排列组合公式
排列组合计算公式

列组合公式/排列组合计算公式
(2008-10-08 10:14:14)
转载▼
标签:
分类:泊来文化
排列
组合
公式
教育
前段时间注册岩土工程师考试的时候,考到了排列组合的知识点,偶怎么也组合不出答案来,上网百度了一下,从某位同学的博客里copy以下内容,供大家共同学习,感谢这位同学的奉献!
排列组合公式/排列组合计算公式
公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘,如 9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1。
高中排列组合计算公式

高中排列组合计算公式高中数学中的排列组合计算公式,那可是相当重要且有趣的一部分内容呢!先来说说排列。
排列就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n, m) 。
计算公式是 A(n, m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子,假设咱们班有 10 个同学,要选 3 个同学去参加比赛,那一共有多少种选法呢?这就是一个简单的排列问题。
按照公式来算,A(10, 3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
组合呢,组合是从 n 个不同元素中取出 m 个元素的组合数,记作C(n, m) 。
计算公式是 C(n, m) = n! / [m! × (n - m)!] 。
就说学校要从 10 个社团中选出 3 个社团参加校际交流活动,这时候就该用组合来计算,C(10, 3) = 10! / [3! × (10 - 3)!] = 120 种。
记得我之前监考的时候,发现有个同学在做排列组合的题目时,抓耳挠腮,苦思冥想。
我在旁边看着都替他着急,不过最后他还是算出来了,那股子认真劲儿真是让人欣慰。
在实际生活中,排列组合的应用那可太广泛了。
比如说抽奖,从一堆号码中抽出几个中奖号码,这就是组合。
而如果要考虑号码的顺序,那就是排列。
再比如安排座位,一排有 8 个座位,要安排 5 个人坐下,这又得考虑排列。
还有分东西,把10 个苹果分给3 个小朋友,每个小朋友至少一个,这也是组合问题。
总之,排列组合的计算公式虽然看起来有点复杂,但只要咱们多练习,多思考,就一定能掌握好。
就像咱们解决生活中的其他难题一样,只要用心,没有什么是做不到的。
大家在学习排列组合的时候,一定要多做练习题,熟悉各种题型,这样才能在考试中应对自如。
排列组合公式

排列组合公式
把这个公式发上来与大家分享,我在做题时突然之间想不起
来公式,所以找了半天,现在整理出来大家分享!
排列组合公式/排列组合计算公式
公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多
少个“三国联盟”?
A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺
序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数
C(3,9)=9*8*7/3*2*1。
排列组合相关公式

排列组合相关公式在咱们学习数学的这个奇妙旅程中,排列组合可是个相当有趣又有点小“调皮”的部分。
今天咱们就来好好聊聊排列组合的相关公式。
咱们先来说说排列公式。
比如说,从 5 个不同的元素中选出 3 个进行排列,那排法有多少种呢?这时候就得用到排列公式啦,A(n,m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。
我记得之前有一次,学校组织活动,要从班上的 10 个同学中选出 3 个同学去参加演讲比赛,并且要确定他们的出场顺序。
这其实就是一个排列问题。
按照排列公式来算,A(10,3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
也就是说,有 720 种不同的安排方式。
这可真是个不小的数字啊!再来说说组合公式,C(n,m) = n! / [m! × (n - m)!] 。
比如从 10 个不同的水果中选出 3 个,不考虑顺序,那选法有多少种呢?用组合公式一算,C(10,3) = 10! / (3! × 7!) = 120 种。
我给大家举个例子吧,有次我去水果店买水果,老板说今天做活动,让我从 8 种不同的水果里选 4 种免费带走。
这可不就是组合问题嘛,用组合公式 C(8,4) = 8! / (4! × 4!) = 70 种,原来有 70 种不同的选择呢。
在实际生活中,排列组合的应用可多了去了。
比如说彩票抽奖,从一堆数字中选出几个特定的数字,这就是组合;而确定中奖号码的顺序,那就是排列啦。
还有啊,咱们安排座位、分配任务等等,都可能会用到排列组合的知识。
总之,排列组合的公式虽然看起来有点复杂,但只要咱们多结合实际例子去理解,多做几道练习题,就能把它们掌握得牢牢的。
相信大家在今后的学习和生活中,一定能灵活运用这些公式,解决更多有趣的问题!。
排列组合公式公式解释

排列组合是数学中的一个重要概念,用于计算不同元素的组合方式。
它在组合数学、概率论、统计学等领域中经常被应用。
本文将详细介绍排列组合的概念以及相关公式,并给出一些实际应用的例子。
1. 排列的概念及公式排列是指从n个元素中选取r个元素进行排序的方式。
这个过程中,每个元素只能使用一次,并且顺序不同即为不同的排列。
排列通常用P(n, r)表示,计算公式如下:P(n, r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * … * 2 * 1。
n的阶乘表示从n个元素中选取所有元素进行排列的总数,而(n-r)!表示剩余元素的阶乘,即可以从n个元素中选取r个元素进行排列的总数。
排列的计算公式可以帮助我们高效地计算大量元素的排列情况。
例如,从10个数中选取3个数进行排列,即P(10, 3),可以通过计算10! / 7!得到结果。
2. 组合的概念及公式组合是指从n个元素中选取r个元素进行组合的方式。
与排列不同,组合不考虑选取元素的顺序,因此不同顺序的元素组合被视为同一种组合方式。
组合通常用C(n, r)表示,计算公式如下:C(n, r) = n! / (r! * (n-r)!)其中,n!仍表示n的阶乘,r!表示r的阶乘,(n-r)!表示剩余元素的阶乘。
组合的计算公式可以帮助我们统计不同元素组合的数量。
例如,从10个数中选取3个数进行组合,即C(10, 3),可以通过计算10! / (3! * 7!)得到结果。
3. 排列组合的应用排列组合在实际问题中有广泛的应用。
以下是一些例子:3.1. 抽奖问题假设有10个人参加抽奖,每个人的抽奖号码是从1到10之间的整数。
如果我们想要知道抽取出来的3个人的号码的所有可能情况,可以使用组合的方法计算。
结果为C(10, 3) = 120。
3.2. 选课问题假设有10门课程可以选择,每个人可以选择其中的5门进行学习。
如果我们关心的是不同学生选择不同课程的情况,可以使用排列的方法计算。
排列组合公式排列组合计算公式

排列组合公式排列组合计算公式排列组合是数学中的一种计算方法,用于计算元素的排列和组合的数量。
在排列组合中,排列是指从一组元素中选择并排列若干个元素,组合则是从一组元素中选择若干个元素的方式。
为了方便计算,人们发展出了排列组合的计算公式,可以简化计算过程。
一、排列的计算公式排列是指从一组元素中选择若干个元素并按照一定顺序排列的方法。
计算排列的数量可以使用排列公式来求解。
排列公式:P(n, r) = n! / (n-r)!其中,n表示总的元素个数,r表示选取的元素个数,!表示阶乘运算,即将一个数连乘到1。
例如,从5个人中选取2个人的排列数量可以通过排列公式计算:P(5, 2) = 5! / (5-2)! = 5! / 3! = (5*4*3*2*1) / (3*2*1) = 20所以,从5个人中选取2个人的排列数量为20。
二、组合的计算公式组合是指从一组元素中选择若干个元素的方法,不考虑元素的顺序。
计算组合的数量可以使用组合公式来求解。
组合公式:C(n, r) = n! / (r! * (n-r)!)其中,n表示总的元素个数,r表示选取的元素个数,!表示阶乘运算,即将一个数连乘到1。
例如,从5个人中选取2个人的组合数量可以通过组合公式计算:C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5*4*3*2*1) / ((2*1) *(3*2*1)) = 10所以,从5个人中选取2个人的组合数量为10。
三、应用举例1. 应用排列组合计算公式,可以解决赛事抽签问题。
比如有6个队伍进行比赛,每个队伍的抽签号码为1到6,那么可以计算出所有可能的抽签结果的数量为:P(6, 6) = 6! / (6-6)! = 6! = (6*5*4*3*2*1) = 7202. 应用排列组合计算公式,可以解决密码锁问题。
比如一个密码锁有10个数字按键,密码由3个数字组成,那么可以计算出所有可能的密码数量为:C(10, 3) = 10! / (3! * (10-3)!) = 10! / (3! * 7!) =(10*9*8*7*6*5*4*3*2*1) / ((3*2*1) * (7*6*5*4*3*2*1)) = 120以上就是排列组合的计算公式及其应用举例。
排列组合 公式

排列组合公式
排列组合的计算公式是A(n,m)=n(n-1)。
(n-m+1)=n、(n-m)。
排列组合是组合学最基本的概念,所谓排列,就是指从给定个数的元素中
取出指定个数的元素进行排序,组合则是指从给定个数的元素中仅仅取出
指定个数的元素,不考虑排序。
排列组合的发展
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切,虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。
随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过
程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样
性发现数数的多样性,产生了各种数数的技巧,同时,人们对数有了深入
的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展。
排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合公式1.分类计数原理(加法原理)12nN m m m =+++L .2.分步计数原理(乘法原理)12nN m m m =⨯⨯⨯L .3.排列数公式m n A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N*,且m n ≤).注:规定1!0=. 4.排列恒等式 (1)1(1)m m n nA n m A -=-+;(2)1m mn n n A A n m -=-;(3)11m m n n A nA --=;(4)11n n n n n nnA A A ++=-; (5)11m m m n n nA A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-L . 5.组合数公式m n C =m n m m A A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N*,m N ∈,且m n ≤).6.组合数的两个性质 (1)m n C =mn nC - ; (2)m n C +1-m n C =m n C 1+.注:规定1=n C .7.组合恒等式(1)11mm n nn m C C m --+=;(2)1m mn n n C C n m -=-; (3)11m m n n n C C m --=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r r C C C C C Λ.(6)nn n r n n n n C C C C C 2210=++++++ΛΛ.(7)14205312-+++=+++n n n n n n n C C C C C C ΛΛ.(8)1321232-=++++n n n n n n n nC C C C Λ. (9)r nm r n r m n r m n r m C C C C C C C +-=+++0110Λ.(10)n nn n n n n C C C C C 22222120)()()()(=++++Λ.8.排列数与组合数的关系m mn nA m C =⋅! .9.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k AA --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n AA 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n n n m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nnm C +.10.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有m nn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=--Λ.(2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有m n nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,mn 件,且1n ,2n ,…,mn 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,mn 件,且1n ,2n ,…,mn 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=-12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)L 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,mn 件无记号的m 堆,且1n ,2n ,…,mn 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)L 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,mn 件无记号的m 堆,且1n ,2n ,…,mn 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2mp n n n =L 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,mn 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.11.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+-L .推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m p p m mm m f n m n C n C n C n C n C n p C n m =--+---+--+--++--L L12341224![1(1)(1)]p m p m m m m m m mp m n n n n n n C C C C C C n A A A A A A =-+-+-+-++-L L .12.不定方程2n x x x m=L 1+++的解的个数(1)方程2n x x x m=L 1+++(,n m N *∈)的正整数解有11m n C --个.(2) 方程2n x x x m=L 1+++(,n m N *∈)的非负整数解有11n m n C +--个. (3) 方程2n x x x m =L 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)mn n k C +----个.(4) 方程2n x x x m =L 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n kn n n n n n C C C C C C C +--+---+---+---------+-+-L 个.13.二项式定理n n n r r n r n n n n n n n n bC b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,Λ=.。