小波域滤波相结合的方法,;(维纳滤波: 当信号与噪声同时作用于系统时, 希望设计的滤波器能使其输出端以均方误差最小准则尽量复现输入信号, 从而使输出噪声具有最大的抑制,这种滤波器被称为最佳线性过滤器。
维纳滤波是一种求解最佳线性滤波器的方法, 它是根据信号的自相关函数或功率谱知识及输出的观测值, 在均方误差最小的意义下, 解出最佳滤波器的单位抽样相应, 以此对信号作出最优估计。
)( 维纳滤波与小波域滤波相结合的方法维纳滤波和小波域滤波是2种比较有效的信号前沿技术该图像去噪方法的步骤是1)对带有高斯白噪声的图像进行正交小波分解; 2)对于高通子带用公式来估计一般的协方差矩阵B ; ( 2)将子带分成不交叉的块X j , 用公式( 3)估计每一块的协方差矩阵C j,通过解方程计算系数;j ( 3)用协方差矩阵Cj对每一块Xj应用维纳滤波式; ( 4)保留低通小波系数不变; ( 5)利用去噪后的小波系数重构图像)3.基于高阶统计量的小波阈值去噪(小波域值去噪法:小波阈值收缩去噪法的主要理论依据是,小波变换具有很强的数据去相关性, 能够使信号的能量在小波域集中在少量的大的小波系数中, 而噪声却分布在整个小波域,对应大量的数值小的小波系数。
经小波分解后, 信号的小波系数的幅值要大于噪声, 然后就可以用阈值的方法把信号小波系数保留, 而使大部分噪声的小波系数减为0。