第9章小波变换基础
第9章小波变换基础

a
与a无关。
定义: Q / 0 =带宽/中心频率
t 为小波 (t )的品质因数,对 ( ) ,其
/ a 带宽/中心频率= / a / 0 Q 0
a
第9章 小波变换基础
第9章 小波变换基础
不同尺度下小波变换所分析的时宽、带宽、时间 中心和频率中心的关系
分辨率要好,而时间的分辨率可以放宽,同时分析的中
心频率也应移到低频处。显然,小波变换的特点可以自
动满足这些客观实际的需要。
第9章 小波变换基础
用较小的a对信号作高频分析时,实际上是用高 频小波对信号作细致观察,用较大的a对信号作低 频分析时,实际上是用低频小波对信号作概貌观 察。小波变换的这一特点即既符合对信号作实际分 析时的规律,也符合人们的视觉特点。
WTx (a, b)第9章 小波变换基础
微分性质
如果x(t)的CWT是 WTx (a, b) ,令 y (t ) dt x(t ) , 则 WTy ( a, b) WTx ( a, b) b (9.3.3) 1 dx(t ) t b 证明: WT y (a, b) a dt ( a )dt
WTx (a, b)
a,b
给定一个基本函数,令
x(t ) (t )dt x(t ), a ,b (t )
1 t b x ( t ) ( )dt a a
(9.1.2)
第9章 小波变换基础
信号x(t )的小波变换 WT (a, b) 是a和b的函数, x
t / 2
(a 1/ 2) 2 0 (a 1)
2
t
2 t
0
/ 2
(a 2) 0 / 2
小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
一、《积分变换》课程简介

一、《积分变换》课程简介1.课程编号:201000852.课程名称:积分变换3.开课学院:数学课程组4.学时:285.类别:公共必修课6.先修课程:高等数学,复变函数7.课程简介:积分变换是高等院校工科有关专业的一门必修的基础理论课,是许多后继课程的必备基础。
本课程在大学第二个学年的第一学期内组织教学。
通过本课程的学习,要使学生获得:1.傅里叶变换2.拉普拉斯变换3.Z变换4.小波变换四方面的基本概念、基本性质及其基本应用,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
在课程的教学过程中,通过各个教学环节逐步培养学生具有抽象概括问题和逻辑推理能力,基础的运算和自学能力,特别注意培养学生具有较强的综合运用所学知识去分析问题和解决问题的能力.8.Course Code: 20100085Name of Course:Integral TransformFaculty: Mathematics Course GroupCredit Hours: 28Classification: Compulsory coursePrerequisite: Advanced Mathematics, Complex FunctionsCourse Outline:Integral Transform is a compulsory basic theory course for undergraduate students who major in engineering. It is a necessary foundation for many subsequent courses.This course will be taught in the first semester of second year.Through the study of this course, the students will learn basic concepts, basic properties, and basic applications under four categories:1. Fourier Transform2. Laplace Transform3. Z Transform4. Wavelet TransformThese are key to understanding the subsequent courses and further study in mathematics.In the process of teaching the course, we will gradually train the students through the use of various teaching methods in abstraction andlogical reasoning ability, basic computing and self-learning ability, giving special attention to the development of a strong ability to analyze and solve problems through the comprehensive application of acquired knowledge.二、《积分变换》课程教学大纲9.1. 课程编号:20100085 5. 先修课程:高等数学,复变函数2. 课程类别:基础数学类,必修 6. 课内总学时:283. 开课学期:第二学年一学期7. 实验/上机学时:04. 适用专业:自动化专业8. 执笔人:安玉冉一.课程教学目的积分变换是高等院校工科有关专业的一门必修的基础理论课,是许多后继课程的必备基础。
小波变换在图像处理中的应用毕业论文

结论.......................................................................15
参考文献...................................................................16
cl是x的小波分解结构则perf0100小波分解系数里值为0的系数个数全部小波分解系数个数perfl2100cxc向量的范数c向量的范数华侨大学厦门工学院毕业设计论文首先对图像进行2层小波分解并通过ddencmp函数获取全局阈值对阈值进行处理而后用wdencmp函数压缩处理对所有的高频系数进行同样的阈值量化处理最后显示压缩后的图像并与原始图像比较同时在显示相关的压缩参数
3.2.2实现增强的算法流程............................................10
3.3小波包图像去噪......................................................10
3.3.1实现去噪的主要函数............................................11
指导教师签名:
日期:
华侨大学厦门工学院毕业设计(论文)
小波变换在图像处理中的应用
摘要
近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,
可以同时进行时域和频域分析。
因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定
《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。
复变函数第1章

于是
z1z2 r1 r2 z1 z2 ,
Arg(z1z2 ) Argz1 Argz2. 两个复数乘积的模等于它们的模的乘积; 两 个复数乘积的辐角等于它们的辐角的和.
应该注意的是 Arg(z1z2 ) Argz1 Argz2 中的 加法是集合的加法运算:即将两个集合中所有的
元素相加构成的集合
(3 4) (4 3)i 7 1 i.
2
22
z1 7 1 i. z2 2 2
例 1.2 i1 i, i2 1, i3 i i2 i, i4 i 2 i 2 1, ……
i 4n 1, i4n1 i, i4n2 1, i4n3 i, i4n4 1.
例1.3 设z1, z2是两个复数, 证明
z1 z1 , z2 z2
Arg
z1 z2
Argz1
Argz2
.
两个复数商的模等于它们模的商差.
对给定的复数z, 方程wn=z的解w称为z的n次
方根, 记做
n
z
或
1
zn.
如果
z r(cosq i sinq ), w (cos i sin ),
y .
x
利用直角坐标与极坐标之间的关系
x r cosq , y r sinq ,
复数z=x+yi 可表示为 z r(cosq i sinq ), 称为复
数z的三角表示式. 再利用Euler公式
eiq cosq i sinq ,
复数z=x+yi 又可表示为 z reiq , 称为复数的
指数表示式, 其中r=|z|, q=Argz.
z1 z2 z1z2 2 Re z1 z2 .
证明 因为
z1 z2 z1 z2 z1z2 , 所以由运算规律7,有
基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义引言在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。
图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。
由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。
根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。
经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。
这些算子毫无例外地对噪声较为敏感。
由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。
于是发展了多尺度分析的边缘检测方法。
小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。
小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。
小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。
利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。
常用的小波算子有Marr 算子Canny算子和Mallat算子等。
§1.1信号边缘特征人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。
人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。
小波变换简介PPT课件

47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 小波变换基础9.1 小波变换的定义给定一个基本函数)(t ψ,令 )(1)(,a b t at b a -=ψψ (9.1.1)式中b a ,均为常数,且0>a 。
显然,)(,t b a ψ是基本函数)(t ψ先作移位再作伸缩以后得到的。
若b a ,不断地变化,我们可得到一族函数)(,t b a ψ。
给定平方可积的信号)(t x ,即)()(2R L t x ∈,则)(t x 的小波变换(Wavelet Transform ,WT )定义为dt a b t t x a b a WT x )()(1),(-=⎰*ψ〉〈==⎰*)(),()()(,,t t x dt t t x b a b a ψψ (9.1.2) 式中b a ,和t 均是连续变量,因此该式又称为连续小波变换(CWT )。
如无特别说明,式中及以后各式中的积分都是从∞-到∞+。
信号)(t x 的小波变换),(b a WT x 是a 和b 的函数,b 是时移,a 是尺度因子。
)(t ψ又称为基本小波,或母小波。
)(,t b a ψ是母小波经移位和伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。
这样,(9.1.2)式的WT 又可解释为信号)(t x 和一族小波基的内积。
母小波可以是实函数,也可以是复函数。
若)(t x 是实信号,)(t ψ也是实的,则),(b a WT x 也是实的,反之,),(b a WT x 为复函数。
在(9.1.1)式中,b 的作用是确定对)(t x 分析的时间位置,也即时间中心。
尺度因子a 的作用是把基本小波)(t ψ作伸缩。
我们在1.1节中已指出,由)(t ψ变成)(atψ,当1>a 时,若a 越大,则)(atψ的时域支撑范围(即时域宽度)较之)(t ψ变得越大,反之,当1<a时,a 越小,则)(at ψ的宽度越窄。
这样,a 和b 联合越来确定了对)(t x 分析的中心位置及分析的时间宽度,如图9.1.1所示。
图9.1.1 基本小波的伸缩及参数a 和b 对分析范围的控制 (a)基本小波,(b )0>b ,1=a ,(c)b 不变,2=a , (d)分析范围这样,(9.1.2)式的WT 可理解为用一族分析宽度不断变化的基函数对)(t x 作分析,由下一节的讨论可知,这一变化正好适应了我们对信号分析时在不同频率范围所需要不同的分辨率这一基本要求。
(9.1.1)式中的因子a1是为了保证在不同的尺度a 时,)(,t b a ψ始终能和母函数)(t ψ有着相同的能量,即dt abt a dt t b a 22,)(1)(⎰⎰-=ψψ令t abt '=-,则t ad dt '=,这样,上式的积分即等于dt t 2)(⎰ψ。
令)(t x 的傅里叶变换为)(ΩX ,)(t ψ的傅里叶变换为)(Ωψ,由傅里叶变换的性质,2=ttta)(,t b a ψ的傅里叶变换为:)(1)(,a b t at b a -=ψψ ⇔ b j b a e a a Ω-Ωψ=Ωψ)()(, (9.1.3)由Parsevals 定理,(9.1.2)式可重新表为: >ΩψΩ<=)(),(21),(,b a x X b a WT π ⎰∞+∞-Ω*ΩΩψΩ=d e a X a b j )()(2π(9.1.4)此式即为小波变换的频域表达式。
9.2 小波变换的特点下面,我们从小波变换的恒Q 性质、时域及频率分辨率以及和其它变换方法的对比来讨论小波变换的特点,以帮助我们对小波变换有更深入的理解。
比较(9.1.2)和(9.1.4)式对小波变换的两个定义可以看出,如果)(,t b a ψ在时域是有限支撑的,那么它和)(t x 作内积后将保证),(b a WT x 在时域也是有限支撑的,从而实现我们所希望的时域定位功能,也即使),(b a WT x 反映的是)(t x 在b 附近的性质。
同样,若)(,Ωψb a 具有带通性质,即)(,Ωψb a 围绕着中心频率是有限支撑的,那么)(,Ωψb a 和)(ΩX 作内积后也将反映)(ΩX 在中心频率处的局部性质,从而实现好的频率定位性质。
显然,这些性能正是我们所希望的。
问题是如何找到这样的母小波)(t ψ,使其在时域和频域都是有限支撑的。
有关小波的种类及小波设计的问题,我们将在后续章节中详细讨论。
由1.3节可知,若)(t ψ的时间中心是0t ,时宽是t ∆,)(Ωψ的频率中心是0Ω,带宽是Ω∆,那么)(a tψ的时间中心仍是0t ,但时宽变成t a ∆,)(at ψ的频谱)(Ωψa a 的频率中心变为a 0/Ω,带宽变成a /Ω∆。
这样,)(at ψ的时宽-带宽积仍是Ω∆∆t ,与a 无关。
这一方面说明小波变换的时-频关系也受到不定原理的制约,但另一方面,也即更主要的是揭示了小波变换的一个性质,也即恒Q 性质。
定义0Q Ω∆=Ω/=带宽/中心频率 (9.1.5) 为母小波)(t ψ的品质因数,对)(at ψ,其带宽/中心频率=Q aa00=Ω∆=Ω∆ΩΩ///因此,不论a 为何值)0(>a ,)(at ψ始终保持了和)(t ψ具有性同的品质因数。
恒Q 性质是小波变换的一个重要性质,也是区别于其它类型的变换且被广泛应用的一个重要原因。
图9.2.1说明了)(Ωψ和)(Ωψa 的带宽及中心频率随a 变化的情况。
图9.2.1 )(Ωψa 随a 变化的说明;(a) 1=a ,(b) 2=a ,(c) 2/1=a将图9.1.1和图9.1.2结合起来,我们可看到小波变换在对信号分析时有如下特点:当a 变小时,对)(t x 的时域观察范围变窄,但对)(ΩX 在频率观察的范围变宽,且观察的中心频率向高频处移动,如图9.2.1c 所示。
反之,当a 变大时,对)(t x 的时域观察范围变宽,频域的观察范围变窄,且分析的中心频率向低频处移动,如图9.2.1b 所示。
将图9.1.1和9.2.1所反映的时-频关系结合在一起,我们可得到在不同尺度下小波变换所分析的时宽、带宽、时间中心和频率中心的关系,如图9.2.2所示。
图9.2.2 a 取不同值时小波变换对信号分析的时-频区间由于小波变换的恒Q 性质,因此在不同尺度下,图9.2.2中三个时、频分析区间(即0 ()ΩψΩΩ()ΩψaΩ02Ω2/0Ω0Ω)2/1(=a )1(=a )2(=a /2t ∆三个矩形)的面积保持不变。
由此我们看到,小波变换为我们提供了一个在时、频平面上可调的分析窗口。
该分析窗口在高频端(图中02Ω处)的频率分辨率不好(矩形窗的频率边变长),但时域的分辨率变好(矩形的时间边变短);反之,在低频端(图中20/Ω处),频率分辨率变好,而时域分辨率变差。
但在不同的a 值下,图9.2.2中分析窗的面积保持不变,也即时、频分辨率可以随分析任务的需要作出调整。
众所周知,信号中的高频成份往往对应时域中的快变成份,如陡峭的前沿、后沿、尖脉冲等。
对这一类信号分析时则要求时域分辨率要好以适应快变成份间隔短的需要,对频域的分辨率则可以放宽,当然,时、频分析窗也应处在高频端的位置。
与此相反,低频信号往往是信号中的慢变成份,对这类信号分析时一般希望频率的分辨率要好,而时间的分辨率可以放宽,同时分析的中心频率也应移到低频处。
显然,小波变换的特点可以自动满足这些客观实际的需要。
总结上述小波变换的特点可知,当我们用较小的a 对信号作高频分析时,我们实际上是用高频小波对信号作细致观察,当我们用较大的a 对信号作低频分析时,实际上是用低频小波对信号作概貌观察。
如上面所述,小波变换的这一特点即既符合对信号作实际分析时的规律,也符合人们的视觉特点。
现在我们来讨论一下小波变换和前面几章所讨论过的其它信号分析方法的区别。
我们知道,傅里叶变换的基函数是复正弦。
这一基函数在频域有着最佳的定位功能(频域的δ函数),但在时域所对应的范围是∞-~∞+,完全不具备定位功能。
这是FT 的一个严重的缺点。
人们希望用短时傅里叶变换来弥补FT 的不足。
重写(2.1.1)式,即⎰Ω-*-=Ωdt e t g x t STFT t j x )()(),(ττ⎰〉-〈==Ω*τττττττj t et g x d g x )(),()()(, (9.2.6)由于该式中只有窗函数的位移而无时间的伸缩,因此,位移量的大小不会改变复指数τΩ-j e 的频率。
同理,当复指数由τΩ-j e变成τΩ-2j e(即频率发生变化)时,这一变化也不会影响窗函数)(τg 。
这样,当复指数τΩ-j e的频率变化时,STFT 的基函数)(,ττt g 的包络不会改变,改变的只是该包络下的频率成份。
这样,当Ω由0Ω变化成02Ω时,)(,ττt g 对)(τx 分析的中心频率改变,但分析的频率范围不变,也即带宽不变。
因此,STFT 不具备恒Q 性质,当然也不具备随着分辨率变化而自动调节分析带宽的能力,如图9.2.3所示。
图中Tte t g /2)(-=.u图9.2.3 STFT 的时-频分析区间(a) tj t et g t g 0)()(,Ω--=ττ,tj t et g t g 02,)()(Ω--='ττ,(b) )(ΩG 是)(,t g t τ的FT ,)(Ω'G 是)(,t g t τ'的FT , (c)在不同的0Ω和τ处,时宽、带宽均保持不变1我们在第六至第八章所讨论的M 通道最大抽取滤波器组是将)(n x 分成M 个子带信号,每一个子带信号需有相同的带宽,即M /2π,其中心频率依次为k Mπ,1,,1,0-=M k (注:若是DFT 滤波器组,则中心频率在k Mπ2, 1,,1,0-=M k ),且这M 个子带信号有着相同的时间长度。
在小波变换中,我们是通过调节参数a 来得到不同的分析时宽和带宽,但它不需要保证在改变a 时使所得到的时域子信号有着相同的时宽或带宽。
这是小波变换和均匀滤波器组的不同之处。
但小波变换和7.9节讨论过的树状滤波器组在对信号的分析方式上极其相似。
由后面的讨论可知,离散小波变换是通过“多分辨率分析”来实现的,而“多分辨率分析”最终是由两通道滤波器组来实现的。
由(9.1.1)式,定义22)()(1),(⎰-=*dt a b t t x a b a WT x ψ (9.2.7)为信号的“尺度图(scalogram )”。
它也是一种能量分布,但它是随位移b 和尺度a 的能量分布,而不是简单的随),(Ωt 的能量分布,即我们在第二章至第四章所讨论的时-频分布。
但由于尺度a 间接对应频率(a 小对应高频,a 大对应低频),因此,尺度图实质上也是一种时-频分布。
综上所述,由于小波变换具有恒Q 性质及自动调节对信号分析的时宽/带宽等一系列突出优点,因此被人们称为信号分析的“数学显微镜”。