小波变换原理与应用 ppt课件

合集下载

小波变换原理与应用54页PPT

小波变换原理与应用54页PPT
小波变换原理与应用

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。—,也可以废除 法律。 ——塞·约翰逊
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波分析整理 第三章 小波变换ppt课件

小波分析整理 第三章  小波变换ppt课件
这样,a 和b 联合越来确定了对x(t) 分析的 中心位置及分析的时间宽度。
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
2.2.1 连续小波变换
如果函数 x满足以下容许性条件:
2
C d
则称 x为一容许性小波,并定义如下的积分变
换:
W fa ,b a 1 2fx xa b d,fx x L 2R 以上积分变换为 f x以 x为母小波的积分连
续小波变换,a为尺度因子,表示与频率相关的伸缩,
b为时间平移因子。
2 -1/2
2
1/
2
c
os
2
v 3 2
1
0
2 3
2 4
3
3
4 3
(3)其他常用小波
① Daubechies(dbN)小波系 ② Biorthogonal(biorNr.Nd)小波系 ③ Symlets(symN)小波系 ④ Morlet(morl)小波 ⑤ Coiflet(CoifN)小波系
1 0 x 1/ 2
H 1 1/ 2 x 1
0 其他
(2)Meyer函数
Meyer小波函数 和尺度函数都是在频域中进
行定义的,是具有紧支撑的正交小波。
2
e -1/2 j/2
sin2v23
1
2 4
3
3
2-1/2ej/2
cos2v23
1
4 8
3
3
0 [2,8]
33
其中,va为构造函数Meyer的辅助函数,且有:
如果我们有一个无限长的窗口,然后做傅里叶变换, 会得到完美的频率分辨率,但是结果中不包含时间 信息。更进一步为了获得信号的平稳性,我们需要 一个宽度足够短的窗函数,窗口越短,时间分辨率 越高,信号的稳定性越高,但是频率分辨率却越来 越低。
窄窗=高时间分辨率,低频率分辨率 宽窗=高频率分辨率,低时间分辨率
13
2.2.2离散小波变换
W fa ,b f t,a ,b t
将a,b离散化,令 a2j,b2jk,j,k Z ,可以得 到离散小波变换:
D fW j ,k ft ,j,k t
其中:
j
j,kt222jtk, j,kZ
2.3 几种常用小波
(1) Haar小波 A.Haar于1990年提出一种正交函数系,定义如下:
1.2STFT
STFT: ST X ()(F t,f)T [x (t)• (t t')• ]e j2 fd t t
t
STFT只不过是对乘了一个窗函数的信号做傅里叶变换, 以此得到在某段时间内的频率信息。 根据海森堡测不准原理,在STFT中由于窗口长度有限, 它仅仅覆盖了信号的一部分,因此导致频率分辨率较 差,即我们不能确切的知道信号中那些频率分量存在, 只知道那些频段的分量存在。
co 2 fs)t(jsi2 n f)(t
即信号是由一些不同频率的正弦项叠加起来的, 如果信号中频率为f的分量幅度较大,那么这个分量就 和正弦项重叠,他们的即就比较大,这表明信号有一 个频率为f的主要分量。
信号一 cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*100*t)+ cos(2*pi*50*t)
11
小波的发展历史——工程到数学
1988: Inrid Daubechies作为小波的创始人,揭示了小 波变换和滤波器组(filter banks)之间的内在关系,使离 散小波分析变成为现实 Ronald Coifman和Victor Wickerhauser等著名科学家在 把小波理论引入到工程应用方面做出了极其重要贡献 在信号处理领域中,自从Inrid Daubechies完善了小波 变换的数学理论和Stephane Mallat构造了小波分解和重 构的快速算法后,小波变换在各个工程领域中得到了 广泛的应用,典型的如语音信号处理、医学信号处理、 图像信息处理等
2.4 塔式算法
(1) 信号在小波空间的展开为:
ft fW j ft,j,k tj,k t
jห้องสมุดไป่ตู้Z ,k Z
j Z k Z
(2)小波分解算法 使用多分辨析的金字塔算法:
f t f t ,j , k t j , k t f t ,j , k t j , k t
小波变换原理与应用
专业:xxx 姓名:
2016年3月26号
1
为什么需要要对信号进行变换
原始信号有一些信息是很难获取的,为了获得更多的 信息,我们需要对原始信号进行数学变换。从而获得 更多的信息。例如生活中常见的心电图,在心电图的 时域信号中一般很难找到这些病情,所以心脏病专家 一般用记录在磁带上的时域心电图来分析心电信号, 从而确定病症是否存在。
信号二
对上面两个信号进行FT后得到的频域图 信号一
由于这个信 号的频率分 量一直保持 不变,我们 将此类信号 称之为平稳 信号
信号二
非平稳信号
由上面两个频域图可以看出傅里叶变换只能给出信 号的频谱分量,而无法给出相应的频谱分量的出现时间 ,当我们想知道频率分量出现的确切时间时,傅里叶变 换对于非平稳信号是不合适的。而且现实中几乎所有的 生物信号都是非平稳的。那么我们应该怎样将时间信息 加到频率图中去呢?这时我们可以考虑将部分非平稳信 号看成平稳信号。
加窄窗之后对应的 STFT,可见有较好 的时间分辨率,但 是频率分辨率很差。
加较宽窗之后对应 的STFT,可见有较 好的频率分辨率, 但是时间分辨率很 差。
2.1 小波的发展历史——工程到数学
1807: Joseph Fourier——FT,只有频率分辨率而没有时 间分辨率 1909: Alfred Haar——发现了Haar小波 1945: Gabor——STFT 1980:Morlet——Morlet小波,并分别与20世纪70年代 提出了小波变换的概念,20世纪80年代开发出了连续 小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解 和重构算法)
主要内容 一、FT和STFT 二、小波变换 三、小波变换在图像处理中的应用
3
1.1 傅里叶变换(FT)
FT:S(f)s(t)ej2fd t t
IFT:s(t) S(f)ej2fd t f
通过上述FT公式可以发现,信号的频域是一些指数 项的累加和,每个指数项对应特定的频率,然后在整个 时域整合起来。其中指数项可以用以下的表达式表示:
相关文档
最新文档