小波变换基本原理

合集下载

db4小波原理

db4小波原理

DB4小波原理详解1. 什么是小波变换小波变换是一种信号处理技术,用于将信号分解成具有不同频率的子信号。

它类似于傅里叶变换,但傅里叶变换只能提供信号在频域上的信息,而小波变换可以提供信号在时频域上的信息。

小波分析在信号处理、数据压缩、图像处理等领域有广泛的应用。

2. 小波变换的基本原理小波变换的基本原理是将信号分解成多个小波基函数的线性组合,得到信号在不同频率上的能量分布。

小波基函数是一组完备的正交函数,它们具有时域局部性和频域局部性,可以很好地表示信号的局部特征。

小波变换的数学表达式为:X(a,b)=1√ax+∞−∞(t)ψ∗(t−ba)dt其中,x(t)为原始信号,ψ(t)为小波基函数,a和b分别为尺度因子和平移因子。

3. DB4小波的基本原理DB4小波是一种常用的小波基函数,它由一个父小波和三个子小波组成。

DB4小波可以通过反复使用滤波和下采样操作,将信号分解成不同频率的子信号。

具体来说,DB4小波的分解过程如下:•将信号通过高通滤波器和低通滤波器进行滤波,得到高频信号和低频信号。

•对低频信号进行下采样,得到一级低频子信号和一级高频子信号。

•对一级低频子信号继续进行滤波和下采样,得到二级低频子信号和二级高频子信号。

•重复上述过程,直到得到所需的分解层数。

DB4小波的重构过程与分解过程正好相反,通过利用逆滤波和上采样操作,将子信号合成为原始信号。

4. DB4小波与信号处理的应用DB4小波作为一种常用的小波基函数,在信号处理中有广泛的应用。

以下列举了几个常见的应用场景:4.1 压缩与去噪小波变换可以将信号分解成多个子信号,各个子信号代表不同频率的分量。

在信号压缩中,我们可以根据需要保留部分高频和低频分量,抛弃其他分量来减少数据量。

同时,小波变换也可以用于去除信号中的噪声,通过滤波和阈值处理来抑制噪声。

4.2 信号分析与特征提取小波变换可以提供信号在时频域上的信息,可以帮助我们分析信号的频率变化、相位变化等特征。

小波变换及其在信号处理中的应用

小波变换及其在信号处理中的应用

小波变换及其在信号处理中的应用小波变换(Wavelet Transformation),是用来处理时-频局部分析的一种具有多分辨率的信号分析工具。

小波变换涉及到基函数与尺度函数的选择和求解,能够将时间域和频率域相结合,从而得到更加清晰、准确的分析结果。

因此,在信号处理中应用极为广泛。

一、小波变换的原理及基本概念小波变换其实就是把一个时域信号进行分解或重构,在分解中进行多分辨率分析,在重构中实现还原。

在进行小波变换处理时,我们需要先选定一组小波基函数,对原始信号进行一定的变换,从而实现信号的时间-频率分析。

小波基函数被分为一个系列,常见的有Daubechies小波、Haar小波、Coiflets小波、Symlets小波等。

这些小波函数不仅具有平滑性和对称性,而且能够在不同尺度上实现信号的精确分析,可以更加准确的描述信号的局部性质。

二、小波变换在信号处理中的应用小波变换具有很强的局部分析能力,不仅仅可以把时域和频率域联系在一起,还可以对复杂的信号进行分解和重构,从而得出更加准确的分析结果。

因此,在信号处理中,小波变换有着非常广泛的应用,如:1、地震探测地震信号是一个典型的非平稳信号,使用小波变换可以对地震信号进行多分辨率分析和孔径分辨率优化,从而提高地震探测的准确性。

2、医学图像处理在医学图像处理中,小波变换能够使用不同的小波函数对图像进行分解和重构,从而实现图像的去噪、增强、分割等处理,提高图像处理的效果和准确性。

3、音频处理小波变换可以将音频信号进行分解和重构,从而对音频进行时-频局部分析和处理,可用于音频去噪、降噪、分割、信号提取等,提高音频处理的效果和准确性。

4、金融分析小波变换可对金融数据进行分解,实现不同尺度、不同频率、不同时间的分析,提供金融数据的多维度分析,有利于对股市趋势进行判断和预测。

5、图像压缩小波变换能够将图像进行分解,通过去掉一些高频细节信息,实现图像压缩,从而实现图像的存储与传输,提高图像传输的速度和效率。

小波变换的基本原理和数学模型详解

小波变换的基本原理和数学模型详解

小波变换的基本原理和数学模型详解一、引言小波变换是一种信号分析的数学工具,可以将信号在时间和频率上进行局部分析。

它在信号处理、图像处理、数据压缩等领域有着广泛的应用。

本文将详细介绍小波变换的基本原理和数学模型。

二、小波变换的基本原理小波变换的基本原理是将信号分解成不同频率的小波基函数,并通过对这些小波基函数的线性组合来表示原始信号。

与傅里叶变换不同的是,小波变换可以实现信号的时频局部化分析,能够更好地捕捉信号的瞬态特性。

三、小波基函数的选择小波基函数是小波变换的核心,不同的小波基函数对信号的分析效果有所不同。

常用的小波基函数有Haar小波、Daubechies小波、Morlet小波等。

这些小波基函数在时域和频域上具有不同的特性,可以根据具体应用的需求选择合适的小波基函数。

四、小波变换的数学模型小波变换的数学模型可以通过连续小波变换和离散小波变换表示。

连续小波变换是对连续信号进行小波变换,可以用积分来表示。

离散小波变换是对离散信号进行小波变换,可以用矩阵运算表示。

五、连续小波变换连续小波变换的数学模型可以表示为:W(a, b) = ∫f(t)ψ*[ (t-b)/a ] dt其中,W(a, b)表示小波系数,f(t)表示原始信号,ψ(t)表示小波基函数,a和b 分别表示尺度参数和平移参数。

六、离散小波变换离散小波变换的数学模型可以表示为:W(n, k) = ∑f(m)ψ*[ (m-k)/2^n ]其中,W(n, k)表示小波系数,f(m)表示原始信号,ψ(m)表示离散小波基函数,n表示尺度参数,k表示平移参数。

七、小波变换的算法小波变换的计算可以通过快速小波变换算法实现,常用的算法有快速小波变换(FWT)和快速多尺度小波变换(FWMT)。

这些算法可以大大提高小波变换的计算效率,使得小波变换在实际应用中更加可行。

八、小波变换的应用小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。

在信号处理中,小波变换可以用于信号去噪、信号分析等;在图像处理中,小波变换可以用于图像压缩、边缘检测等;在数据压缩中,小波变换可以用于无损压缩和有损压缩等。

如何使用小波变换进行空间频率分析

如何使用小波变换进行空间频率分析

如何使用小波变换进行空间频率分析引言空间频率分析是图像处理和计算机视觉领域中的重要内容之一。

它可以帮助我们理解图像中的细节和结构,并提供有关图像内容的重要信息。

而小波变换作为一种常用的空间频率分析工具,具有一定的优势和应用价值。

本文将介绍小波变换的基本原理、算法实现以及在空间频率分析中的应用。

一、小波变换的基本原理小波变换是一种基于时间和频率的分析方法,它将信号分解为不同频率的成分,并提供了时域和频域上的信息。

与傅里叶变换相比,小波变换具有更好的时频局部化性质,能够更精确地描述信号的瞬时特征。

小波变换的基本原理是将信号与一组小波基函数进行卷积运算,得到小波系数。

小波基函数是一组具有局部化特性的函数,可以在时域和频域上进行调整。

通过不同尺度和位置的小波基函数,可以对信号进行多尺度分析,从而获取信号在不同频率上的信息。

二、小波变换的算法实现小波变换的算法实现主要有连续小波变换和离散小波变换两种。

连续小波变换是对连续信号进行变换,而离散小波变换则是对离散信号进行变换。

在实际应用中,离散小波变换更为常用,因为大部分信号都是以离散形式存在的。

离散小波变换的算法实现主要包括两个步骤:分解和重构。

在分解过程中,信号被分解为不同频率的小波系数,而在重构过程中,通过逆变换将小波系数恢复为原始信号。

常用的离散小波变换算法有快速小波变换(FWT)和小波包变换(WPT)等。

三、小波变换在空间频率分析中的应用小波变换在空间频率分析中有广泛的应用。

其中,小波分析可以用于图像压缩、图像增强、图像去噪等方面。

在图像压缩方面,小波变换可以将图像分解为不同频率的小波系数,并根据系数的重要性进行压缩。

通过保留重要的小波系数,可以实现对图像的有效压缩,减小存储空间和传输带宽的需求。

在图像增强方面,小波变换可以提取图像中的细节和结构信息。

通过对不同频率的小波系数进行增强处理,可以使图像更加清晰、锐利,并突出图像中的细节。

在图像去噪方面,小波变换可以通过对小波系数的阈值处理来实现。

小波变换原理

小波变换原理

小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。

这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。

小波变换的基本原理是利用小波基函数对信号进行多尺度分析。

小波基函数是一组函数,它们具有有限时间和频率的特性。

通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。

在小波变换中,通常采用离散小波变换(DWT)进行信号分析。

离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。

小波变换的优点之一是可以提供多分辨率的信号分析。

通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。

这对于处理非平稳信号和突发信号非常有用。

小波变换还具有较好的时频局部化性质。

在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。

在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。

小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。

它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。

总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。

它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。

小波变换及其应用

小波变换及其应用

小波变换及其应用小波变换是一种数学工具,可以将时间或空间上的信号分解成不同频率的成分。

它广泛应用于信号处理、图像压缩、模式识别、金融分析等领域。

本文将介绍小波变换的基本原理、算法和应用。

一、基本原理小波变换采用一组基函数,称为小波基。

小波基是一组具有局部化和可逆性质的基函数。

它们具有一个中心频率和一定的时间或空间长度,可以表示不同频率范围内的信号。

小波基函数可以表示为:y(t) = A * ψ(t - τ)/s其中,y(t)是信号的值,A是尺度系数,ψ是小波基函数,τ是位移参数,s是伸缩系数。

通过改变A、τ、s的值,可以得到不同频率、不同尺度的小波基。

小波变换的基本思想是将信号分解成不同频率的小波基函数,在不同尺度上进行分解,得到信号的多尺度表示。

具体来说,小波变换包括两个步骤:分解和重构。

分解:将信号按照不同频率和尺度进行分解,得到信号的局部频谱信息。

分解通常采用多层小波分解,每一层分解都包括高频和低频分量的计算。

重构:将小波分解得到的频域信息反变换回时域信号,得到信号的多尺度表示。

重构也采用多层逆小波变换,从小尺度到大尺度逐层反变换。

二、算法小波变换的算法有多种,包括离散小波变换(DWT)、连续小波变换(CWT)和快速小波变换(FWT)等。

其中离散小波变换最常用,具有计算速度快、计算量小、精度高等优点。

下面简要介绍DWT算法。

离散小波变换是通过滤镜组将信号进行分解和重构的过程。

分解使用高通和低通滤波器,分别提取信号的高频和低频成分。

重构使用逆滤波器,恢复信号的多尺度表示。

DWT的算法流程如下:1. 对信号进行滤波和下采样,得到低频和高频分量;2. 将低频分量进一步分解,得到更低频和高频分量;3. 重复步骤1和2,直到达到最大分解层数;4. 逆小波变换,将多尺度分解得到的信号重构回原始信号。

三、应用小波变换在信号和图像处理中有广泛应用。

其中最常见的应用是压缩算法,如JPEG2000和MPEG-4等。

数字信号处理中的小波变换

数字信号处理中的小波变换

数字信号处理中的小波变换数字信号处理是一种数字化处理技术,主要用于对连续信号进行采样和转换,以便在数值计算设备上进行处理。

在数字信号处理中,小波变换是一种重要的技术,可以用来分析和处理信号。

一、小波变换的定义和基本原理小波变换(Wavelet Transform)是一种数学变换方法,它将原始信号分解为不同尺度和频率的小波成分。

与傅里叶变换相比,小波变换具有更好的时域和频域分辨率,并且能够捕捉信号的瞬态特性。

小波变换的数学定义如下:∫f(t)ψ*(t-k)dt其中,f(t)表示原始信号,ψ(t)是小波函数,*表示复共轭,k表示平移参数。

小波变换通过在时域内对小波函数进行平移和缩放来分析信号的不同频率成分。

二、小波变换的应用领域小波变换在数字信号处理中有广泛的应用,下面是一些常见领域:1. 信号处理:小波变换可以用于信号去噪、信号压缩和谱分析等方面。

通过对信号进行小波分解和重构,可以提取信号的主要特征信息,去除噪声干扰,实现信号的有效处理和分析。

2. 图像处理:小波变换可以应用于图像压缩、图像去噪和图像分析等方面。

通过对图像进行小波分解和重构,可以实现图像的压缩存储、去除图像中的噪声,并提取图像的局部特征。

3. 视频处理:小波变换可以用于视频压缩、视频去噪和视频分析等方面。

通过对视频信号进行小波分解和重构,可以实现视频的高效压缩和去除视频中的噪声,提取视频的运动特征。

4. 生物医学工程:小波变换可以应用于生物信号处理和医学图像分析等方面。

通过对生物信号和医学图像进行小波分解和重构,可以实现生物信号的识别和分类,以及医学图像的分割和特征提取。

三、小波变换与傅里叶变换的比较小波变换和傅里叶变换都是信号分析的重要工具,它们之间存在一些区别和联系。

1. 分辨率:小波变换具有局部分辨率,可以捕捉信号的瞬态特性,而傅里叶变换具有全局分辨率,适用于分析信号的频率成分。

2. 多尺度性:小波变换可以分解信号为不同尺度的小波成分,可以提取信号的多尺度信息,而傅里叶变换只能提取信号在不同频率上的分量。

小波变换 python 小波变换python频谱

小波变换 python 小波变换python频谱

小波变换 python 小波变换python频谱一、小波变换概述小波变换是一种基于多尺度分析的信号处理方法,可以将信号分解成不同尺度的成分,并具有在时间域和频率域上进行局部分析的优势。

通过对信号进行小波变换,可以得到信号的时频分布,并找到信号中的瞬时特征。

小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。

二、小波变换的基本原理小波变换通过使用小波基函数对信号进行分解和重构,其中小波基函数是一组局部化的基函数。

与傅立叶变换采用正弦和余弦函数作为基函数不同,小波变换采用的是一组波形具有有限持续时间的小波基函数。

小波基函数可以通过缩放和平移变换得到不同尺度和位置的小波函数,从而可以对信号进行多尺度分解。

小波变换的基本原理可以用数学公式表示为:\[W(a, b) = \int_{-\infty}^{\infty}x(t)\psi_{a,b}(t)dt\]其中,\(W(a, b)\)表示小波系数,\(x(t)\)表示原始信号,\(\psi_{a,b}(t)\)表示小波基函数,\(a\)和\(b\)表示尺度和位置参数。

三、使用Python进行小波变换Python语言有着丰富的信号处理库和数学计算库,例如 NumPy, SciPy 和 PyWavelets,这为进行小波变换提供了便利。

下面,我们将介绍如何使用Python进行小波变换,并绘制小波变换后的频谱图。

1.导入相关库我们需要导入相关的Python库,例如 NumPy 和 PyWavelets:```pythonimport numpy as npimport pywtimport matplotlib.pyplot as plt```2.生成测试信号为了进行小波变换,我们需要先生成一个测试信号。

这里我们以正弦信号为例:```pythont = np.linspace(0, 1, 1000, endpoint=False)f0 = 50f1 = 100f = np.sin(2*np.pi*f0*t) + np.sin(2*np.pi*f1*t)```3.进行小波变换接下来,我们使用PyWavelets库进行小波变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史③小波变换与短时傅里叶变换比较a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现⑤小波的历史地位仍不如FT ,并不是万能的5.1 连续小波变换一.CWT 与时频分析 1.概念:⎰+∞∞--ψ=dt abt t S ab a CWT )(*)(1),( 2.小波变换与STFT 用于时频分析的区别小波 构造?1910 Harr 小波80年代初兴起 Meyer —小波解析形式80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现90年代初 Daubechies 正交小波变换90年代中后期 Sweblews 第二代小波变换3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原2.母小波)(t ψ必须满足容许性条件 ∞<ψ=⎰∞+∞-ψdw ww C 2)(①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式⎰⎰+∞∞-+∞∞-ψ-ψ=dadb ab t b a CWT a C t S )(),(11)(23.CWT 高度冗余(与CSTFT 相似)4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1)(2,22,,n t t a b t at n b a m mn m b a mm-ψ=ψ⇒-ψ=⇒•==--ψdt t t S n CWT d n m m m n m )(*)()2,2(,,⎰+∞∞---ψ=•=5.小波变换具有时移不变性),()(),()(00b b a CWT b t S b a CWT t S -↔-↔6.用小波重构信号 ∑∑∑∑+∞-∞=+∞-∞=+∞-∞=+∞-∞=ψψ=m n m n nm nm nm n m t dt d t S )(ˆ)(ˆ)(,,,,正交小波 中心问题:如何构建对偶框架{}n m ,ˆψ如何构建正交小波?5.2 分段逼近P1. =)(t φ逼近函数)2(2)(n t n t -→-φφ)2(2)()()(S ,1,0n t C t S n t C t nn nn -≈⇒-≈∑∑φφ 尺度21=a ⇒一般式:∑-=-≈nm m nm m a n t Ct S 2)2(2)(,2尺度φ)(,0,τS a m 逼近收敛于→∞→ 0,,0→∞→→逼近a m2.两尺度函数间关系 )12()2()(-+=t t t φφφ①张成空间满足10V V ⊂ ②两尺度空间差异在哪? 3.表征细节的小波变换的引入很显然采样率越高,s T 越小, 逼近误差越小,采样率∞→无误差发现2)()()12(2)()()2(t t t t t t ϕφφϕφφ-=-+=⇒∑-≈⇒nn n t C S )2(2)t (,1φ 12,2+=m m n⎥⎦⎤⎢⎣⎡--+-∑∑+m m m m m t C m t C )122()22(212,12,1φφ⎥⎦⎤⎢⎣⎡---+-+-=∑∑+m m m m m t m t C m t m t C 2)()(2)()(212,12,1ϕφϕφ ∑∑-•-+-•+→++nn n mn n n t C C n t C C n m )(2)(212,12,112,12,1ϕφ001W V V ⊕=⇒ 4.推广⇓⊕⊕⊕⊕⊕=⊕⊕=⊕=⇒----012011011W W W W V W W V W V V m m0121W W W V V ⊕⊕⊕=--∞- ↑⊕⊕⊕=---m W W W V m m m m ,123,lim ,1012=↓↓⊕⊕⊕⊕⊕==↑↑∞---∞→∞V m W W W W V V m m m 逼近精度逼近精度⎭⎬⎫⎩-)2(22n t m m ϕ包含信息量决定 →形成最简单的MRA尺 度2V二.分段逼近与小波变换(哈尔小波) 1.信号的尺度逼近与小波表示 尺度逼近 ∑→-nm nm m t S n t C)()2(2,2φ 小波表示 ∑∑+∞-∞=+∞-∞=-=m n m mnm n t dt S )2(2)(2,ϕ Harr 小波2.Harr 小波特性①同一尺度平移正交性:⎰+∞∞-'-='--)()(*)(n n dt n t n t δϕϕ②尺度,平移均正交 ⎰∞+∞-''''+''='-->=<n n m m m m m m n m n m dt n t n t t t ,,2)(,,)2(*)2(2)(),(δδϕϕϕϕ⇒⎭⎬⎫⎩⎨⎧-⇒形成正交基)2(22n t m m ϕ⎰∞+∞--=dt n t t S d mm n m )2(*)(22,ϕ影即为小波系数信号在正交基函数上投 分段逼近的推广—MRA 一.多分辨率分析含义①由内空间 ⊂⊂⊂⊂+-110m m m V V V 组成②若0V 空间尺度函数)(t ϕ平移正交:⎰+∞∞-=-)()(*)(n n t t δφφ则)(t ϕ为0V 空间尺度函数,任一函数S(t)可用表示)(t φ③成立当且仅当1)2()(+∈∈m m V t S V t S ④{}00=m mm V V 交集为⑤平方可积空间即为并集逼近m V )(lim 2R L V m m =∞→ 问题:Harr 小波构成最简单MRA⇓同尺度m 也满足⎰+∞∞-''-=)()(*)(,,n n dt t t n m n m δϕϕ 作变量替换即可证明⎰∑∞+∞--=-=dtn t t S C n t C t S n nn )(*)()()(φφ如何构造选其它具体的MRA 体系 二.正交小波函数的系统构造 1.两尺度方程引入 ①低通滤波器与尺度关系Harr 小波满足 ⎥⎦⎤⎢⎣⎡-+=-+=)12(21)2(212)12()2()(t t t t t φφφφφ∑-=⎥⎦⎤⎢⎣⎡=nn t n h th 卷积关系满足)()(2)2(212100φφ②频域反映令 )2(2)2()()()()(00w tw t w H n h φφφφ↔⇒↔↔)()(00w w H h φφ↔*⇒)()()2()()(2)2(200w w H w w w H w φφφφ==⇒即③含义a. LPF n h H 为)(,1)0(00=b .根据MRA ,∏∞==Φ=Φ100)0()2()2()2()(k k wH w w H w φc.1)0(=Φ 2.QMF 的引入①)(t φ的尺度正交关系的频域反映⎰+∞∞-=-)()(*)(n n t t δφφ⇒↔--)()(w e n t jnw φφ 频域也正交⎰∑+∞∞-=njnw n dw e w w )()(*)(21δφφπ两边对n 求和 ⎰∑+∞∞-=⇒ninw dw e w w 1)(*)(21φφπ利用泊松求和公式∑∑+=-nnjnwn w F en f )2()(π(令)(2)(,1)(w w F n f πδ==则) 有 ∑∑+=-nnjnwn w e)2(2πδπ∑∑-=⇒nnjnwn w e)2(21πδπ⎰∑+∞∞-=-⇒ndw n w w w 1)2()(*)(πδφφ∑⎰+∞∞-=-ndw n w w 1)2()(2πδφ即:∑∑=+⇒=-knk w n w 1)2(1)2(22πφπφ② QMF 正交镜像滤波器组的导出 利用两尺度关系∑=++k k wH k w 1)2()2(20ππφ对k 分奇偶讨论1))12(2())12(2()22()22(2020=+++++++⇒∑∑nn n wn w H n w n w H πφππφπ1))12(2()2()22()2(22220=+++++∑∑nnn ww H n w wH πφππφ 1)2()2(2020=++⇒πwH w H1)2(*)()(*)()()(00002020=+++=++⇒πππw H w H w H w H w H w H ③含义a.镜像为)()(,1)(1)0(0000w H w H H H ππ+=⇒=b.功率互补条件—半带条件 )(*)()(00w H w H w P =20)(π+w H1π20)(w H3.正交小波滤波器满足的条件 ①频域关系根据0)(),(=-k x x φϕ可推出0)(*)()(*)(1010=+++ππw H w H w H w H 上式的解为 )(*)(01π+-=-w H e w H jw ②时域关系 令 ∑-=↔↔njnw e n h w H w H n h w H n h )()()()()()(0011根据)(*)1()1()()(*)1()1()(*)()1()(*)(0010010000πππ+↔--=+↔--+↔--↔-⇒---w H e n h n h w H en h w H n h w H n h jw n jwn n③易证 QMF w H 也为)(1④小波滤波器同样满足两尺度关系∏∑∞==Φ=-=20111)2()2()2()2()()2()(2)(k k kwH w H w w H w k t k h t ϕφϕ4.尺度与小波滤波器频域关系的矩阵表示⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++1001)()()()()(*)()()(11001010ππππw H w H w H w H W H w H w H w H 5.{}{}解释的与MRA t t n m n m )()(,,φϕ {}{}m nm mnm V t W t →→)()(,,φϕ 正交补 112+-⊕⊕⊕=⇒m m m W W W L⎰∑∑∞+∞-+∞-∞=+∞-∞===dtt t S d t dt S n m n m m n m n nm )(*)()()(,,,,ϕϕ例:求Harr 小波的频域尺度函数和小波函数⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2121212110h h 解: 2)2()2()2()(11210w w Sin e w Cos e w H w k k w j k w j k •===Φ∏∏∞=∞=-+- ∑⋅⋅=-==---nwj jwjnww Sin e j e e n h w H )2()1(21)()(211 4)4()()2()2()(21w w Sin w w w H w =⇒=Φ=ϕϕ 其频域幅值图如Fig 5–13所示可发现其缺陷在于波纹太大 (原因—时域紧支撑) 例:理想LPF 也构成正交小波⎪⎩⎪⎨⎧≤=其它021)(0πw w H解:[]())1()1(2)()(00n n Sin w H IFT n h --==ππ 小波函数Sinc Sinc →•)( 三.有关小波函数的一些概念 1.小波消失矩 (vanishing moment ) 满足 阶消失矩具有则称N t N k dt t t k m k )(1,1,0,0)()(1ϕϕ-===⎰+∞∞-①母小波)(t ϕ平滑度由消失矩决定,消失矩越大,则)(w ϕ频域衰减越快)(t ϕ越平滑②消失矩越大,小波振荡程度越高 2.小波正则度(regularity ) ①定义:小波)(t ϕ的连续可导次数②正则度为n 的小波)(t ϕ具有(n +1)阶消失矩(必要条件) 四.问题讨论1.根据MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由)(0n h 决定 ②不关心其解析表达式2.MRA 理论 离散小波的数值实现5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径 1.不能直接对定义式离散化实现)2(2),()(),(2,,n t t S t t S d m mn m n m -==ϕϕ 令 )(采样周期→=T kT l 当m 较小时,n t m -2不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现3.第二代小波变换:Swelden 算法 由预测和更新滤波器进行交替提升实现 二.Mallat 算法 1.两个近似假设①∑∑∑-=+=nn m k nkn nk n m n m t dt C t S t S 1,000)()()()(ϕφ似由某一尺度空间函数近②n m C ,由采样数据直接近似 ⎰∞+∞--=dt n t t S C m m n m )2(*)(22,φm m w jnm jnw w e n t w e n t w t m----•↔-⇒↔-⇒↔2)2()2()()()()(2φφφφφφ滤波器组(Mallat 算法) (根据尺度函数和小波函数))2(2)2(2222w e n t m wjn m mm m-⋅⋅---↔-⇒φφ⎰∞+∞---⋅=⇒dw e w w S C w nj m mnm m 22,)2(*)(221φπ当分辨率m 足够高时 0)2(*→-w m φnt m m m nwj mn m m mt S n S dwe w S C --=---∞+∞--==⋅≈⇒⎰22222,)(2)2(2)(212π故可直接用样本数据取代 2.Mallat 算法 ①分解算法 a.推导⎰⎰⎰∞+∞--∞+∞-∞+∞-----=-==-dtn t t S dtn t t S dt t t S C m m m m n m n m )222(*)(2)2(*)(2)()(1121*,1,1φφφ两尺度关系 ⎰∑∞+∞--+-⋅im m dt i n t i h t S ))2(2(*)(2)(2021φ∑∑∑⎰++∞+∞->=<⋅=+-=iiin m i n m im m C i h t t S i h dti n t t S i h 2,02,020)(2)(),()(2))2(2(*2)()(φφ∑-+='i i m C n i h in i ,0)2(22同理-=-i m n m C n i h d ,1,1)2(2②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)⎪⎭⎫⎝⎛-+-=∑∑--i i i m i m n m d i n h C i n h C ,11,10,)2()2(2b.滤波器组实现(上采样+滤波)5.5 小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用 小波无法求解微分方程纯数字和物理地位不如FT 二.信号检测方面应用 发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性 Gabor 变换 :仍需长窗去包含振荡波形 小波变换 : 小波基可任意窄 三.降噪应用 1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合 高斯类噪声和脉冲噪声 → 宽带噪声 → 小波去噪 2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关) 3.滤波手段①传统方法:Prony 参数建模法②小波降噪b.可证明其统计最优性c.阈值比较(阈值T 可基于信号标准差得出) 硬阈值:比较n m d ,软阈值:考虑n m d ,符号,及其其它系数相关性 4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小 NI 信号处理工具箱分解重构。

相关文档
最新文档