第五章 小波变换基本原理
小波变换及其在信号处理中的应用

小波变换及其在信号处理中的应用小波变换(Wavelet Transformation),是用来处理时-频局部分析的一种具有多分辨率的信号分析工具。
小波变换涉及到基函数与尺度函数的选择和求解,能够将时间域和频率域相结合,从而得到更加清晰、准确的分析结果。
因此,在信号处理中应用极为广泛。
一、小波变换的原理及基本概念小波变换其实就是把一个时域信号进行分解或重构,在分解中进行多分辨率分析,在重构中实现还原。
在进行小波变换处理时,我们需要先选定一组小波基函数,对原始信号进行一定的变换,从而实现信号的时间-频率分析。
小波基函数被分为一个系列,常见的有Daubechies小波、Haar小波、Coiflets小波、Symlets小波等。
这些小波函数不仅具有平滑性和对称性,而且能够在不同尺度上实现信号的精确分析,可以更加准确的描述信号的局部性质。
二、小波变换在信号处理中的应用小波变换具有很强的局部分析能力,不仅仅可以把时域和频率域联系在一起,还可以对复杂的信号进行分解和重构,从而得出更加准确的分析结果。
因此,在信号处理中,小波变换有着非常广泛的应用,如:1、地震探测地震信号是一个典型的非平稳信号,使用小波变换可以对地震信号进行多分辨率分析和孔径分辨率优化,从而提高地震探测的准确性。
2、医学图像处理在医学图像处理中,小波变换能够使用不同的小波函数对图像进行分解和重构,从而实现图像的去噪、增强、分割等处理,提高图像处理的效果和准确性。
3、音频处理小波变换可以将音频信号进行分解和重构,从而对音频进行时-频局部分析和处理,可用于音频去噪、降噪、分割、信号提取等,提高音频处理的效果和准确性。
4、金融分析小波变换可对金融数据进行分解,实现不同尺度、不同频率、不同时间的分析,提供金融数据的多维度分析,有利于对股市趋势进行判断和预测。
5、图像压缩小波变换能够将图像进行分解,通过去掉一些高频细节信息,实现图像压缩,从而实现图像的存储与传输,提高图像传输的速度和效率。
小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
小波变换原理

小波变换原理
小波变换是一种信号分析方法,它可以将一个信号分解成不同频率和时间的小波基函数的线性组合。
这种分解能够提供关于信号局部特征的信息,并且具有较好的时频局部化性质。
小波变换的基本原理是利用小波基函数对信号进行多尺度分析。
小波基函数是一组函数,它们具有有限时间和频率的特性。
通过对不同尺度的小波基函数进行缩放和平移,可以得到不同频率和时间的基函数。
在小波变换中,通常采用离散小波变换(DWT)进行信号分析。
离散小波变换将信号分解成不同尺度和位置的小波系数,每个小波系数表示信号在相应尺度和位置上的能量。
小波变换的优点之一是可以提供多分辨率的信号分析。
通过对信号进行分解,可以得到不同尺度上的信息,从而揭示信号在局部的频率特征。
这对于处理非平稳信号和突发信号非常有用。
小波变换还具有较好的时频局部化性质。
在时域上,小波基函数具有较短的时域长度,可以更好地描述信号的瞬时特征。
在频域上,小波基函数具有较宽的频带,可以更好地描述信号的频率特征。
小波变换在信号处理、图像处理、模式识别等领域有着广泛的应用。
它可以用于信号去噪、压缩、特征提取等任务,也可以用于图像边缘检测、纹理分析等任务。
总之,小波变换是一种多尺度信号分析方法,通过对信号进行分解,可以提取信号在不同尺度和位置上的特征。
它具有较好的时频局部化性质,可以有效地描述非平稳信号和突发信号的特征。
小波变换及其应用

小波变换及其应用小波变换是一种数学工具,可以将时间或空间上的信号分解成不同频率的成分。
它广泛应用于信号处理、图像压缩、模式识别、金融分析等领域。
本文将介绍小波变换的基本原理、算法和应用。
一、基本原理小波变换采用一组基函数,称为小波基。
小波基是一组具有局部化和可逆性质的基函数。
它们具有一个中心频率和一定的时间或空间长度,可以表示不同频率范围内的信号。
小波基函数可以表示为:y(t) = A * ψ(t - τ)/s其中,y(t)是信号的值,A是尺度系数,ψ是小波基函数,τ是位移参数,s是伸缩系数。
通过改变A、τ、s的值,可以得到不同频率、不同尺度的小波基。
小波变换的基本思想是将信号分解成不同频率的小波基函数,在不同尺度上进行分解,得到信号的多尺度表示。
具体来说,小波变换包括两个步骤:分解和重构。
分解:将信号按照不同频率和尺度进行分解,得到信号的局部频谱信息。
分解通常采用多层小波分解,每一层分解都包括高频和低频分量的计算。
重构:将小波分解得到的频域信息反变换回时域信号,得到信号的多尺度表示。
重构也采用多层逆小波变换,从小尺度到大尺度逐层反变换。
二、算法小波变换的算法有多种,包括离散小波变换(DWT)、连续小波变换(CWT)和快速小波变换(FWT)等。
其中离散小波变换最常用,具有计算速度快、计算量小、精度高等优点。
下面简要介绍DWT算法。
离散小波变换是通过滤镜组将信号进行分解和重构的过程。
分解使用高通和低通滤波器,分别提取信号的高频和低频成分。
重构使用逆滤波器,恢复信号的多尺度表示。
DWT的算法流程如下:1. 对信号进行滤波和下采样,得到低频和高频分量;2. 将低频分量进一步分解,得到更低频和高频分量;3. 重复步骤1和2,直到达到最大分解层数;4. 逆小波变换,将多尺度分解得到的信号重构回原始信号。
三、应用小波变换在信号和图像处理中有广泛应用。
其中最常见的应用是压缩算法,如JPEG2000和MPEG-4等。
小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
小波变换ppt课件

自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
小波包变换的基本原理和使用方法

小波包变换的基本原理和使用方法引言:小波包变换(Wavelet Packet Transform)是一种信号分析技术,它在小波变换的基础上进一步拓展,能够提供更丰富的频域和时域信息。
本文将介绍小波包变换的基本原理和使用方法,帮助读者更好地理解和应用这一技术。
一、小波包变换的基本原理小波包变换是一种多分辨率分析方法,它利用小波基函数对信号进行分解和重构。
与传统的傅里叶变换相比,小波包变换能够提供更精细的频域和时域信息,适用于非平稳信号的分析。
小波包变换的基本原理如下:1. 信号分解:首先将原始信号分解为不同频率的子信号,通过迭代地将信号分解为低频和高频部分,形成小波包树结构。
2. 小波基函数:在每一层分解中,选取合适的小波基函数进行信号分解。
小波基函数具有局部性和多分辨率特性,能够更好地捕捉信号的局部特征。
3. 分解系数:分解过程中,每个子信号都会生成一组分解系数,用于表示信号在不同频率上的能量分布。
分解系数可以通过滤波和下采样得到。
二、小波包变换的使用方法小波包变换在信号处理领域有广泛的应用,包括信号去噪、特征提取、模式识别等。
下面将介绍小波包变换的常见使用方法。
1. 信号去噪:小波包变换可以提供更丰富的频域和时域信息,因此在信号去噪领域有较好的效果。
通过对信号进行小波包分解,可以将噪声和信号分离,然后对噪声进行滤波处理,最后通过重构得到去噪后的信号。
2. 特征提取:小波包变换可以提取信号的局部特征,对于信号的频率变化和时域特征有较好的描述能力。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的主要特征。
3. 模式识别:小波包变换在模式识别中也有广泛的应用。
通过对信号进行小波包分解,可以得到不同频率下的分解系数,进而提取出信号的特征向量。
利用这些特征向量,可以进行模式分类和识别。
4. 压缩编码:小波包变换可以将信号进行有效的压缩编码。
通过对信号进行小波包分解,可以将信号的主要信息集中在少量的分解系数中,从而实现信号的压缩。
小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 小波变换基本原理问题①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史③小波变换与短时傅里叶变换比较a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现⑤小波的历史地位仍不如FT ,并不是万能的5.1 连续小波变换一.CWT 与时频分析 1.概念:⎰+∞∞--ψ=dt abt t S ab a CWT )(*)(1),( 2.小波变换与STFT 用于时频分析的区别小波 构造?1910 Harr 小波80年代初兴起 Meyer —小波解析形式80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现90年代初 Daubechies 正交小波变换90年代中后期 Sweblews 第二代小波变换3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原2.母小波)(t ψ必须满足容许性条件 ∞<ψ=⎰∞+∞-ψdw ww C 2)(①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式⎰⎰+∞∞-+∞∞-ψ-ψ=dadb ab t b a CWT a C t S )(),(11)(23.CWT 高度冗余(与CSTFT 相似)4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1)(2,22,,n t t a b t at n b a m mn m b a mm-ψ=ψ⇒-ψ=⇒•==--ψdt t t S n CWT d n m m m n m )(*)()2,2(,,⎰+∞∞---ψ=•=5.小波变换具有时移不变性),()(),()(00b b a CWT b t S b a CWT t S -↔-↔6.用小波重构信号 ∑∑∑∑+∞-∞=+∞-∞=+∞-∞=+∞-∞=ψψ=m n m n nm nm nm n m t dt d t S )(ˆ)(ˆ)(,,,,正交小波 中心问题:如何构建对偶框架{}n m ,ˆψ如何构建正交小波?5.2 分段逼近P1. =)(t φ逼近函数)2(2)(n t n t -→-φφ)2(2)()()(S ,1,0n t C t S n t C t nn nn -≈⇒-≈∑∑φφ 尺度21=a ⇒一般式:∑-=-≈nm m nm m a n t Ct S 2)2(2)(,2尺度φ)(,0,τS a m 逼近收敛于→∞→ 0,,0→∞→→逼近a m2.两尺度函数间关系 )12()2()(-+=t t t φφφ①张成空间满足10V V ⊂ ②两尺度空间差异在哪? 3.表征细节的小波变换的引入很显然采样率越高,s T 越小, 逼近误差越小,采样率∞→无误差发现2)()()12(2)()()2(t t t t t t ϕφφϕφφ-=-+=⇒∑-≈⇒nn n t C S )2(2)t (,1φ 12,2+=m m n⎥⎦⎤⎢⎣⎡--+-∑∑+m m m m m t C m t C )122()22(212,12,1φφ⎥⎦⎤⎢⎣⎡---+-+-=∑∑+m m m m m t m t C m t m t C 2)()(2)()(212,12,1ϕφϕφ ∑∑-•-+-•+→++nn n mn n n t C C n t C C n m )(2)(212,12,112,12,1ϕφ001W V V ⊕=⇒ 4.推广⇓⊕⊕⊕⊕⊕=⊕⊕=⊕=⇒----012011011W W W W V W W V W V V m m0121W W W V V ⊕⊕⊕=--∞- ↑⊕⊕⊕=---m W W W V m m m m ,123,lim ,1012=↓↓⊕⊕⊕⊕⊕==↑↑∞---∞→∞V m W W W W V V m m m 逼近精度逼近精度⎭⎬⎫⎩-)2(22n t m m ϕ包含信息量决定 →形成最简单的MRA尺 度2V二.分段逼近与小波变换(哈尔小波) 1.信号的尺度逼近与小波表示 尺度逼近 ∑→-nm nm m t S n t C)()2(2,2φ 小波表示 ∑∑+∞-∞=+∞-∞=-=m n m mnm n t dt S )2(2)(2,ϕ Harr 小波2.Harr 小波特性①同一尺度平移正交性:⎰+∞∞-'-='--)()(*)(n n dt n t n t δϕϕ②尺度,平移均正交 ⎰∞+∞-''''+''='-->=<n n m m m m m m n m n m dt n t n t t t ,,2)(,,)2(*)2(2)(),(δδϕϕϕϕ⇒⎭⎬⎫⎩⎨⎧-⇒形成正交基)2(22n t m m ϕ⎰∞+∞--=dt n t t S d mm n m )2(*)(22,ϕ影即为小波系数信号在正交基函数上投 分段逼近的推广—MRA 一.多分辨率分析含义①由内空间 ⊂⊂⊂⊂+-110m m m V V V 组成②若0V 空间尺度函数)(t ϕ平移正交:⎰+∞∞-=-)()(*)(n n t t δφφ则)(t ϕ为0V 空间尺度函数,任一函数S(t)可用表示)(t φ③成立当且仅当1)2()(+∈∈m m V t S V t S ④{}00=m mm V V 交集为⑤平方可积空间即为并集逼近m V )(lim 2R L V m m =∞→ 问题:Harr 小波构成最简单MRA⇓同尺度m 也满足⎰+∞∞-''-=)()(*)(,,n n dt t t n m n m δϕϕ 作变量替换即可证明⎰∑∞+∞--=-=dtn t t S C n t C t S n nn )(*)()()(φφ如何构造选其它具体的MRA 体系 二.正交小波函数的系统构造 1.两尺度方程引入 ①低通滤波器与尺度关系Harr 小波满足 ⎥⎦⎤⎢⎣⎡-+=-+=)12(21)2(212)12()2()(t t t t t φφφφφ∑-=⎥⎦⎤⎢⎣⎡=nn t n h th 卷积关系满足)()(2)2(212100φφ②频域反映令 )2(2)2()()()()(00w tw t w H n h φφφφ↔⇒↔↔)()(00w w H h φφ↔*⇒)()()2()()(2)2(200w w H w w w H w φφφφ==⇒即③含义a. LPF n h H 为)(,1)0(00=b .根据MRA ,∏∞==Φ=Φ100)0()2()2()2()(k k wH w w H w φc.1)0(=Φ 2.QMF 的引入①)(t φ的尺度正交关系的频域反映⎰+∞∞-=-)()(*)(n n t t δφφ⇒↔--)()(w e n t jnw φφ 频域也正交⎰∑+∞∞-=njnw n dw e w w )()(*)(21δφφπ两边对n 求和 ⎰∑+∞∞-=⇒ninw dw e w w 1)(*)(21φφπ利用泊松求和公式∑∑+=-nnjnwn w F en f )2()(π(令)(2)(,1)(w w F n f πδ==则) 有 ∑∑+=-nnjnwn w e)2(2πδπ∑∑-=⇒nnjnwn w e)2(21πδπ⎰∑+∞∞-=-⇒ndw n w w w 1)2()(*)(πδφφ∑⎰+∞∞-=-ndw n w w 1)2()(2πδφ即:∑∑=+⇒=-knk w n w 1)2(1)2(22πφπφ② QMF 正交镜像滤波器组的导出 利用两尺度关系∑=++k k wH k w 1)2()2(20ππφ对k 分奇偶讨论1))12(2())12(2()22()22(2020=+++++++⇒∑∑nn n wn w H n w n w H πφππφπ1))12(2()2()22()2(22220=+++++∑∑nnn ww H n w wH πφππφ 1)2()2(2020=++⇒πwH w H1)2(*)()(*)()()(00002020=+++=++⇒πππw H w H w H w H w H w H ③含义a.镜像为)()(,1)(1)0(0000w H w H H H ππ+=⇒=b.功率互补条件—半带条件 )(*)()(00w H w H w P =20)(π+w H1π20)(w H3.正交小波滤波器满足的条件 ①频域关系根据0)(),(=-k x x φϕ可推出0)(*)()(*)(1010=+++ππw H w H w H w H 上式的解为 )(*)(01π+-=-w H e w H jw ②时域关系 令 ∑-=↔↔njnw e n h w H w H n h w H n h )()()()()()(0011根据)(*)1()1()()(*)1()1()(*)()1()(*)(0010010000πππ+↔--=+↔--+↔--↔-⇒---w H e n h n h w H en h w H n h w H n h jw n jwn n③易证 QMF w H 也为)(1④小波滤波器同样满足两尺度关系∏∑∞==Φ=-=20111)2()2()2()2()()2()(2)(k k kwH w H w w H w k t k h t ϕφϕ4.尺度与小波滤波器频域关系的矩阵表示⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++1001)()()()()(*)()()(11001010ππππw H w H w H w H W H w H w H w H 5.{}{}解释的与MRA t t n m n m )()(,,φϕ {}{}m nm mnm V t W t →→)()(,,φϕ 正交补 112+-⊕⊕⊕=⇒m m m W W W L⎰∑∑∞+∞-+∞-∞=+∞-∞===dtt t S d t dt S n m n m m n m n nm )(*)()()(,,,,ϕϕ例:求Harr 小波的频域尺度函数和小波函数⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2121212110h h 解: 2)2()2()2()(11210w w Sin e w Cos e w H w k k w j k w j k •===Φ∏∏∞=∞=-+- ∑⋅⋅=-==---nwj jwjnww Sin e j e e n h w H )2()1(21)()(211 4)4()()2()2()(21w w Sin w w w H w =⇒=Φ=ϕϕ 其频域幅值图如Fig 5–13所示可发现其缺陷在于波纹太大 (原因—时域紧支撑) 例:理想LPF 也构成正交小波⎪⎩⎪⎨⎧≤=其它021)(0πw w H解:[]())1()1(2)()(00n n Sin w H IFT n h --==ππ 小波函数Sinc Sinc →•)( 三.有关小波函数的一些概念 1.小波消失矩 (vanishing moment ) 满足 阶消失矩具有则称N t N k dt t t k m k )(1,1,0,0)()(1ϕϕ-===⎰+∞∞-①母小波)(t ϕ平滑度由消失矩决定,消失矩越大,则)(w ϕ频域衰减越快)(t ϕ越平滑②消失矩越大,小波振荡程度越高 2.小波正则度(regularity ) ①定义:小波)(t ϕ的连续可导次数②正则度为n 的小波)(t ϕ具有(n +1)阶消失矩(必要条件) 四.问题讨论1.根据MRA 理论①小波和尺度函数均可由无穷频域次乘积得出,最终由)(0n h 决定 ②不关心其解析表达式2.MRA 理论 离散小波的数值实现5.4 小波变换与数字滤波器组一.时间离散小波变换的实现途径 1.不能直接对定义式离散化实现)2(2),()(),(2,,n t t S t t S d m mn m n m -==ϕϕ 令 )(采样周期→=T kT l 当m 较小时,n t m -2不为整数2.第一代小波变换:根据MRA 理论,由数字滤波器组实现3.第二代小波变换:Swelden 算法 由预测和更新滤波器进行交替提升实现 二.Mallat 算法 1.两个近似假设①∑∑∑-=+=nn m k nkn nk n m n m t dt C t S t S 1,000)()()()(ϕφ似由某一尺度空间函数近②n m C ,由采样数据直接近似 ⎰∞+∞--=dt n t t S C m m n m )2(*)(22,φm m w jnm jnw w e n t w e n t w t m----•↔-⇒↔-⇒↔2)2()2()()()()(2φφφφφφ滤波器组(Mallat 算法) (根据尺度函数和小波函数))2(2)2(2222w e n t m wjn m mm m-⋅⋅---↔-⇒φφ⎰∞+∞---⋅=⇒dw e w w S C w nj m mnm m 22,)2(*)(221φπ当分辨率m 足够高时 0)2(*→-w m φnt m m m nwj mn m m mt S n S dwe w S C --=---∞+∞--==⋅≈⇒⎰22222,)(2)2(2)(212π故可直接用样本数据取代 2.Mallat 算法 ①分解算法 a.推导⎰⎰⎰∞+∞--∞+∞-∞+∞-----=-==-dtn t t S dtn t t S dt t t S C m m m m n m n m )222(*)(2)2(*)(2)()(1121*,1,1φφφ两尺度关系 ⎰∑∞+∞--+-⋅im m dt i n t i h t S ))2(2(*)(2)(2021φ∑∑∑⎰++∞+∞->=<⋅=+-=iiin m i n m im m C i h t t S i h dti n t t S i h 2,02,020)(2)(),()(2))2(2(*2)()(φφ∑-+='i i m C n i h in i ,0)2(22同理-=-i m n m C n i h d ,1,1)2(2②重构算法a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)⎪⎭⎫⎝⎛-+-=∑∑--i i i m i m n m d i n h C i n h C ,11,10,)2()2(2b.滤波器组实现(上采样+滤波)5.5 小波变换的应用一.小波地位小波曾火热一时,但小波不是万能的,在某些应用场合特别适用 小波无法求解微分方程纯数字和物理地位不如FT 二.信号检测方面应用 发动机声音中的撞击声检测傅里叶分析:时间平均作用模糊了信号局部特性 Gabor 变换 :仍需长窗去包含振荡波形 小波变换 : 小波基可任意窄 三.降噪应用 1.适用场合经典滤波:要求信号与噪声频率足够窄且不重合 高斯类噪声和脉冲噪声 → 宽带噪声 → 小波去噪 2.滤波效果①经典滤波:丢失波形尖锐处信息②小波降噪:基本保留波形尖锐处信息(与小波基选择有关) 3.滤波手段①传统方法:Prony 参数建模法②小波降噪b.可证明其统计最优性c.阈值比较(阈值T 可基于信号标准差得出) 硬阈值:比较n m d ,软阈值:考虑n m d ,符号,及其其它系数相关性 4.小波基选择:小波基应与主体信号量相近相似度越高,主小波系数越大,噪声系数则越小 NI 信号处理工具箱分解重构。