小波变换完美通俗解读
小波变换的基本原理和数学模型详解

小波变换的基本原理和数学模型详解一、引言小波变换是一种信号分析的数学工具,可以将信号在时间和频率上进行局部分析。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将详细介绍小波变换的基本原理和数学模型。
二、小波变换的基本原理小波变换的基本原理是将信号分解成不同频率的小波基函数,并通过对这些小波基函数的线性组合来表示原始信号。
与傅里叶变换不同的是,小波变换可以实现信号的时频局部化分析,能够更好地捕捉信号的瞬态特性。
三、小波基函数的选择小波基函数是小波变换的核心,不同的小波基函数对信号的分析效果有所不同。
常用的小波基函数有Haar小波、Daubechies小波、Morlet小波等。
这些小波基函数在时域和频域上具有不同的特性,可以根据具体应用的需求选择合适的小波基函数。
四、小波变换的数学模型小波变换的数学模型可以通过连续小波变换和离散小波变换表示。
连续小波变换是对连续信号进行小波变换,可以用积分来表示。
离散小波变换是对离散信号进行小波变换,可以用矩阵运算表示。
五、连续小波变换连续小波变换的数学模型可以表示为:W(a, b) = ∫f(t)ψ*[ (t-b)/a ] dt其中,W(a, b)表示小波系数,f(t)表示原始信号,ψ(t)表示小波基函数,a和b 分别表示尺度参数和平移参数。
六、离散小波变换离散小波变换的数学模型可以表示为:W(n, k) = ∑f(m)ψ*[ (m-k)/2^n ]其中,W(n, k)表示小波系数,f(m)表示原始信号,ψ(m)表示离散小波基函数,n表示尺度参数,k表示平移参数。
七、小波变换的算法小波变换的计算可以通过快速小波变换算法实现,常用的算法有快速小波变换(FWT)和快速多尺度小波变换(FWMT)。
这些算法可以大大提高小波变换的计算效率,使得小波变换在实际应用中更加可行。
八、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
在信号处理中,小波变换可以用于信号去噪、信号分析等;在图像处理中,小波变换可以用于图像压缩、边缘检测等;在数据压缩中,小波变换可以用于无损压缩和有损压缩等。
一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
小波变换完美通俗解读

小波变换完美通俗解读
嘿,朋友们!今天咱就来好好唠唠这小波变换!这玩意儿可神奇啦!
你看啊,就好比我们听音乐。
那音乐里有各种不同的声音吧,高音、低音啥的。
小波变换呢,就像是一个超级厉害的音乐分析师,能把这音乐里的各种成分给分得清清楚楚!比如我们平时说话的声音,有高有低,语调也不一样,小波变换就能把这些不同的部分准确地分辨出来。
再想想看,我们看一幅画,上面有各种色彩和线条。
小波变换就像是一个能把这些元素都拆解开来的大师!它可以把画里的细节,什么线条的走向啦,颜色的分布啦,都弄得明明白白。
那这小波变换到底有啥牛的呢?嘿,你想啊,我们在生活中,有时候会遇到很复杂的信息,就像一团乱麻。
而小波变换就能像一把神奇的剪刀,把这团乱麻给理清咯!
比如说医生要看 X 光片,那么多复杂的影像,小波变换就能帮忙找出关键的地方,难道这还不厉害吗?或者是在气象研究中,那么多变幻莫测的气候数据,小波变换就能从中找出规律!你说神不神奇!
“哎呀,那这小波变换也太了不起了吧!”这时候可能有人就问了,“那咱普通人能用它干啥呀?”嘿,用处可大了去了!如果你喜欢摄影,它可以帮你更好地处理照片,让照片更清晰更漂亮。
要是你对声音处理感兴趣,它能让你的音乐听起来更棒!这不就是让我们的生活变得更美好嘛!
总之,小波变换真的是一个超级神奇又超级实用的东西!大家可得好好去了解了解它,说不定就能给你的生活带来意想不到的惊喜呢!别小瞧它哦,它真的超厉害!。
小波变换的原理

小波变换的原理小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。
它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
小波变换的原理传统的信号理论,是建立在Fourier分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题。
小波变换的应用小波是多分辨率理论的分析基础。
而多分辨率理论与多种分辨率下的信号表示和分析有关,其优势很明显--某种分辨率下无法发现的特性在另一个分辨率下将很容易被发现。
从多分辨率的角度来审视小波变换,虽然解释小波变换的方式有很多,但这种方式能简化数学和物理的解释过程。
对于小波的应用很多,我学习的的方向主要是图像处理,所以这里用图像的应用来举例。
对于图像,要知道量化级数决定了图像的分辨率,量化级数越高,图像越是清晰,图像的分辨率就高。
小波变换及其应用

小波变换及其应用小波变换是一种数学工具,可以将时间或空间上的信号分解成不同频率的成分。
它广泛应用于信号处理、图像压缩、模式识别、金融分析等领域。
本文将介绍小波变换的基本原理、算法和应用。
一、基本原理小波变换采用一组基函数,称为小波基。
小波基是一组具有局部化和可逆性质的基函数。
它们具有一个中心频率和一定的时间或空间长度,可以表示不同频率范围内的信号。
小波基函数可以表示为:y(t) = A * ψ(t - τ)/s其中,y(t)是信号的值,A是尺度系数,ψ是小波基函数,τ是位移参数,s是伸缩系数。
通过改变A、τ、s的值,可以得到不同频率、不同尺度的小波基。
小波变换的基本思想是将信号分解成不同频率的小波基函数,在不同尺度上进行分解,得到信号的多尺度表示。
具体来说,小波变换包括两个步骤:分解和重构。
分解:将信号按照不同频率和尺度进行分解,得到信号的局部频谱信息。
分解通常采用多层小波分解,每一层分解都包括高频和低频分量的计算。
重构:将小波分解得到的频域信息反变换回时域信号,得到信号的多尺度表示。
重构也采用多层逆小波变换,从小尺度到大尺度逐层反变换。
二、算法小波变换的算法有多种,包括离散小波变换(DWT)、连续小波变换(CWT)和快速小波变换(FWT)等。
其中离散小波变换最常用,具有计算速度快、计算量小、精度高等优点。
下面简要介绍DWT算法。
离散小波变换是通过滤镜组将信号进行分解和重构的过程。
分解使用高通和低通滤波器,分别提取信号的高频和低频成分。
重构使用逆滤波器,恢复信号的多尺度表示。
DWT的算法流程如下:1. 对信号进行滤波和下采样,得到低频和高频分量;2. 将低频分量进一步分解,得到更低频和高频分量;3. 重复步骤1和2,直到达到最大分解层数;4. 逆小波变换,将多尺度分解得到的信号重构回原始信号。
三、应用小波变换在信号和图像处理中有广泛应用。
其中最常见的应用是压缩算法,如JPEG2000和MPEG-4等。
图像处理中的小波变换

图像处理是一门涉及数字图像的科学与技术,它对图像进行获取、压缩、增强和重建等一系列操作。
其中,小波变换作为图像处理领域中的一种重要方法,已经被广泛应用于图像压缩、去噪、边缘检测等方面。
小波变换是一种时间-频率分析的方法,它是一种多分辨率分析的数学工具。
与传统的傅里叶变换相比,小波变换能够更好地捕捉信号的瞬时特征,对于非平稳信号的处理效果更佳。
在图像处理中,图像可以看作是二维的信号,因此小波变换可以更好地对图像进行分析和处理。
小波变换的基本思想是将信号分解为不同频率的子信号,然后对这些子信号进行重建。
在图像处理中,小波变换通过对图像进行多次分解,得到不同频率的图像子带,每个子带表示了图像的不同细节信息。
同时,小波变换还可以通过对子带进行逆变换来重建原始图像。
通过控制小波变换的分解层数和选择合适的小波基函数,可以灵活地控制图像的分辨率和细节。
小波变换在图像压缩中得到了广泛应用。
图像压缩是将图像数据用更少的存储空间表示的过程,可以减小图像的存储空间和传输带宽需求。
小波变换能够将图像分解为不同频率的子信号,其中包含了图像的细节信息。
通过对这些子信号进行丢弃或量化,可以实现图像的压缩。
与传统的离散余弦变换相比,小波变换能够更好地保留图像的细节信息,减少了压缩后的图像质量损失。
此外,小波变换还可以应用于图像去噪。
图像去噪是使得图像中的噪声减少或消除的过程,可以提高图像的质量和清晰度。
小波变换能够将图像分解为不同频率的子信号,其中包含了图像的细节信息和噪声信息。
通过选择合适的阈值对这些子信号进行滤波,可以消除图像中的噪声。
与传统的平滑滤波方法相比,小波变换可以更好地保留图像的边缘和细节信息。
此外,小波变换还可以用于图像边缘检测。
边缘是图像中不同区域之间灰度变化明显的位置,是图像中重要的结构特征。
小波变换能够捕捉到图像的瞬时特征,对于边缘的检测效果更好。
通过选择合适的小波基函数,并对图像进行多次分解,可以得到不同尺度的边缘信息。
小波变换简介与应用领域概述

小波变换简介与应用领域概述一、引言小波变换是一种在信号处理和图像处理领域广泛应用的数学工具。
它可以将信号在时域和频域之间进行转换,具有较好的时频局部性质。
小波变换的应用领域十分广泛,包括信号处理、图像处理、数据压缩、模式识别等。
本文将对小波变换的基本原理进行简介,并概述其在不同领域的应用。
二、小波变换的基本原理小波变换是一种基于窗函数的信号分析方法。
它将信号分解为一系列不同频率和不同时间位置的小波函数,并计算每个小波函数与信号的内积,得到小波系数。
小波函数具有局部性,能够描述信号在不同时间尺度上的变化情况,因此小波变换可以提供更为准确的时频信息。
小波变换的基本步骤如下:1. 选择合适的小波函数,常用的小波函数有Haar小波、Daubechies小波、Morlet小波等;2. 将信号分解为不同频率和不同时间位置的小波函数;3. 计算每个小波函数与信号的内积,得到小波系数;4. 根据小波系数重构信号。
三、小波变换的应用领域1. 信号处理小波变换在信号处理领域有着广泛的应用。
它可以用于信号去噪、信号分析和信号压缩等方面。
通过小波变换,可以将信号在时域和频域之间进行转换,提取信号的时频特征,从而实现对信号的分析和处理。
2. 图像处理小波变换在图像处理中也起到了重要的作用。
通过小波变换,可以将图像分解为不同尺度和不同方向的小波系数,从而实现图像的多尺度分析和特征提取。
小波变换还可以用于图像去噪、图像压缩和图像增强等方面。
3. 数据压缩小波变换在数据压缩领域有着广泛的应用。
它可以将信号或图像的冗余信息去除,从而实现对数据的高效压缩。
小波变换可以提供较好的时频局部性质,能够更好地描述信号或图像的特征,因此在数据压缩中具有一定的优势。
4. 模式识别小波变换在模式识别中也有着重要的应用。
通过小波变换,可以提取图像或信号的特征向量,用于模式的分类和识别。
小波变换能够提供较好的时频局部性质,能够更准确地描述图像或信号的特征,因此在模式识别中具有一定的优势。
正交变换-小波变换

k
二尺度差分方程给出了尺度函数、小波函数之间的关系,只要 正交归一的尺度函数集,就可以构造出正交小波基。
( t 1) 1
1
(
t
)dt
1
1 2
2 t 2 ( )dt
1, 0 t 1 2 ( t ) ( 2 t ) ( 2 t 1) 1, 1 2 t 1
jk
j
j
jk
H 0 ( 0 )
(4) 递推关系: ( )
( ) 1 2
H 1 ( 0 ) 0
1
2
j 1
2
H 0 (2
j
)
j
H1(
)
1 2
H 0 (2
)
j2
2 离散小波变 换(DWT)-正交小波基的构造
h 0 k 1 0 ( t ), 0 k ( t )
t
(a )
(b )
图3-15 小波的平移操作 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
1 连续小波变换(CWT)
( t ) 为基本小波函数,可以为复数信号。
小波函数族的定义有不同的方式:
a , ( t )
a , ( t )
1 a
1 a
(
t a
(
t 2
j
)
2 h1 k (
k
t 2
j 1
k)
h1 k ( 1) h 0 (1 k )
k
线性组合的权系数分别为:与j无关
h 0 k 1 0 ( t ), 0 k ( t )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换完美通俗解读转自:这是《小波变换和motion信号处理》系列的第一篇,基础普及。
第二篇我准备写深入小波的东西,第三篇讲解应用。
记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。
当然后来也退学了,不过这是后话。
当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。
我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。
当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。
对小波变换的认识也就停留在神秘的"图像视频压缩算法之王"上面。
后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。
比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。
但这些年,小波在信号分析中的逐渐兴盛和普及。
这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。
后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。
看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。
同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂;国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。
牢骚就不继续发挥了。
在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。
如果不做特殊说明,均以离散小波为例子。
考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。
有些必要的公式是不能少的,但我尽量少用公式,多用图。
另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。
我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。
我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。
最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。
要讲小波变换,我们必须了解傅立叶变换。
要了解傅立叶变换,我们先要弄清楚什么是"变换"。
很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。
变换的是什么东西呢?是基,也就是basis。
如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。
那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。
小波变换自然也不例外的和basis有关了。
再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。
既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。
一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。
比如如果我们希望选取有利于压缩的话,那么就希望这个basis 能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。
而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。
总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。
好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。
当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。
接下来先看看,傅立叶变换是在干嘛。
傅立叶级数最早是Joseph Fourier这个人提出的,他发现,这个basis 不仅仅存在与vector space,还存在于function space。
这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。
在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。
你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。
唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。
好,具体来说,那就是现在我们有一个函数,f(x)。
我们希望将它写成一些cos函数和一些sin函数的形式,像这样again,这是一个无限循环的函数。
其中的1,cosx,sinx,cos2x….这些,就是傅立叶级数。
傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。
为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。
那对于function basis呢?function basis怎么求内积呢?现在先复习一下vector正交的定义。
我们说两个vector v,w如果正交的话,应符合:那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一个累加。
那移过来,就是对每一个x点,对应的f和g做乘积,再累加。
不过问题是,f和g都是无限函数阿,x又是一个连续的值。
怎么办呢?向量是离散的,所以累加,函数是连续的,那就是….积分!我们知道函数内积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。
证明过程这里就不展开了。
好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。
我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0,a1,a2这些系数该怎么确定呢?好,比如我这里准备求a1了。
我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的内积,即:然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的内积都是0!所有就简化为这样,a1就求解出来了。
到这里,你就看出正交的奇妙性了吧:)好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。
傅立叶所用的functionbasis是专门挑选的,是正交的,是利于计算coefficients的。
但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。
有了傅立叶变换的基础,接下来,我们就看看什么是小波变换。
首先来说说什么是小波。
所谓波,就是在时间域或者空间域的震荡方程,比如正弦波,就是一种波。
什么是波分析?针对波的分析拉(囧)。
并不是说小波分析才属于波分析,傅立叶分析也是波分析,因为正弦波也是一种波嘛。
那什么是小波呢?这个"小",是针对傅立叶波而言的。
傅立叶所用的波是什么?正弦波,这玩意以有着无穷的能量,同样的幅度在整个无穷大区间里面振荡,像下面这样:那小波是什么呢?是一种能量在时域非常集中的波。
它的能量是有限的,而且集中在某一点附近。
比如下面这样:这种小波有什么好处呢?它对于分析瞬时时变信号非常有用。
它有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析,解决了傅立叶变换不能解决的许多困难问题。
恩,以上就是通常情况下你能在国内网站上搜到的小波变换文章告诉你的。
但为什么呢?这是我希望在这个系列文章中讲清楚的。
不过在这篇文章里,我先点到为止,把小波变换的重要特性以及优点cover了,在下一篇文章中再具体推导这些特性。
小波变换的本质和傅立叶变换类似,也是用精心挑选的basis来表示信号方程。
每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个scaling function,中文是尺度函数,也被成为父小波。
任何小波变换的basis函数,其实就是对这个母小波和父小波缩放和平移后的集合。
下面这附图就是某种小波的示意图:从这里看出,这里的缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。
这样的好处是,小波的basis函数既有高频又有低频,同时还覆盖了时域。
对于这点,我们会在之后详细阐述。
小波展开的形式通常都是这样(注意,这个只是近似表达,严谨的展开形式请参考第二篇):其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。
和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。
小波级数通常有很多种,但是都符合下面这些特性:1.小波变换对不管是一维还是高维的大部分信号都能cover很好。
这个和傅立叶级数有很大区别。
后者最擅长的是把一维的,类三角波连续变量函数信号映射到一维系数序列上,但对于突变信号或任何高维的非三角波信号则几乎无能为力。
2.围绕小波级数的展开能够在时域和频域上同时定位信号,也就是说,信号的大部分能量都能由非常少的展开系数,比如a_{j,k},决定。
这个特性是得益于小波变换是二维变换。
我们从两者展开的表达式就可以看出来,傅立叶级数是,而小波级数是。
3.从信号算出展开系数a需要很方便。
普遍情况下,小波变换的复杂度是O(Nlog(N)),和FFT相当。
有不少很快的变换甚至可以达到O(N),也就是说,计算复杂度和信号长度是线性的关系。