【百强名校】江苏省苏州中学2021届第一学期高三数学
2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)

2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)试题数:22.满分:1501.(单选题.5分)已知集合A={x|x2-x-2≤0}.B={x|y= √x} .则A∪B=()A.{x|-1≤x≤2}B.{x|0≤x≤2}C.{x|x≥-1}D.{x|x≥0}2.(单选题.5分)已知sin(α−π4)=35. α∈(0,π2) .则cosα=()A. √210B. 3√210C. √22D. 7√2103.(单选题.5分)若b<a<0.则下列不等式:① |a|>|b|;② a+b<ab;③ a2b<2a−b中.正确的不等式的有()A.0个B.1个C.2个D.3个4.(单选题.5分)函数f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2.则8a+bab的最小值是()A.10B.9C.8D. 3√25.(单选题.5分)Logistic模型是常用数学模型之一.可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)= K1+e−0.23(t−53).其中K为最大确诊病例数.当I(t*)=0.95K时.标志着已初步遏制疫情.则t*约为()(ln19≈3)A.60B.63C.66D.696.(单选题.5分)已知函数f(x)={xlnx,x>0xe x,x≤0则函数y=f(1-x)的图象大致是()A.B.C.D.7.(单选题.5分)若定义在R上的奇函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.且f(1)=8.则f(2019).f(2020).f(2021)的大小关系是()A.f(2019)<f(2020)<f(2021)B.f(2019)>f(2020)>f(2021)C.f(2020)>f(2019)>f(2021)D.f(2020)<f(2021)<f(2019)8.(单选题.5分)地面上有两座相距120m的塔.在矮塔塔底望高塔塔顶的仰角为α.在高塔塔底望矮塔塔顶的仰角为α2.且在两塔底连线的中点O处望两塔塔顶的仰角互为余角.则两塔的高度分别为()A.50m.100mB.40m.90mC.40m.50mD.30m.40m9.(多选题.5分)等腰直角三角形直角边长为1.现将该三角形绕其某一边旋转一周.则所形成的几何体的表面积可以为( ) A. √2π B. (1+√2)π C. 2√2π D. (2+√2π)10.(多选题.5分)关于x 的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.则a 的值可以为( ) A.2 B.1 C.-1 D. −1211.(多选题.5分)声音是由物体振动产生的声波.其中包含着正弦函数.纯音的数学模型是函数y=Asinωt .我们听到的声音是由纯音合成的.称之为复合音.若一个复合音的数学模型是函数 f (x )=sinx +12sin2x .则下列结论正确的是( ) A.2π是f (x )的一个周期 B.f (x )在[0.2π]上有3个零点 C.f (x )的最大值为3√34D.f (x )在 [0,π2] 上是增函数12.(多选题.5分)对于具有相同定义域D 的函数f (x )和g (x ).若存在函数h (x )=kx+b (k.b 为常数)对任给的正数m.存在相应的x 0∈D 使得当x∈D 且x >x 0时.总有 {0<f (x )−ℎ(x )<m 0<ℎ(x )−g (x )<m.则称直线l :y=kx+b 为曲线y=f (x )和y=g (x )的“分渐近线”.下列定义域均为D={x|x >1}的四组函数中.曲线y=f (x )和y=g (x )存在“分渐近线”的是( ) A.f (x )=x 2.g (x )= √x B.f (x )=10-x +2.g (x )= 2x−3xC.f (x )=x 2+1x .g (x )= xlnx+1lnxD.f(x)= 2x2x+1.g(x)=2(x-1-e-x)13.(填空题.5分)若二次函数f(x)=-x2+2ax+4a+1有一个零点小于-1.一个零点大于3.则实数a的取值范围是___ .14.(填空题.5分)在整数集Z中.被5除所得余数为k的所有整数组成一个“类”.记为[k].即[k]={5n+k|n∈Z}.k=0.1.2.3.4.给出如下四个结论:① 2014∈[4];② -3∈[3];③ Z=[0]∪[1]∪[2]∪[3]∪[4];④ 整数a.b属于同一“类”的充要条件是“a-b∈[0]”.其中.正确的结论是___ .15.(填空题.5分)已知sinθ+cosθ= 713.θ∈(0.π).则tanθ=___ .16.(填空题.5分)已知A、B、C是平面上任意三点.BC=a.CA=b.AB=c.则y=ca+b +bc的最小值是___ .17.(问答题.10分)已知集合A={x|y=log2(-4x2+15x-9).x∈R}.B={x||x-m|≥1.x∈R}.(1)求集合A;(2)若p:x∈A.q:x∈B.且p是q的充分不必要条件.求实数m的取值范围.18.(问答题.12分)已知函数f(x)=Asin(ωx+φ)(A>0.ω>0.0<φ<π2)的部分图象如图所示.其中点P(1.2)为函数图象的一个最高点.Q(4.0)为函数图象与x轴的一个交点.O为坐标原点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数y=f(x)的图象向右平移2个单位得到y=g(x)的图象.求函数h(x)=f(x)•g(x)图象的对称中心.19.(问答题.12分)如图.在三棱柱ABC-A1B1C1中.△ABC和△AA1C均是边长为2的等边三角形.点O为AC中点.平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.20.(问答题.12分)已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1.解方程f(x)=1;(2)若函数f(x)在R上单调递增.求实数a的取值范围;(3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立.求a的取值范围.21.(问答题.12分)在平面直角坐标系xOy中.已知椭圆x2a2 + y2b2=1(a>b>0)的左、右顶点分别为A、B.焦距为2.直线l与椭圆交于C.D两点(均异于椭圆的左、右顶点).当直线l过椭圆的右焦点F且垂直于x轴时.四边形ACBD的面积为6.(1)求椭圆的标准方程;(2)设直线AC.BD的斜率分别为k1.k2.① k2=3k1.求证:直线l过定点;② 若直线l过椭圆的右焦点F.试判断k1k2是否为定值.并说明理由.22.(问答题.12分)设函数f(x)=ln(x+1)+a(x2-x).其中a∈R. (Ⅰ)讨论函数f(x)极值点的个数.并说明理由;(Ⅱ)若∀x>0.f(x)≥0成立.求a的取值范围.2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)参考答案与试题解析试题数:22.满分:1501.(单选题.5分)已知集合A={x|x2-x-2≤0}.B={x|y= √x} .则A∪B=()A.{x|-1≤x≤2}B.{x|0≤x≤2}C.{x|x≥-1}D.{x|x≥0}【正确答案】:C【解析】:推导出集合A.B.由此能求出A∪B.【解答】:解:∵集合A={x|x2-x-2≤0}={x|-1≤x≤2}.B={x|y= √x}={x|x≥0}.∴A∪B={x|x≥-1}.故选:C.【点评】:本题考查并集的求法.考查并集定义等基础知识.考查运算求解能力.是基础题.2.(单选题.5分)已知sin(α−π4)=35. α∈(0,π2) .则cosα=()A. √210B. 3√210C. √22D. 7√210【正确答案】:A【解析】:由已知利用同角三角函数基本关系式可求cos(α- π4)的值.进而根据α=(α- π4)+π4.利用两角和的余弦函数公式即可计算得解.【解答】:解:因为sin(α−π4)=35. α∈(0,π2) .所以α- π4∈(- π4.- π4).可得cos(α- π4)= √1−sin2(α−π4) = 45.则cosα=cos[(α- π4)+ π4]=cos(α- π4)cos π4-sin(α- π4)sin π4= 45× √22- 35×√22= √210.故选:A.【点评】:本题主要考查了同角三角函数基本关系式.两角和的余弦函数公式在三角函数化简求值中的应用.考查了计算能力和转化思想.属于基础题.3.(单选题.5分)若b<a<0.则下列不等式:① |a|>|b|;② a+b<ab;③ a2b<2a−b中.正确的不等式的有()A.0个B.1个C.2个D.3个【正确答案】:C【解析】:利用不等式的性质逐一判断.即可得结论.【解答】:解:若b<a<0.则|b|>|a|.故① 错误;若b<a<0.则a+b<0.ab>0.∴a+b<ab.故② 正确;a2 b -(2a-b)= a2−2ab+b2b= (a−b)2b.由(a-b)2>0.b<0.∴ (a−b)2b <0.即a2b<2a−b .故③ 正确.故正确的不等式有2个.故选:C.【点评】:本题主要考查不等式的基本性质.及作差法比较大小的应用.属于基础题.4.(单选题.5分)函数f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2.则8a+bab的最小值是()A.10B.9C.8D. 3√2【正确答案】:B【解析】:求出原函数的导函数.由f′(1)=2a+b=2.得a+b2=1 .把8a+bab变形为8b+1a后整体乘以1.展开后利用基本不等式求最小值.【解答】:解:由f(x)=ax2+bx.得f′(x)=2ax+b.又f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2. 所以f′(1)=2a+b=2.即a+b2=1.则8a+bab = 8b+1a=(a+b2)(8b+1a)=8ab+b2a+5≥2√8ab•b2a+5=9.当且仅当{2a+b=28ab=b2a.即{a=13b=43时“=”成立.所以8a+bab的最小值是9.故选:B.【点评】:本题考查了导数的运算.考查了利用基本不等式求最值.考查了学生灵活变换和处理问题的能力.是中档题.5.(单选题.5分)Logistic模型是常用数学模型之一.可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)= K1+e−0.23(t−53).其中K为最大确诊病例数.当I(t*)=0.95K时.标志着已初步遏制疫情.则t*约为()(ln19≈3)A.60B.63C.66D.69【正确答案】:C【解析】:根据所给材料的公式列出方程K1+e−0.23(t∗−53)=0.95K.解出t即可.【解答】:解:由已知可得K1+e−0.23(t∗−53) =0.95K.解得e-0.23(t*-53)= 119.两边取对数有-0.23(t*-53)=-ln19.解得t*≈66.故选:C.【点评】:本题考查函数模型的实际应用.考查学生计算能力.属于中档题6.(单选题.5分)已知函数f(x)={xlnx,x>0xe x,x≤0则函数y=f(1-x)的图象大致是()A.B.C.D.【正确答案】:B【解析】:利用导数分析出f(x)的单调性.进而得到f(x)图象示意图.再根据f(1-x)图象与f(x)图象的关系即可进行判断【解答】:解:当x>0时.f(x)=xlnx.则令f′(x)=lnx+1=0.解得x= 1e.所以当0<x<1e 时.f(x)单调递减.x>1e时.f(x)单调递增.当x≤0时.f(x)= xe x .则令f′(x)= 1−xe x≥0.所以当x≤0时.f(x)单调递增.作出函数f(x)的图象如图:又因为f(1-x)的图象时将f(x)图象先关于y轴对称.再向右移动一个单位得到的.故根据f(x)图象可值f(1-x)图象为故选:B.【点评】:本题考查函数图象的变换.涉及导数判断函数单调性.数形结合思想.属于中档题.7.(单选题.5分)若定义在R上的奇函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.且f(1)=8.则f(2019).f(2020).f(2021)的大小关系是()A.f(2019)<f(2020)<f(2021)B.f(2019)>f(2020)>f(2021)C.f(2020)>f(2019)>f(2021)D.f(2020)<f(2021)<f(2019)【正确答案】:A【解析】:根据题意.分析可得f(x+4)=-f(x+2)=f(x).即函数f(x)是周期为4的周期函数.由此结合函数的奇偶性可得f(2019)、f(2020)和f(2021)的值.即可得答案.【解答】:解:根据题意.函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.则有f(x+4)=-f(x+2)=f(x).即函数f(x)是周期为4的周期函数.f(2020)=f(0+4×505)=f(0)=0.f(2021)=f(1+4×505)=f(1)=8.f(2019)=f(-1+4×505)=f(-1)=-f(1)=-8.故有f(2019)<f(2020)<f(2021).故选:A.【点评】:本题考查函数的奇偶性与周期性的综合应用.注意分析函数的周期.属于基础题. 8.(单选题.5分)地面上有两座相距120m 的塔.在矮塔塔底望高塔塔顶的仰角为α.在高塔塔底望矮塔塔顶的仰角为 α2.且在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.则两塔的高度分别为( ) A.50m.100m B.40m.90m C.40m.50m D.30m.40m 【正确答案】:B【解析】:由题意如图所示.分别在两个三角形中求出AB.CD 用α的表示的代数式.再由在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.可得OA⊥OC .可得tan∠AOB•tan∠COD=1.进而可得AB.CD 的关系.求出AB.CD 的值【解答】:解:设AB.CD 分别为两个塔.BD=120m.O 为BD 的中点. 由题意如图所示:可得AB=BD•tan α2 =120•tan α2 . CD=BD•tanα=120•tanα=120 •2tanα21−tan 2α2.因为在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.可得OA⊥OC . tan∠AOB•tan∠COD=1. 即 AB 12BD•CD 12BD=1.所以 AB•CD12×120×12×120=1.即AB•CD=602. 而AB•CD=120•tan α2 •120 •2tan α21−tan 2α2. 所以1=8tan 2α21−tan 2α2.tan α2 >0.解得tan α2 = 13 .所以AB=120×tan α2 =40. CD=120×2tanα21−tan 2α2=90.故选:B .【点评】:本题考查正切的二倍角公式的应用及互相垂直的直线的应用.属于中档题.9.(多选题.5分)等腰直角三角形直角边长为1.现将该三角形绕其某一边旋转一周.则所形成的几何体的表面积可以为()A. √2πB. (1+√2)πC. 2√2πD. (2+√2π)【正确答案】:AB【解析】:分两个情况绕的边为直角边和斜边讨论.当绕的边是直角边是.所形成的几何体的表面积为底面面积加侧面面积.当绕斜边时扇形面积既是所形成的几何体的表面积.而扇形面积等于12×c底面周长×l母线长.进而求出所形成的几何体的表面积.【解答】:解:若绕一条直角边旋转一周时.则圆锥的底面半径为1.高为1.所以母线长l= √2 .这时表面积为12•2π•1•l+π•12=(1+ √2)π;若绕斜边一周时旋转体为两个底对底的圆锥组合在一起.且由题意底面半径为√22.一个圆锥的母线长为1.所以表面积S=2 •12 2 π•√22•1= √2π .综上所述该几何体的表面积为√2π .(1+ √2)π.故选:AB.【点评】:考查旋转体的表面积.属于中档题.10.(多选题.5分)关于x的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.则a的值可以为()A.2B.1C.-1D. −12【正确答案】:CD【解析】:利用已知条件判断a的符号.求出不等式对应方程的根.然后列出不等式求解即可.【解答】:解:关于x的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.所以a<0.因为a≥0时.不等式的解集中的整数有无数多个.不等式(ax-1)(x+2a-1)>0.对应的方程为:(ax-1)(x+2a-1)=0.方程的根为:1a和1-2a;由题意知. 1a<0.则1-2a≤3.解得a≥-1;当a=-1时.不等式的解集是(-1.3).解集中含有3个整数:0.1.2;满足题意.当a=- 12时.不等式的解集是(-2.2).解集中含有3个整数:-1.0.1;满足题意.当a∈(-1.- 12)时.不等式的解集是(1a.1-2a).解集中含有4个整数:-1.0.1.2;不满足题意.当a∈(- 12 .0)时.不等式的解集是(1a.1-2a).解集中含有整数个数多于4个.不满足题意.综上知.a的值可以是-1和12.故选:CD.【点评】:本题主要考查了一元二次不等式的解法与应用问题.也考查了分类讨论思想.是中档题.11.(多选题.5分)声音是由物体振动产生的声波.其中包含着正弦函数.纯音的数学模型是函数y=Asinωt.我们听到的声音是由纯音合成的.称之为复合音.若一个复合音的数学模型是函数f(x)=sinx+12sin2x .则下列结论正确的是()A.2π是f(x)的一个周期B.f(x)在[0.2π]上有3个零点C.f(x)的最大值为3√34D.f(x)在[0,π2]上是增函数【正确答案】:ABC【解析】:求出函数y=sinx与y= 12sin2x的周期.取最小公倍数求原函数的周期判断A;求出函数的零点个数判断B;利用导数求最值判断C;举例说明D错误.【解答】:解:∵y=sinx的周期为2π.y= 12sin2x的周期为π.∴ f(x)=sinx+12sin2x的周期为2π.故A正确;由 f (x )=sinx +12sin2x =0.得sinx+sinxcosx=0.得sinx=0或cosx=-1. ∵x∈[0.2π].∴x=0.x=π.x=2π.则f (x )在[0.2π]上有3个零点.故B 正确; 函数 f (x )=sinx +12sin2x 的最大值在[0. π2 ]上取得.由f′(x )=cosx+cos2x=2cos 2x+cosx-1=0.可得cosx= 12.当x∈(0. π3)时.cosx 单调递减.原函数单调递增.当x∈( π3 . π2 )时.cosx 单调递减.原函数单调递减.则当x= π3 时.原函数求得最大值为sin π3 +12sin 2π3 = 3√34.故C 正确;∵f ( π4 )=sin π4 + 12sin π2 = √2+12 >1.f ( π2 )=sin π2+ 12sinπ =1.∴f (x )在 [0,π2] 上不是增函数.故D 错误. 故选:ABC .【点评】:本题考查命题的真假判断与应用.考查三角函数的图象与性质.训练了利用导数求最值.属难题.12.(多选题.5分)对于具有相同定义域D 的函数f (x )和g (x ).若存在函数h (x )=kx+b (k.b 为常数)对任给的正数m.存在相应的x 0∈D 使得当x∈D 且x >x 0时.总有 {0<f (x )−ℎ(x )<m 0<ℎ(x )−g (x )<m.则称直线l :y=kx+b 为曲线y=f (x )和y=g (x )的“分渐近线”.下列定义域均为D={x|x >1}的四组函数中.曲线y=f (x )和y=g (x )存在“分渐近线”的是( ) A.f (x )=x 2.g (x )= √x B.f (x )=10-x +2.g (x )= 2x−3xC.f (x )=x 2+1x .g (x )= xlnx+1lnxD.f (x )= 2x 2x+1.g (x )=2(x-1-e -x )【正确答案】:BD【解析】:本题从大学数列极限定义的角度出发.仿造构造了分渐近线函数.目的是考查学生分析问题、解决问题的能力.考生需要抓住本质:存在分渐近线的充要条件是x→∞时.f (x )-g (x )→0进行作答.是一道好题.思维灵活.要透过现象看本质.【解答】:解:f (x )和g (x )存在分渐近线的充要条件是x→∞时.f (x )-g (x )→0. f (x )=x 2.g (x )= √x .当x >1时便不符合.所以A 不存在;对于B.f (x )=10-x +2.g (x )= 2x−3x肯定存在分渐近线.因为当时.f (x )-g (x )→0; 对于C.f (x )= x 2+1x .g (x )= xlnx+1lnx . f (x )−g (x )=1x −1lnx .设λ(x )=x-lnx. λn (x )=1x 2 >0.且lnx <x.所以当x→∞时x-lnx 越来愈大.从而f (x )-g (x )会越来越小.不会趋近于0. 所以不存在分渐近线; 对于D.f (x )= 2x 2x+1 .g (x )=2(x-1-e -x ).当x→+∞时. f (x )−g (x )=−21+1x+2+2e x →0 .故选:BD .【点评】:本题较难.涉及到部分大学内容.属于拓展类题目13.(填空题.5分)若二次函数f (x )=-x 2+2ax+4a+1有一个零点小于-1.一个零点大于3.则实数a 的取值范围是___ . 【正确答案】:[1] (45,+∞)【解析】:利用二次函数根的分布问题即可求解.【解答】:解:根据二次函数根的分布思想.要满足题意只需: {f (−1)>0f (3)>0 .即 {−1−2a +4a +1>0−9+6a +4a +1>0 .解得 {a >0a >45 .即a >45 .故答案为:( 45,+∞ ).【点评】:本题考查了二次函数根的分布问题.考查了学生对二次函数图象的掌握熟练度.属于基础题.14.(填空题.5分)在整数集Z 中.被5除所得余数为k 的所有整数组成一个“类”.记为[k].即[k]={5n+k|n∈Z}.k=0.1.2.3.4.给出如下四个结论:① 2014∈[4]; ② -3∈[3]; ③ Z=[0]∪[1]∪[2]∪[3]∪[4]; ④ 整数a.b 属于同一“类”的充要条件是“a -b∈[0]”. 其中.正确的结论是___ . 【正确答案】:[1] ① ③ ④【解析】:根据“类”的定义.逐一进行判断即可;对于 ① .看2014除以5的余数即可;对于 ② .将-3表示成5×(-1)+2即可判断;对于 ③ .被5除所得余数有且只有五类;对于 ④ .根据定义分析即可.【解答】:解: ① ∵2014÷5=402…4.∴2014∈[4].故 ① 正确; ② ∵-3=5×(-1)+2.∴-3∉[3].故 ② 错误;③ 因为整数集中的数被5除的数可以且只可以分成五类.故Z=[0]∪[1]∪[2]∪[3]∪[4].故 ③ 正确;④ ∵整数a.b 属于同一“类”.∴整数a.b 被5除的余数相同.从而a-b 被5除的余数为0. 反之也成立.故“整数a.b 属于同一“类”的充要条件是“a -b∈[0]”.故 ④ 正确. 故答案为: ① ③ ④【点评】:本题考查命题的真假性判断.读懂题目中的新定义是关键.属于中档题. 15.(填空题.5分)已知sinθ+cosθ= 713 .θ∈(0.π).则tanθ=___ . 【正确答案】:[1]- 125【解析】:利用同角三角函数的基本关系求得2sinθcosθ=- 120169 .可得θ为钝角.tanθ<0;再根据2sinθcosθ= 2tanθtan 2θ+1 =- 120169 .求得tanθ的值.【解答】:解:∵sinθ+cosθ= 713 .∴1+2sinθcosθ= 49169 .∴2sinθcosθ=- 120169 <0. 结合θ∈(0.π).可得θ为钝角.∴tanθ<0. 再根据2sinθcosθ= 2sinθcosθsin 2θ+cos 2θ = 2tanθtan 2θ+1 =- 120169 .∴tanθ=- 125.故答案为:- 125.【点评】:本题主要考查同角三角函数的基本关系、二倍角公式的应用.属于基础题. 16.(填空题.5分)已知A 、B 、C 是平面上任意三点.BC=a.CA=b.AB=c.则 y =ca+b +bc 的最小值是___ .【正确答案】:[1] √2−12【解析】:先将函数变形.并化简.再利用基本不等式.即可求得结论.【解答】:解:依题意.得b+c≥a .于是 y =ca+b +bc = ca+b +b+c c−1= ca+b +b+c+b+c2c −1≥ ca+b +a+b+c2c−1 = ca+b+a+b2c−12≥ √2−12其中.等号当且仅当b+c=a且ca+b =a+b2c.即a= 1+√22c .b= −1+√22c时成立.所以.所求最小值为√2−12故答案为:√2−12【点评】:本题考查基本不等式的运用.解题的关键是化简函数.并利用基本不等式求最值.属于中档题.17.(问答题.10分)已知集合A={x|y=log2(-4x2+15x-9).x∈R}.B={x||x-m|≥1.x∈R}.(1)求集合A;(2)若p:x∈A.q:x∈B.且p是q的充分不必要条件.求实数m的取值范围.【正确答案】:【解析】:(1)根据条件可知集合A即求y=log2(−4x2+15x−9) .故可表示出A=(34,3) .(2)由题得B=[m+1.+∞)∪(-∞.m-1].根据p是q的充分不必要条件可知A是B的真子集.根据集合包含关系即可求出m取值范围.【解答】:解:(1)集合A即为函数y=log2(−4x2+15x−9)定义域.即需-4x2+15x-9>0.即(x-3)(4x-3)<0.解得A=(34,3);(2)由|x-m|≥1⇔x-m≥1或x-m≤-1.即x≥m+1或x≤m-1.则B=[m+1.+∞)∪(-∞.m-1].因为p是q的充分不必要条件.所以A是B的真子集.则m+1≤34或3≤m−1 .解得m≤−14或m≥4 .所以实数m的取值范围是(−∞,−14]∪[4,+∞).【点评】:本题考查命题及其关系.涉及函数求定义域.集合的包含关系等知识点.属于中档题.18.(问答题.12分)已知函数f(x)=Asin(ωx+φ)(A>0.ω>0.0<φ<π2)的部分图象如图所示.其中点P(1.2)为函数图象的一个最高点.Q(4.0)为函数图象与x轴的一个交点.O为坐标原点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数y=f(x)的图象向右平移2个单位得到y=g(x)的图象.求函数h(x)=f(x)•g(x)图象的对称中心.【正确答案】:【解析】:(Ⅰ)由题意得振幅A.周期T.利用周期公式可求ω.将点P(1.2)代入解析式.结合范围0<φ<π2.可求φ.即可得解函数解析式.(Ⅱ)利用三角函数的图象变换可得g(x)=2sin π6x.利用三角函数恒等变换可求h(x)=1+2sin(π3 x- π6).由π3x−π6=kπ .即可得解对称中心.【解答】:(本题满分为12分)解:(Ⅰ)由题意得振幅A=2.周期T=4×(4-1)=12.又2πω =12.则ω= π6…(2分)将点P(1.2)代入f(x)=2sin(π6x+φ).得sin(π6x+φ)=1.∵0<φ<π2.∴φ= π3.…(4分)故f(x)=2sin(π6 x+ π3)…(5分)(Ⅱ)由题意可得g(x)=2sin[ π6(x-2)+ π3]=2sin π6x…(7分)∴h(x)=f(x)•g(x)=4sin(π6 x+ π3)•sin π6x=2sin2π6x+2 √3 sin π6x•cos π6x=1-cos π3x+√3 sin π3x=1+2sin(π3 x- π6)…(10分)由π3x−π6=kπ .得:x=3k+12(k∈Z).∴y=h(x)图象的对称中心为:(3k+1,1)(k∈Z)…(12分)2【点评】:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.函数y=Asin(ωx+φ)的图象变换.三角函数恒等变换的应用.正弦函数的图象和性质的应用.考查了转化思想.属于中档题.19.(问答题.12分)如图.在三棱柱ABC-A1B1C1中.△ABC和△AA1C均是边长为2的等边三角形.点O为AC中点.平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.【正确答案】:【解析】:(1)证明A1O⊥AC.通过平面AA1C1C⊥平面ABC.推出A1O⊥平面ABC.(2)如图.以O为原点.OB.OC.OA1为x.y.z轴.建立空间直角坐标系.求出相关点的坐标.求出平面A1BC1的法向量为n⃗=(x,y,z) .设直线AB与平面A1BC1所成角为α.利用空间向量的数量积求解即可.【解答】:(1)证明:∵AA1=A1C.且O为AC的中点.∴A1O⊥AC.又∵平面AA1C1C⊥平面ABC.且交线为AC.又A1O⊂平面AA1C1C.∴A1O⊥平面ABC;(2)解:如图.以O为原点.OB.OC.OA1为x.y.z轴.建立空间直角坐标系.由已知可得O (0.0.0)A (0.-1.0) ,B(√3,0,0) ,A 1(0,0,√3) C 1(0,2,√3) . A 1B ⃗⃗⃗⃗⃗⃗⃗ =(√3,0,−√3) . AB ⃗⃗⃗⃗⃗ =(√3,1,0) ,A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,0) 平面A 1BC 1的法向量为 n ⃗ =(x ,y ,z) . 则有 {2y =0√3x −√3z =0.所以 n ⃗ 的一组解为 n ⃗ =(1,0,1) . 设直线AB 与平面A 1BC 1所成角为α. 则sinα= |cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >|又∵ cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ > = AB ⃗⃗⃗⃗⃗ •n⃗ |AB ⃗⃗⃗⃗⃗ ||n ⃗ |= √32√2 = √64 . 所以直线AB 与平面A 1BC 1所成角的正弦值: √64 .【点评】:本题考查直线与平面所成角的求法.平面与平面垂直的判断定理的应用.考查空间想象能力以及计算能力.20.(问答题.12分)已知函数f (x )=x 2+(x-1)|x-a|. (1)若a=-1.解方程f (x )=1;(2)若函数f (x )在R 上单调递增.求实数a 的取值范围;(3)若a <1且不等式f (x )≥2x -3对一切实数x∈R 恒成立.求a 的取值范围.【正确答案】:【解析】:(1)取a=-1把函数分段.然后分段求解方程f (x )=1; (2)分x≥a 和x <a 对函数分段.然后由f (x )在R 上单调递增得到不等式组 {a+14≤aa +1>0.求解不等式组得到实数a 的取值范围;(3)写出分段函数g (x ).不等式f (x )≥2x -3对一切实数x∈R 恒成立.等价于不等式g (x )≥0对一切实数x∈R 恒成立.然后求出函数在不同区间段内的最小值.求解不等式得答案.【解答】:解:(1)当a=-1时.f (x )=x 2+(x-1)|x+1|. 故有 f (x )={2x 2−1, x ≥−11, x <−1.当x≥-1时.由f (x )=1.有2x 2-1=1.解得x=1或x=-1. 当x <-1时.f (x )=1恒成立. ∴方程的解集为{x|x≤-1或x=1}; (2) f (x )={2x 2−(a +1)x +a , x ≥a (a +1)x −a ,x <a.若f (x )在R上单调递增.则有 {a+14≤aa +1>0.解得 a ≥13 .∴当 a ≥13时.f (x )在R 上单调递增; (3)设g (x )=f (x )-(2x-3).则 g (x )={2x 2−(a +3)x +a +3,x ≥a(a −1)x −a +3, x <a.不等式f (x )≥2x -3对一切实数x∈R 恒成立.等价于不等式g (x )≥0对一切实数x∈R 恒成立. ∵a <1.∴当x∈(-∞.a )时.g (x )单调递减.其值域为(a 2-2a+3.+∞). 由于a 2-2a+3=(a-1)2+2≥2. ∴g (x )≥0成立.当x∈[a .+∞)时.由a <1.知 a <a+34.g (x )在x=a+34处取得最小值. 令 g (a+34)=a +3−(a+3)28≥0 .解得-3≤a≤5.又a <1. ∴-3≤a <1. 综上.a∈[-3.1).【点评】:不同考查了函数恒成立问题.考查了二次函数的性质.体现了数学转化思想方法.考查了不等式的解法.是压轴题.21.(问答题.12分)在平面直角坐标系xOy 中.已知椭圆 x 2a 2 + y 2b 2 =1(a >b >0)的左、右顶点分别为A 、B.焦距为2.直线l 与椭圆交于C.D 两点(均异于椭圆的左、右顶点).当直线l 过椭圆的右焦点F 且垂直于x 轴时.四边形ACBD 的面积为6. (1)求椭圆的标准方程;(2)设直线AC.BD 的斜率分别为k 1.k 2. ① k 2=3k 1.求证:直线l 过定点;② 若直线l 过椭圆的右焦点F.试判断 k1k 2是否为定值.并说明理由.【正确答案】:【解析】:(1)由题意焦距为2.设点C (1.y 0).代入椭圆 x 2a2 + y 2b2 =1(a >b >0).解得 y 0=±b 2a .从而四边形ACBD 的面积6=2 S △ABC =2a •b 2a=2b 2.由此能求出椭圆的标准方程. (2) ① 由题意AC :y=k 1(x+2).联立直线与椭圆的方程 x 24+y 23=1 .得(3+4k 12)x 2+16k 12-12=0.推导出C (- 8k 12−63+4k 12 . 12k 13+4k 12 ).D ( 8k 22−63+4k 22 .- 12k 23+4k 22).由此猜想:直线l 过定点P(1.0).从而能证明P.C.D 三点共线.直线l 过定点P (1.0). ② 由题意设C (x 1.y 1).D (x 2.y 2).直线l :x=my+1.代入椭圆标准方程: x 24+y 23=1.得(3m 2+4)y 2+6my-9=0.推导出y 1+y 2=- 6m 3m 2+4 .y 1y 2=- 93m 2+4 .由此推导出 k 1k 2= y 1x 1+2y 2x 2−2= y 1(x 2−2)y 2(x 1+2) = y 1(my 2−1)y 2(my 1+3) = my 1y 2−y 1my 1y 2+3y 2 = 13(定值).【解答】:解:(1)由题意焦距为2.可设点C (1.y 0).代入椭圆 x 2a 2 + y 2b 2 =1(a >b >0).得 1a 2+y 02b 2=1.解得 y 0=±b 2a .∴四边形ACBD 的面积6=2 S △ABC =2a •b 2a=2b 2. ∴b 2=3.a 2=4.∴椭圆的标准方程为 x 24+y 23=1.证明:(2) ① 由题意AC :y=k 1(x+2). 联立直线与椭圆的方程 x 24+y 23=1 .得(3+4 k 12 )x 2+16k 12-12=0.∴-2x 1= 16k 12−123+4k 12 .解得x 1= 6−8k 123+4k 12 .从而y 1=k 1(x 1+1)= 12k13+4k 12 .∴C (- 8k 12−63+4k 12 . 12k 13+4k 12 ).同理可得D ( 8k 22−63+4k 22 .- 12k23+4k 22 ).猜想:直线l 过定点P (1.0).下证之: ∵k 2=3k 1.∴k PC -k PD =12k 13+4k 12−8k 12−63+4k 12−1 -−12k 23+4k 228k 22−63+4k 22−1= 4k11−4k 12+12k 24k22−9= 4k 11−4k 12 + 36k 136k 12−9 = 4k 11−4k 12 - 4k 11−4k 12 =0. ∴P .C.D 三点共线.∴直线l 过定点P (1.0). 解: ② k1k 2为定值.理由如下:由题意设C (x 1.y 1).D (x 2.y 2).直线l :x=my+1. 代入椭圆标准方程: x 24+y 23=1.得(3m 2+4)y 2+6my-9=0. ∴y 1.2=−6m±√36m 2+36(3m 2+4)2(3m 2+4). ∴y 1+y 2=- 6m3m 2+4 .y 1y 2=- 93m 2+4 .∴ k 1k 2= y 1x 1+2y 2x 2−2 = y 1(x 2−2)y 2(x 1+2) = y 1(my 2−1)y 2(my 1+3) = my 1y 2−y 1my 1y 2+3y 2 = −9m 3m 2+4−(−6m3m 2+4−y 2)−9m3m 2+4+3y 2 =−3m3m 2+4+y 2−9m3m 2+4+3y 2= −3m3m 2+4+y 2−9m3m 2+4+3y 2 = 13 (定值).【点评】:本题考查椭圆标准方程的求法.考查直线过定点的证明.考查两直线的斜率的比值是否为定值的判断与求法.考查椭圆、直线方程、韦达定理等基础知识.考查运算求解能力.考查化归与转化思想.是中档题.22.(问答题.12分)设函数f (x )=ln (x+1)+a (x 2-x ).其中a∈R . (Ⅰ)讨论函数f (x )极值点的个数.并说明理由; (Ⅱ)若∀x >0.f (x )≥0成立.求a 的取值范围.【正确答案】:【解析】:(I)函数f(x)=ln(x+1)+a(x2-x).其中a∈R.x∈(-1.+∞).f′(x)=1x+1+2ax−a = 2ax2+ax−a+1x+1.令g(x)=2ax2+ax-a+1.对a与△分类讨论可得:(1)当a=0时.此时f′(x)>0.即可得出函数的单调性与极值的情况.(2)当a>0时.△=a(9a-8).① 当0<a≤89时.△≤0. ② 当a >89时.△>0.即可得出函数的单调性与极值的情况.(3)当a<0时.△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a ≤89时.可得函数f(x)在(0.+∞)上单调性.即可判断出.(2)当89<a≤1时.由g(0)≥0.可得x2≤0.函数f(x)在(0.+∞)上单调性.即可判断出.(3)当1<a时.由g(0)<0.可得x2>0.利用x∈(0.x2)时函数f(x)单调性.即可判断出;(4)当a<0时.设h(x)=x-ln(x+1).x∈(0.+∞).研究其单调性.即可判断出【解答】:解:(I)函数f(x)=ln(x+1)+a(x2-x).其中a∈R.x∈(-1.+∞).f′(x)=1x+1+2ax−a = 2ax2+ax−a+1x+1.令g(x)=2ax2+ax-a+1.(1)当a=0时.g(x)=1.此时f′(x)>0.函数f(x)在(-1.+∞)上单调递增.无极值点.(2)当a>0时.△=a2-8a(1-a)=a(9a-8).① 当0<a≤89时.△≤0.g(x)≥0.f′(x)≥0.函数f(x)在(-1.+∞)上单调递增.无极值点.② 当a >89时.△>0.设方程2ax2+ax-a+1=0的两个实数根分别为x1.x2.x1<x2.∵x1+x2= −12.∴ x1<−14 . x2>−14.由g(-1)>0.可得-1<x1<−14.∴当x∈(-1.x1)时.g(x)>0.f′(x)>0.函数f(x)单调递增;当x∈(x1.x2)时.g(x)<0.f′(x)<0.函数f(x)单调递减;当x∈(x2.+∞)时.g(x)>0.f′(x)>0.函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时.△>0.由g(-1)=1>0.可得x1<-1<x2.∴当x∈(-1.x2)时.g(x)>0.f′(x)>0.函数f(x)单调递增;当x∈(x2.+∞)时.g(x)<0.f′(x)<0.函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时.函数f(x)有一个极值点;时.函数f(x)无极值点;当0≤a ≤89时.函数f(x)有两个极值点.当a >89(II)由(I)可知:时.函数f(x)在(0.+∞)上单调递增.(1)当0≤a ≤89∵f(0)=0.∴x∈(0.+∞)时.f(x)>0.符合题意.<a≤1时.由g(0)≥0.可得x2≤0.函数f(x)在(0.+∞)上单调递增.(2)当89又f(0)=0.∴x∈(0.+∞)时.f(x)>0.符合题意.(3)当1<a时.由g(0)<0.可得x2>0.∴x∈(0.x2)时.函数f(x)单调递减.又f(0)=0.∴x∈(0.x2)时.f(x)<0.不符合题意.舍去;>0.(4)当a<0时.设h(x)=x-ln(x+1).x∈(0.+∞).h′(x)= xx+1∴h(x)在(0.+∞)上单调递增.因此x∈(0.+∞)时.h(x)>h(0)=0.即ln(x+1)<x.可得:f(x)<x+a(x2-x)=ax2+(1-a)x.时.当x>1−1aax2+(1-a)x<0.此时f(x)<0.不合题意.舍去.综上所述.a的取值范围为[0.1].【点评】:本题考查了导数的运算法则、利用导数研究函数的单调性极值.考查了分析问题与解决问题的能力.考查了分类讨论思想方法、推理能力与计算能力.属于难题.。
2021年高三上学期初考试数学试题含答案

苏省苏州中学xx 学年度第一学期期初考试2021年高三上学期初考试数学试题含答案一、 填空题:本大题共14小题,每小题5分,共70分.1. 若a +i 1-i (i 是虚数单位)是实数,则实数a 的值是____________.2. 已知集合A ={x |x >1},B ={x |x 2-2x <0},则A ∪B =____________.3. 命题“若实数a 满足a ≤2,则a 2<4”的否命题是______ (填“真”或“假”)命题.4.在如图所示的算法流程图中,若输入m =4,n =3,则输出的a =__________.(第4题)5.把一个体积为27 cm 3的正方体木块表面涂上红漆,然后锯成体积为 1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为____________.6. 在约束条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1下,则x -12+y 2的最小值为__________.7.设α、β是空间两个不同的平面,m 、n 是平面α及β外的两条不同直线.从“① m ⊥n ;② α⊥β;③ n ⊥β;④ m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(填序号).8.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线x 2-y 23=1的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin A -sin Bsin C的值是____________.9. 已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段FA 交抛物线于点B ,过B 作l 的垂线,垂足为M ,若AM ⊥MF ,则p =__________.10. 若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是____________.11. 如图所示,在直三棱柱A 1B 1C 1—ABC 中,AC ⊥BC ,AC =4,BC =CC 1=2.若用平行于三棱柱A 1B 1C 1—ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.(第11题)12. 已知椭圆x 24+y 22=1,A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________.13. 在△ABC 中,过中线AD 中点E 任作一直线分别交边AB 、AC 于M 、N 两点,设AM →=xAB →,AN →=yAC →(x 、y ≠0),则4x +y 的最小值是______________.14.设m ∈N ,若函数f (x )=2x -m 10-x -m +10存在整数零点,则m 的取值集合为______________.二、 解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,平面PAC ⊥平面ABC ,点E 、F 、O 分别为线段PA 、PB 、AC 的中点,点G 是线段CO 的中点,AB =BC =AC =4,PA =PC =2 2.求证:(1) PA ⊥平面EBO ; (2) FG ∥平面EBO .16. (本小题满分14分)已知函数f (x )=2cos x 2⎝ ⎛⎭⎪⎫3cos x 2-sin x2.(1) 设θ∈⎣⎢⎡⎦⎥⎤-π2,π2,且f (θ)=3+1,求θ的值; (2) 在△ABC 中,AB =1,f (C )=3+1,且△ABC 的面积为32,求sin A +sin B 的值.17. (本小题满分14分)在平面直角坐标系xOy 中,如图,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1、A 2,上、下顶点分别为B 1、B 2.设直线A 1B 1的倾斜角的正弦值为13,圆C 与以线段OA 2为直径的圆关于直线A 1B 1对称.(1) 求椭圆E 的离心率;(2) 判断直线A 1B 1与圆C 的位置关系,并说明理由; (3) 若圆C 的面积为π,求圆C 的方程.18. (本小题满分16分)心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量y1=4x+4;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为at+42(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.(1) 若a=-1,t=5求“二次复习最佳时机点”;(2) 若出现了“二次复习最佳时机点”,求a的取值范围.19. (本小题满分16分)已知各项均为正数的等差数列{a n}的公差d不等于0,设a1、a3、a k是公比为q的等比数列{b n}的前三项.(1) 若k=7,a1=2.①求数列{a n b n}的前n项和T n;②将数列{a n}与{b n}中相同的项去掉,剩下的项依次构成新的数列{c n},设其前n项和为S n,求S-22n-1+3·2n-1的值;(2) 若存在m>k,m∈N*使得a1、a3、a k、a m成等比数列,求证:k为奇数.20. (本小题满分16分)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a ,x <0,ln x ,x >0,其中a 是实数.设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2.(1)指出函数f (x )的单调区间;(2)若函数f (x )的图象在点A ,B 处的切线互相垂直,且x 2<0,证明:x 2-x 1≥1; (3)若函数f (x )的图象在点A ,B 处的切线重合,求a 的取值范围.江苏省苏州中学xx 学年度第一学期期初考试数学II(理科附加)本试卷满分40分,考试时间30分钟,将正确的答案写在答题卡的相应位置上。
2021-2022学年江苏省苏州市高三(上)期中数学试卷(附答案详解)

2021-2022学年江苏省苏州市高三(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合M ={x|−2≤x ≤3},N ={x|log 2x ≤1},则M ∩N =( )A. [−2,3]B. [−2,2]C. (0,2]D. (0,3]2. 若a >0,b >0,则“ab <1”是“a +b <1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 若tanα=34,则1+sin2α1−2sin 2α=( )A. −17B. −7C. 17D. 74. 函数f(x)=(3x −x 3)sinx 的部分图象大致为( )A.B.C.D.5. 已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A. −58B. 14C. 18D. 1186. 定义方程f(x)=f′(x)的实数根x.叫做函数f(x)的“躺平点”.若函数g(x)=lnx ,ℎ(x)=x 3−1的“躺平点”分别为α,β,则α,β的大小关系为( )A. α≥βB. a >βC. α≤βD. α<β7. 已知函数f(x)=Asin(ωx −π6)(A >0,ω>0),直线y =1与f(x)的图象在y 轴右侧交点的横坐标依次为a 1,a 2,…,a k ,a k+1,…,(其中k ∈N ∗),若a 2k+1−a 2ka 2k −a 2k−1=2,则A =( )B. 2C. √2D. 2√3A. 2√338.设数列{a m}(m∈N∗),若存在公比为q的等比数列{b m+1}(m∈N∗),使得b k<a k<b k+1,其中k=1,2,…,m,则称数列{b m+1}为数列{a m}的“等比分割数列”,则下列说法错误的是()A. 数列{b5}:2,4,8,16,32是数列{a4}:3,7,12,24的一个“等比分割数列”B. 若数列{a n}存在“等比分割数列”{b n+1},则有a1<⋯<a k−1<a k<⋯<a n和b1<⋯<b k−1<b k<⋯<b n<b n+1成立,其中2≤k≤n,k∈N∗C. 数列{a3}:−3,−1,2存在“等比分割数列”{b4}D. 数列{a10}的通项公式为a n=2n(n=1,2,…,10),若数列{a10}的“等比分割数列”{b11}的首项为1,则公比q∈(2,2109)二、多选题(本大题共4小题,共20.0分)=2−i(i为虚数单位),设复数z=(a+1)+(a−1)i,则下列9.已知实数a满足3−ai1+i结论正确的是()A. z为纯虚数B. z2为虚数C. z+z−=0D. z⋅z−=410.已知不等式x2+2ax+b−1>0的解集是{x|x≠d},则b的值可能是()A. −1B. 3C. 2D. 011.关于函数f(x)=sin|x|+|cosx|有下述四个结论,则()A. f(x)是偶函数B. f(x)的最小值为−1,π)单调递增C. f(x)在[−2π,2π]上有4个零点D. f(x)在区间(π212.如图,正方形ABCD与正方形DEFC边长均为1,平面ABCD与平面DEFC互相垂直,P是AE上的一个动点,则()A. CP的最小值为√32B. 当P在直线AE上运动时,三棱锥D−BPF的体积不变C. PD+PF的最小值为√2−√2D. 三棱锥A−DCE的外接球表面积为3π三、单空题(本大题共4小题,共20.0分)13. 已知曲线y =me x +xlnx 在x =1处的切线方程为y =3x +n ,则n =______. 14. 已知数列{a n }是等差数列,a 1>0,a 3+3a 7=0,则使S n >0的最大整数n 的值为______.15. 某区域规划建设扇形观景水池,同时紧贴水池周边建设一圈人行步道.要求总预算费用24万元,水池造价为每平方米400元,步道造价为每米1000元(不考虑宽度厚度等因素),则水池面积最大值为______平方米.16. 已知f(x)是定义在R 上的奇函数,且f(1−x)=f(x),则f(x)的最小正周期为______;若对任意的x 1,x 2∈[0,12],当x 1≠x 2时,都有f(x 1)−f(x 2)x 1−x 2>π,则关于x 的不等式f(x)≤sinπx 在区间[−32,32]上的解集为______.四、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ =(2sinx,2sin(x +π4)),向量b ⃗ =(cosx,√62(cosx −sinx)),记f(x)=a ⃗ ⋅b ⃗ (x ∈R). (1)求f(x)表达式;(2)解关于x 的不等式f(x)≥1.18. 在下列条件:①数列{a n }的任意相邻两项均不相等,且数列{a n 2−a n }为常数列,②S n =12(a n +n +1)(n ∈N ∗),③a 3=2,S n+1=S n−1+1(n ≥2,n ∈N ∗)中,任选一个,补充在横线上,并回答下面问题. 已知数列{a n }的前n 项和为S n ,a 1=2,______. (1)求数列{a n }的通项公式a n 和前n 项和S n ; (2)设b k =1S 2k ⋅S 2k+1(k ∈N ∗),数列{b n }的前n 项和记为T n ,证明:T n <34(n ∈N ∗).19.在等腰直角三角形ABC中,已知∠ACB=90°,点D,E分别在边AB,BC上,CD=4.(1)若D为AB的中点,三角形CDE的面积为4,求证:E为CB的中点;(2)若BD=2AD,求△ABC的面积.20.如图,四棱锥P−ABCD中,PA⊥底面ABCD,AC=2,BC=CD=1,∠CAD=30°,∠ACB=60°,M是PB上一点,且PB=3MB,N是PC中点.(1)求证:PC⊥BD;(2)若二面角P−BC−A大小为45°,求棱锥C−AMN的体积.−alnx(a>0).21.已知函数f(x)=ax−1x(1)求f(x)的单调区间;(2)若f(x)有两个极值点x1,x2(x1<x2),且不等式f(x1)+f(x2)2>f(x1+x22)+mx1x2恒成立,求实数m的取值范围.22.已知函数f(x)=lnx−x+2sinx,f′(x)为f(x)的导函数,求证:(1)f′(x)在(0,π)上存在唯一零点;(2)f(x)有且仅有两个不同的零点.答案和解析1.【答案】C【解析】解:集合M={x|−2≤x≤3}=[−2,3],N={x|log2x≤1}=(0,2],则M∩N= (0,2].故选:C.先化简集合N,再根据交集的运算即可求出.本题考查描述法、区间的定义,以及对数不等式的解法和交集的运算,属于基础题.2.【答案】B【解析】解:∵a>0,b>0,⇒∵ab<1,令a=4,b=18,则a+b>1,∴充分性不满足.⇐当a+b<1时,0<a<1且0<b<1,所以ab<1,∴a>0,b>0,ab<1a+b<1的必要不充分条件,故选:B.判断充分条件、必要条件时均可以列举出满足条件的数,或使之不成立的数.本题考查了充分、必要条件的判断,可以列举出满足条件的具体数进行判断,属于基础题.3.【答案】D【解析】解:因为tanα=34,所以1+sin2α1−2sin2α=sin2α+cos2α+2sinαcosαsin2α+cos2α−2sin2α=tan 2α+1+2tanα1−tan 2α=(34)2+1+2×341−(34)2=7. 故选:D .由已知利用二倍角的正弦公式,同角三角函数基本关系式将1+sin2α1−2sin 2α用tanα表示,再求值即可.本题主要考查了二倍角的正弦公式,同角三角函数基本关系式在三角函数求值中的应用,考查了转化思想,属于基础题.4.【答案】A【解析】解:∵f(−x)=(−3x +x 3)sin(−x)=(3x −x 3)sinx =f(x), ∴f(x)为偶函数,排除选项C ;当0<x <√3时,3x −x 3>0,sinx >0,∴f(x)>0, 当√3<x <π时,3x −x 3<0,sinx >0,∴f(x)<0, 故选:A .根据函数奇偶性的概念可判断f(x)为偶函数,排除选项B ,再对比剩下选项,需考虑0<x <√3和√3<x <π时,f(x)与0的大小关系即可作出选择.本题考查函数的图象与性质,一般可从函数的单调性、奇偶性或特殊点处的函数值等方面着手思考,考查学生的逻辑推理能力和运算能力,属于基础题.5.【答案】C【解析】 【分析】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题. 由题意画出图形,把AF ⃗⃗⃗⃗⃗ 、BC ⃗⃗⃗⃗⃗ 都用BA ⃗⃗⃗⃗⃗ 、BC ⃗⃗⃗⃗⃗ 表示,然后代入数量积公式得答案. 【解答】解:如图,∵D 、E 分别是边AB 、BC 的中点,且DE =2EF ,∴AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ )⋅BC ⃗⃗⃗⃗⃗ =(−12BA ⃗⃗⃗⃗⃗ +32DE ⃗⃗⃗⃗⃗⃗ )⋅BC ⃗⃗⃗⃗⃗=(−12BA ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )⋅BC ⃗⃗⃗⃗⃗ =(−12BA ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ −34BA ⃗⃗⃗⃗⃗ )⋅BC ⃗⃗⃗⃗⃗=(−54BA ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ )⋅BC ⃗⃗⃗⃗⃗ =−54BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ 2=−54|BA ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |cos60°+34×12 =−54×1×1×12+34=18. 故选:C .6.【答案】D【解析】解:g(x)=lnx 定义域为(0,+∞),g′(x)=1x , 由题意得:lnα=1α,令t(x)=lnx −1x ,x ∈(0,+∞), 则α为函数t(x)=lnx −1x 的零点,t′(x)=1x +1x 2>0, 所以t(x)=lnx −1x 在x ∈(0,+∞)上单调递增,又t(1)=−1<0,t(e)=1−1e >0,由零点存在性定理,α∈(1,e). 另外ℎ(x)=x 3−1,ℎ′(x)=3x 2,由题意得:β3−1=3β2,令s(x)=x 3−1−3x 2,则β为函数s(x)=x 3−1−3x 2的零点,s′(x)=3x 2−6x , 令s′(x)>0得:x >2或x <0,令s′(x)<0得:0<x <2,所以s(x)=x 3−1−3x 2单调递增区间为(−∞,0),(2,+∞),单调递减区间为(0,2), s(x)在x =0处取得极大值,s(0)=−1<0,在x =2处取得极小值, 故s(x)在(−∞,2)上无零点,因为函数在(2,+∞)上单调递增,且s(3)=27−1−27<0,s(4)=64−1−48>0,由零点存在性定理:β∈(3,4) 所以α<β. 故选:D .对g(x)=lnx 求导,构造函数t(x)=lnx −1x ,研究其单调性和零点,利用零点存在性定理求出α∈(1,e);同样的方法求出β∈(3,4),得到答案.本题主要考查新定义的应用,利用导数研究函数的单调性的方法,函数零点存在定理及其应用等知识,属于中等题.7.【答案】B【解析】解:设函数周期为T ,由直线y =1与f(x)的图象在y 轴右侧交点的横坐标依次为a 1,a 2,…,a k ,a k+1,…,(其中k ∈N ∗),易知a 2k+1−a 2k−1=T ,因为a 2k+1−a 2ka 2k −a 2k−1=2,所以a 2k −a 2k−1=13T , 令顶点为(m,A),所以m −a 2k−1=T6, 所以a 2k−1到左边零点的距离为T12,将y =sinx 与y =Asin(ωx −π6)相对比,确定1与A 两个最大值的比例, 当x ∈[0,π2]时,π2×T 12T 6+T 12=π6,所以1A =sinπ6sin π2=12,所以A =2,故选:B .由正弦型函数的图象易知a 2k+1−a 2k−1=T ,结合条件可得a 2k −a 2k−1=13T ,设出顶点坐标,结合图象找到对应比例可求得A .本题考查了y =Asin(ωx +φ)的图象与性质,属于中档题.8.【答案】C【解析】解:对于A ,数列{b 5}:2,4,8,16,32,数列{a 4}:3,7,12,24, 因为2<3<4<7<8<12<16<24<32,所以{b5}是{A4}的一个“等比分割数列”,故A正确;对于B,因为数列{a n}存在“等比分割数列”{b n+1},所以b k<a k<b k+1,k=1,2,…,n,则b k+1<a k+1<b k+2,所以b k<a k<b k+1<a k+1,故b k<b k+1,a k<a k+1,所以数列{a n}和数列{b n}均为单调递增数列,故B正确;对于C,假设存在{b4}是{a3}:−3,−1,2的“等比分割数列”,所以b1<−3<b2<−1<b3<2<b4,因为−3<b2<−1,b1<−3,故q=b2b1∈(0,1),q=b3b2∈(0,1),因为−3<b2<−1,所以−1<b3<0,因为b4<2,则q=b4b3<0,产生矛盾,故假设不成立,故C错误;对于D,{a10}的通项公式为a n=2n(n=1,2,...,10),{b11}的首项为1,公比为q(q>1),所以b n=q n−1,n=1,2, (11)因为b n<a n<b n+1,n=1,2, (10)则q n−1<2n<q n,n=1,2, (10)故2<q<2n n−1,n=2, (10)因为2n n−1=21+1n−1关于n单调递减,所以2<q<2109,即q∈(2,2109),故D正确.故选:C.利用“等比分割数列”的定义,对四个选项逐一分析判断即可.本题考查了数列的综合应用,考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可,属于难题.9.【答案】ACD【解析】解:∵3−ai1+i=2−i,∴3−ai=(2−i)(1+i)=3+i,∴a=−1,∴z=−2i,∴z为纯虚数,故选项A正确,∴z2=(−2i)2=−4,为实数,故选项B错误,∴z+z−=−2i+2i=0,故选项C正确,∴z⋅z−=(−2i)×2i=4,故选项D正确,故选:ACD.利用复数的四则运算求解.本题主要考查了复数的四则运算,是基础题.10.【答案】AD【解析】解:∵不等式x2+2ax+b−1>0的解集是{x|x≠d},∴△=4a2+4(b−1)=0,即a2=1−b≥0,∴b≤1,故选:AD.由不等式x2+2ax+b−1>0的解集是{x|x≠d},得到△=0,求出b的取值范围即可.本题主要考查了一元二次不等式的应用,属于基础题.11.【答案】ABC【解析】解:对于A,函数定义域为R,f(−x)=sin|−x|+|cos(−x)|=sin|x|+|cosx|=f(x),所以f(x)为偶函数,故A正确;对于B,f(x+2π)=sin|x+2π|+|cos(x+2π)|=sin|x|+|cosx|=f(x),所以2π是函数f(x)=sin|x|+|cosx|的一个周期,当x∈[0,π2]时,f(x)=sinx+cosx=√2sin(x+π4),此时f(x)的最小值为1,当x∈(π2,32π]时,f(x)=sinx−cosx=√2sin(x−π4),此时f(x)的最小值为−1,当x ∈(3π2,2π]时,f(x)=sinx +cosx =√2sin(x +π4), 此时f(x)的最小值为−1,所以f(x)的最小值为−1,故B 正确;对于C ,当x ∈[0,π2]时,f(x)={sinx +cosx,0≤x ≤π2sinx −cosx,π2<x ≤3π2sinx +cosx,3π2<x ≤2π, 令f(x)=0,可得x =5π4,7π4, 又f(x)为偶函数,所以f(x)[−2π,2π]上有4个零点,故C 正确;对于D ,当x ∈(π2,π)时,sin|x|=sinx ,|cosx|=−cosx|, 则f(x)=sinx −cosx =√2sin(x −π4), 当x ∈(π2,π),x −π4∈(π4,3π4),所以函数f(x)在(π2,π)上不具备单调性,故D 错误; 故选:ABC .利用奇偶性定义可判断A ;由f(x +2π)=sin|x +2π|+|cos(x +2π)|=sin|x|+|cosx|=f(x),确定2π为函数f(x)的一个周期,求出一个周期内函数的最小值,可判断B ;由于函数为偶函数,故研究x ∈[0,2π]时函数的零点情况,从而可得[−2π,2π]函数零点情况,可判断C ;确定(π2,π)上函数的解析式,可判断D .本题考查了分段函数的奇偶性,单调性,周期性,最值等相关知识,属于中档题.12.【答案】BD【解析】解:对于A ,连接DP ,CP ,易得CP =√DP 2+CD 2=√DP 2+1≥√12+1=√62,故A 错误;对于B ,P 在直线AE 上运动时,△PBF 的面积不变,D 到平面PBF 的距离也不变,故三棱锥D −BPF 的体积不变,故B 正确;对于C ,如图,将△ADE 翻折到与平面ABFE 共面,则当D 、P 、F 三点共线时,PD +PF 取得最小值√(√22)2+(√22+1)2=√2+√2,故C 错误;对于D ,将该几何体补成正方体,则外接球半径为√32,外接球表面积为3π,故D 正确.故选:BD .由题可知CP =√DP 2+CD 2,可判断A ;根据条件可知△PBF 的面积不变,D 到平面PBF 的距离也不变,可判断B ;将△ADE 翻折到与平面ABFE 共面,即可判断C ;由正方体的性质可判断D .本题主要考查立体几何中的最值问题,锥体体积的计算,锥体的外接球问题等知识,属于中等题.13.【答案】−1【解析】解:由y =me x +xlnx ,得y′=me x +lnx +1, 则y′|x=1=me +1=3,即me =2, 又me =3+n ,∴3+n =2,即n =−1.故答案为:−1.求出原函数的导函数,再由函数在x=1处的导数值为3求得m值,然后利用函数在x=1时的函数值相等列式求解n.本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.14.【答案】10【解析】解:数列{a n}是等差数列,a1>0,a3+3a7=0,∴a1+2d+3(a1+6d)=0,解得a1=−5d,d<0,∴S n=na1=n(n−1)2d=−5nd+n(n−1)2d=d2(n2−11n),∵d<0,n>0,∴S n>0时,n<11,∴使S n>0的最大整数n的值为10.故答案为:10.由等差数列通项公式求出a1=−5d,d<0,从而S n=na1=n(n−1)2d=−5nd+n(n−1)2d=d2(n2−11n),由此能求出使S n>0的最大整数n的值.本题考查等差数列的运算,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15.【答案】400【解析】解:由题意,扇形的弧长AB为l=θr,扇形的面积为S=12θr²,由题意400×12θr²+1000(2r+θr)≤24×104;化简得θr2+5(2r+θr)≤1200(∗);又θr+2r≥2√2θr2,所以θr2+10√2θr2≤1200;设t=√2θr2,t>0,则t 22+10t ≤1200,解得−60≤t ≤40,所以当θr =2r =40时,面积S =12θr²的最大值为400. 故答案为:400.求出扇形的面积,得到关于θ,r 的不等式,利用基本不等式求出面积的最大值. 本题考查了利用数学知识解决实际问题,考查了扇形的面积,考查了基本不等式运用以及最值的计算问题,是中档题.16.【答案】2 [−1,0]∪[1,32]【解析】解:因为f(1−x)=f(x),且f(x)是定义在R 上的奇函数, 所以f(−x)=−f(x), 则f(1−x)=−f(−x),则f(2−x)=−f(1−x)=f(−x), 所以f(x)的最小正周期为2;因为对任意的x 1,x 2∈[0,12],当x 1≠x 2时,都有f(x 1)−f(x 2)x 1−x 2>π,不妨设x 1>x 2,则f(x 1)−f(x 2)>πx 1−πx 2, 故f(x 1)−πx 1>f(x 2)−πx 2,故函数y =f(x)−πx 在[0,12]上为增函数,所以当x ∈[0,12]时,f(x)−πx ≥f(0)−π×0=0, 令g(x)=sinπx , 则y =sinπx −πx , 因为y′=πcosπx −π≤0,所以y =sinπx −πx 是单调递减函数,当x ∈[0,12]时,g(x)−πx =sinπx −πx ≤g(0)−0=0, 即当x ∈[0,12]时,f(x)−πx ≥g(x)−πx , 故f(x)≥g(x),由对称性以及周期性作出函数f(x)和g(x)的图象,如图所示,所以f(x)≤sinπx在区间[−32,32]上的解集为[−1,0]∪[1,32].利用奇函数的定义结合已知的恒等式,可得f(2−x)=f(−x),利用周期的定义即可得到答案;将已知的不等式变形,利用函数单调性的定义得到函数y=f(x)−πx在[0,12]上为增函数,从而f(x)−πx≥0,令g(x)=sinπx,由y=sinπx−πx是单调递减函数,得到g(x)−πx≤0,从而f(x)≥g(x),作出f(x)与g(x)的图像,即可得到答案.本题考查了函数性质的综合应用,函数的周期性以及奇偶性定义的理解与应用,函数单调性定义的应用,利用导数研究函数单调性的运用,考查了逻辑推理能力与数形结合法的应用,属于中档题.17.【答案】解:(1)因为a⃗=(2sinx,2sin(x+π4)),b⃗ =(cosx,√62(cosx−sinx)),f(x)=a⃗⋅b⃗ =(2sinx,2sin(x+π4))⋅(cosx,√62(cosx−sinx))=2sinxcosx+2×√6 2sin(x+π4)(cosx−sinx)=2sinxcosx+√3(cos2x−sin2x)=sin2x+√3cos2x=2sin(2x+π3),所以f(x)=2sin(2x+π3);(2)由(1)得2sin(2x+π3)≥1,所以sin(2x+π3)≥12,即π6+2kπ≤2x+π3≤5π6+2kπ,(k∈Z),解得−π12+kπ≤x≤π4+kπ,(k∈Z),所以不等式解集为[−π12+kπ,π4+kπ],(k∈Z).【解析】(1)由向量的数量积运算以及三角恒等变换化简,得函数f(x)的表达式; (2)由正弦函数的性质,整体代换可得不等式的解集.本题考查了三角函数的恒等变换,解三角不等式,属于基础题.18.【答案】解:(1)选条件①时,数列{a n }的任意相邻两项均不相等,且数列{a n2−a n }为常数列,所以a n 2−a n =a 12−a 1=2,解得a n =2或a n =−1;所以数列{a n }为2,−1,2,−1,2,−1,......., 所以a n +a n−1=1(n ≥2), 即a n =−a n−1+1(n ≥2),整理得a n −12=−(a n−1−12)(n ≥2), 所以a 1−12=32,故数列{a n −12}是以32为首项,−1为公比的等比数列; 所以a n −12=32×(−1)n−1, 整理得a n =12+32⋅(−1)n−1; 故S n =12n +32×[(1−(−1)n ]1−(−1)=3+2n 4+34⋅(−1)n−1.选条件②时,S n =12(a n +n +1), 所以S n−1=12(a n−1+n −1+1), 上面两式相减得:a n =12a n −12a n−1+12, 整理得a n =−a n−1+1(n ≥2), 整理得a n −12=−(a n−1−12)(n ≥2), 所以a 1−12=32,故数列{a n −12}是以32为首项,−1为公比的等比数列; 所以a n −12=32×(−1)n−1, 整理得a n =12+32⋅(−1)n−1; 故S n =12n +32×[(1−(−1)n ]1−(−1)=3+2n 4+34⋅(−1)n−1.选条件③时,a 3=2,S n+1=S n−1+1(n ≥2,n ∈N ∗)中,转换为S n+1−S n−1=1(常数),即a n+1+a n =1, 所以所以a n +a n−1=1(n ≥2), 即a n =−a n−1+1(n ≥2),整理得a n −12=−(a n−1−12)(n ≥2), 所以a 1−12=32,故数列{a n −12}是以32为首项,−1为公比的等比数列; 所以a n −12=32×(−1)n−1, 整理得a n =12+32⋅(−1)n−1; 故S n =12n +32×[(1−(−1)n ]1−(−1)=3+2n 4+34⋅(−1)n−1.(2)由(1)得:S 2k =3+2×2k4+34⋅(−1)2k−1=k ,S 2k+1=3+2×(2k+1)4+34⋅(−1)2k+1−1=k +2, 所以:b k =1S2k ⋅S 2k+1=1k(k+2)=12(1k −1k+2),所以T n =12(1−13+12−14+13−15+...+1k −1k+2)=12(1+12−1k+1−1k+2)=34−12(1k+1+1k+2)<34.【解析】(1)选条件①时,利用数列的递推关系和数列的构造法求出数列的通项公式,进一步求出数列的和;选条件②时,利用数列的递推关系和数列的构造法求出数列的通项公式,进一步求出数列的和;选条件③时,利用数列的递推关系和数列的构造法求出数列的通项公式,进一步求出数列的和;(2)利用(1)的结论,进一步利用数列的求和及裂项相消法和放缩法的应用求出结果. 本题考查的知识要点:数列的递推关系式,数列的通项公式的求法及应用,数列的求和,分组法的求和,裂项相消法和放缩法,主要考查学生的运算能力和数学思维能力,属于中档题.19.【答案】证明:(1)∵△ABC是等腰直角三角形,D是AB的中点,∴CD是△ABC的中线,角平分线,高线,∴CD⊥AB,CD=AD,∴S△BCD=12×4×4=8,又S△CDE=4=12S△BCD,∴E为CB中点.解:(2)作CF⊥AB于F,∴∠AFC=∠BCF=90°,又∵△ABC是等腰直角三角形,∴CF=BF=AF=12AB,在直角三角形CFD中,CD2=CF2+DF2=CF2+(AF−AD)2,设AD=x,∴BD=2AD=2x.∴AB=AD+BD=3x,∴CF=AF=BF=12AB=32x,∴CD2=CF2+(AF−AD)2,∴42=(32x)2+(32x−x)2,解得x=4√105,则AB=12√105,CF=6√105,∴S△ABC=12AB⋅CF=12×12√105×6√105=725.【解析】(1)由等腰三角形的性质证明即可,(2)设出AD的长,再在三角形CFD中应用勾股定理求解出AD,再求AB及面积即可.本题考察等腰三角形的性质的应用,及勾股定理,属于中档题.20.【答案】(1)证明:因为AC=2,BC=1,∠ACB=60°,AC=2,所以AB2=BC2+AC2−2⋅BC⋅AC⋅cos60°,整理得AC2=AB2+BC2,所以AB⊥BC,因为CD=1,∠CAD=30°,AC=2,所以CDsin30∘=ACsin∠ADC,所以sin∠ADC=1,所以∠ADC=90°,所以AD⊥CD,所以∠ACD=∠ACB=60°,所以BD⊥AC,因为PA⊥底面ABCD,所以PC在平面ABCD内投影是AC,所以PC⊥BD.(2)解:由(1)知BD⊥平面PAC,设点M到平面PAC距离为ℎ,因为BO=BC⋅sin60°=√32,又因为PB=3MB,所以ℎ=BO⋅23=√33,因为PB在平面ABCD内的投影是AB,BC⊥AB,所以BC⊥PB,所以∠PBA是二面角P−BC−A的平面角,所以∠PBA=45°,所以PA=AB=AC⋅sin60°=√3,V C−AMN=V M−ANC=13⋅S ANC⋅ℎ=13⋅12⋅S PAC⋅ℎ=13⋅12⋅12⋅AC⋅AP⋅ℎ=16.【解析】(1)只要证明BD垂直于PC在平面ABCD内的投影AC即可;(2)用等体积法求解.本题考查了直线与平面的位置关系,考查了四面体体积问题,属于中档题.21.【答案】解:(1)f′(x)=a+1x2−ax=ax2−ax+1x2,令f′(x)=0,则ax2−ax+1=0,①当△=a2−4a≤0,即0<a≤4时,f′(x)≥0恒成立,则f(x)在(0,+∞)上单调递增,无递减区间;②当△=a2−4a>0,即a>4时,方程ax2−ax+1=0的解为x=a±√a2−4a2a,且当0<x<a−√a2−4a2a 和x>a+√a2−4a2a时,f′(x)>0,f(x)递增,当a−√a2−4a2a<x<a+√a2−4a2a时,f′(x)<0,f(x)递减,综上,当0<a≤4时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>4时,f(x)的单调递增区间为(0,a−√a2−4a2a ),(a+√a2−4a2a),单调递减区间为(a−√a2−4a2a ,a+√a2−4a2a);(2)若f(x)有两个极值点,由(1)知,a>4,且x1,x2是方程ax2−ax+1=0的两个不等的实数根,∴x1+x2=1,x1x2=1a,∴不等式f(x1)+f(x2)2>f(x1+x22)+mx1x2即为ax1−1x1−alnx1+ax2−1x2−alnx22>12a−2−aln12+am,∴a(x1+x2)−x1+x2x1x2−aln(x1x2)>a−4+2aln2+2am,∴a−a−aln1a >a−4+2aln2+2am,即2m<lna+4a−2ln2−1,令ℎ(a)=lna+4a −2ln2−1,则ℎ′(a)=1a−4a2=a−4a2>0,∴ℎ(a)在(4,+∞)上单调递增,则ℎ(a)>ℎ(4)=0,∴m≤0,即实数m的取值范围为(−∞,0].【解析】(1)对函数f(x)求导,令f′(x)=0,然后分0<a≤4及a>4讨论导函数与零的关系,进而得到单调性情况;(2)依题意,x1+x2=1,x1x2=1a ,则原不等式可转化为2m<lna+4a−2ln2−1,令ℎ(a)=lna+4a−2ln2−1,求出ℎ(a)的最小值即可得到实数m的取值范围.本题考查利用导数研究函数的单调性,极值及最值,考查分离参数思想及分类讨论思想,考查运算求解能力,属于中档题.22.【答案】证明:(1)设g(x)=f′(x)=1x−1+2cosx,当x∈(0,π)时,g′(x)=−2sinx−1x2<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π−1+1>0,g(π2)=2π−1<0,所以g(x)在(π3,π2)上有唯一的零点α,即f′(x)在(0,π)上存在唯一的零点α;(2)①由(1)可知,当x∈(0,α)时,f′(x)>0,则f(x)单调递增,当x∈(α,π)时,f′(x)<0,则f(x)单调递减,所以f(x)在x∈(0,π)上存在唯一的极大值点α,且α∈(π3,π2 ),所以f(α)>f(π2)=lnπ2−π2+2>2−π2>0,又因为f(1e2)=−2−1e2+2sin1e2<−2−1e2+2<0,所以f(x)在(0,α)上恰有一个零点,又因为f(π)=lnπ−π<2−π<0,所以f(x)在(α,π)上也恰有一个零点;②当x∈[π,2π)时,sinx≤0,f(x)≤lnx−x,设ℎ(x)=lnx−x,则ℎ′(x)=1x−1<0,故ℎ(x)在[π,2π)上单调递减,所以ℎ(x)≤ℎ(π)<0,故当x∈[π,2π)时,f(x)≤ℎ(x)≤ℎ(π)<0恒成立,所以ℎ(x)在[π,2π)上没有零点;③当x∈[2π,+∞)时,f(x)≤lnx−x+2,令m(x)=lnx−x+2,则m′(x)=1x−1<0,故m(x)在[2π,+∞)上单调递减,所以m(x)≤m(2π)<0,则当x∈[2π,+∞)时,f(x)≤m(x)≤m(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上所述,f(x)有且仅有两个零点.【解析】(1)设g(x)=f′(x),利用导数研究函数g(x)的单调性,然后由零点的存在性定理证明即可;(2)分x∈(0,π),x∈[π,2π),x∈[2π,+∞)三种情况,分别利用导数研究函数的单调性以及函数的取值情况,结合零点的存在性定理进行分析证明即可.本题考查了函数的零点与方程的根的综合应用,利用导数研究函数单调的运用,函数零点存在性定理的运用,解决函数零点或方程根的问题,常用的方法有:(1)方程法(直接解方程得到函数的零点);(2)图象法(直接画出函数的图象分析得解);(3)方程+图象法(令函数为零,再重新构造两个函数,数形结合分析得解).属于中档题.。
2021江苏省百校联考高三年级第一次试卷答案

得3分*
$#%第二问中#写到1,)$$!%,&,#+, 这一步累计 得 " 分#写 出 <3% ) )$## $!#%+ $/# $,#%+ , + $3%# $
/5#%(+$!+#+,+3%%累计得2分#最后计算出正确结果得满分*
$,%其他情况根据评分标准酌情给分!
!5!解+$!%学生甲恰好得到#个红球#即王老师$!点%+甲$红球%+王老师$!点%+甲$红球%! ………… #分
所以;90*)'#+#1'#1$;#)
! #
!………………………………………………………………………………
,分
因为*&$%#%#所以*),! ……………………………………………………………………………… /分
选择 $!%根据正弦定理有0-1%;90#+0-1#;90%)#0-1*;90*#……………………………………………… !分 所以0-1$%+#%)#0-1*;90*#即0-1*)#0-1*;90*!…………………………………………………… #分
! #
累计得,分#第一问
全部正确解出#累计得/分*
$#%第二问能用余弦定理写出'##1# 的关系式各给!分#计算出'#+1#)2#累计得&分#直到最后算出')1
)#得满分*
$,%其他情况根据评分标准按步骤给分!
!2!解+$!%因为',#+!$/',',+!+/',#)%#所以$',+!$#',%#)%#即',+!)#',#……………………………… #分
2021年江苏省高三年级数学百校大联考(含答案解析)

2021年江苏省高三年级百校大联考1.已知集合A={x|x2−x−2<0},B={−2,−1,0,1,2},则A⋂B=( )A. {0}B. {0,1}C. {−1,0}D. {−1,0,1,2}2.若复数z=(m+1)−2mi(m∈R)为纯虚数,则z的共轭复数是( )A. −2iB. −iC. iD. 2i3.设函数f(x)={√1−x+1,x≤1,2x−1,x>1,则f(f(−3))=( )A. 14B. 2C. 4D. 84.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若π取3.14,则圆柱的母线长约为( )A. 0.38寸B. 1.15寸C. 1.53寸D. 4.59寸5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2),现有如下四个命题:甲:该函数的最大值为√2;乙:该函数图象可以由y=sin2x+cos2x的图象平移得到;丙:该函数图象的相邻两条对称轴之间的距离为π;丁:该函数图象的一个对称中心为(2π3,0).如果只有一个假命题,那么该命题是( )A. 甲B. 乙C. 丙D. 丁6.“0<xsinx<π2”是“0<x<π2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 已知双曲线C 的左、右焦点分别是为F 1,F 2,过F 2的直线与C 交于A ,B 两点.若AF 2⃗⃗⃗⃗⃗⃗⃗ =3F 2B ⃗⃗⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=|AF 1⃗⃗⃗⃗⃗⃗⃗ |,则C 的离心率为( )A. 2B. 3C. 4D. 58. 已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于y 轴对称.若sinα=35,则cos(α+β)cos(a −β)=( )A. 725B. 15C. −15D. −7259. 已知x +y >0,且x <0,则( )A. x 2>−xyB. |x|<|y|C. lgx 2>lgy 2D. yx +xy <−210. 已知两点A(−4,3),B(2,1),曲线C 上存在点P 满足|PA|=|PB|,则曲线C 的方程可以是( )A. 3x −y +1=0B. x 2+y 2=4C.x 22−y 2=1 D. y 2=3x11. 设S n 和T n 分别为数列{a n }和{b n }的前n 项和.已知2S n =3−a n ,b n =na n 3,则( )A. {a n }是等比数列B. {b n }是递增数列C. Sn a n=3n −12D. Sn T n>212. 如图,在矩形ABCD 中,AB =2,AD =4,将△ACD 沿直线AC 翻折,形成三棱锥D −ABC.下列说法正确的是( )A. 在翻折过程中,三棱锥D −ABC 外接球的体积为定值B. 在翻折过程中,存在某个位置,使得BC ⊥ADC. 当平面DAC ⊥平面ABC 时,BD =2√855D. 当平面DBC ⊥平面ABC 时,三棱锥D −ABC 的体积为4√3313. 已知向量a ⃗ ,b ⃗ 满足|a ⃗ |=3,|b ⃗ |=4,a ⃗ −b ⃗ =(−4,3),则|a ⃗ +b ⃗ |=__________. 14. 写出一个能说明“若函数f(x)的导函数f′(x)是周期函数,则f(x)也是周期函数”为假命题的函数:f(x)=__________.15. 已知AB 是过抛物线y 2=4x 焦点F 的弦,P 为该抛物线准线上的动点,则PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的最小值为__________.16. 函数f(x)=2cosx +x 2的最小值为__________;若存在x ≥0,使得f′(x)>2e x +ax −2,则a 的取值范围为__________.17. 已知数列{a n }满足a 1=1,a n +a n +1=λn ,n ∈N ∗,λ≠0,且a 2是a 1,a 5的等比中项. (1)求λ的值;(2)求数列{a n }的前n 项和S n .18. 在①sinAsinB +sinBsinA +1=c 2ab ,②(a +2b)cosC +ccosA =0,③√3asinA+B 2=csinA 这三个条件中任选一个,补充在下面的横线上,并解答.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且__________. (1)求角C 的大小;(2)若c =√7,sinAsinB =314,求△ABC 的面积.19.一个完美均匀且灵活的平衡链被它的两端悬挂,且只受重力的影响,这个链子形成的曲线形状被称为悬链线.选择适当的坐标系后,悬链线对应的函数近似是一个双曲余弦函数,其解析式可以为f(x)=ae x+be−x,其中a,b是常数.(1)当a=b≠0时,判断f(x)的奇偶性;(2)当a,b∈(0,1)时,若f(x)的最小值为√2,求11−a +21−b的最小值.20.如图,三棱柱ABC−A1B1C1的底面ABC为正三角形,D是AB的中点,AB=BB1,∠ABB1=60∘,平面AA1B1B⊥底面ABC.(1)证明:平面B1DC⊥平面AA1B1B;(2)求二面角B−CB1−A1的余弦值.21.在平面直角坐标系xOy中,已知点A(−√6,0),B(√6,0),动点E(x,y)满足直线AE与BE的斜率之积为−13,记E的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过点D(2,0)的直线l交C于P,Q两点,过点P作直线x=3的垂线,垂足为G,过点O作OM⊥QG,垂足为M.证明:存在定点N,使得|MN|为定值.22.已知函数f(x)=alnx−x,a∈R.(1)讨论f(x)的单调性;(2)若关于x的不等式f(x)≤1x −2e在(0,+∞)上恒成立,求a的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查交集的求法,一元二次不等式的解法,属于基础题.先求出集合A,再利用交集定义能求出A⋂B.【解答】解:∵集合A={x|(x+1)(x−2)<0}={x|−1<x<2},B={−2,−1,0,1,2},∴A⋂B={0,1}.故答案选:B.2.【答案】A【解析】【分析】本题主要考查了纯虚数、共轭复数的概念,属于基础题.先利用纯虚数的定义求出m的值,求出复数z,再利用共轭复数概念即可求解.【解答】解:∵复数z=(m+1)−2mi(m∈R)为纯虚数,∴m+1=0且m≠0,∴m=−1,∴z=2i,∴复数z的共轭复数为−2i.故答案选:A.3.【答案】C【解析】【分析】本题考查了分段函数求值,属于基础题.根据题意可得f(−3)=3,代入即可求得结果.【解答】解:因为f(−3)=√1−(−3)+1=3,所以f(f(−3))=f(3)=23−1=4.故答案选:C.4.【答案】C【解析】【分析】本题主要考查圆柱的体积,考查简单组合体及其结构特征,属于中档题.由题意得求出长方体的体积和圆柱的体积,设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,通过体积公式,即可求出l.【解答】解:由题意得,长方体的体积为3.8×3×1=11.4(立方寸),故圆柱的体积为12.6−11.4=1.2(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得0.52πl=1.2,计算得l≈1.53(寸).故答案选:C.5.【答案】B【解析】【分析】)图像与性质以及命题真假本题主要考查的是y=Asin(ωx+φ)(A>0,ω>0,0<φ<π2的判断,属于基础题.分别将甲、乙、丙、丁一一判断即可.【解答】解:由命题甲知A=√2;根据命题乙,由y=sin2x+cos2x=√2sin(2x+π4),可知A=√2,ω=2;由命题丙知T=2π,则ω=1,那么命题乙和命题丙矛盾.若假命题是乙,则f(x)=√2sin(x+φ),由命题丁知,φ=π3,符合题意;若假命题是丙,则f(x)=√2sin(2x+φ),由命题丁知,φ=kπ−4π3,k∈Z,不满足条件0<φ<π2.故假命题是乙.故答案选:B.6.【答案】B【解析】【分析】本题考查必要条件、充分条件与充要条件的判断,涉及三角函数的性质,以及利用导数判断函数的单调性,考查了逻辑推理能力与运算能力,属于基础题.当0<x<π2时,设函数f(x)=xsinx,对函数求导,结合函数的单调性,求出f(x)对应的取值范围,可判断必要性是否成立;举出特例判断充分性是否成立.【解答】解:当0<x<π2时,设函数f(x)=xsinx,x∈(0,π2),f′(x)=sinx+xcosx>0,∴f(x)在(0,π2)上单调递增,所以f(0)<f(x)<f(π2),又f(0)=0,f(π2)=π2,∴0<xsinx<π2成立,满足必要性;当0<xsinx<π2时,0<x<π2不一定成立,如0<5π6sin56π=5π12<π2,但5π6∉(0,π2),不满足充分性,故“0<xsinx<π2”是“0<x<π2”的必要不充分条件.故答案选:B.7.【答案】A【解析】 【分析】本题考查双曲线的简单性质,考查余弦定理,考查数形结合的解题思想方法,考查计算能力,是中档题.由题意知过F 2的直线与C 的右支交于A ,B 两点,可设|F 2B|=t ,则|AF 2|=3t ,|AB|=|AF 1|=4t ,由双曲线的定义及余弦定理,求出a 和c ,即可求出双曲线的离心率. 【解答】解:由题意得:过F 2的直线与C 的右支交于A ,B 两点, 可设|F 2B|=t ,则|AF 2|=3t ,|AB|=|AF 1|=4t , 由双曲线的定义得2a =|AF 1|−|AF 2|=t , 所以|BF 1|=2a +|BF 2|=2t.在△AF 1B 中,由余弦定理得cos∠F 1AB =16t 2+16t 2−4t 22⋅4t⋅4t=78.在△AF 1F 2中,由余弦定理得16t 2+9t 2−2⋅4t ⋅3t ⋅78=4c 2,解得c =t ,所以2a =t =c.所以C 的离心率为ca =2.故答案选:A.8.【答案】A【解析】 【分析】本题主要考查任意角的三角函数的定义,同角三角函数之间的关系,两角和与差的余弦公式,属于基础题.由题意得cosα与cosβ、sinα与sinβ的关系,利用条件求出cosα的值,再利用两角差的余弦公式,化简所求即可求解. 【解答】解:因为sinα=35,则cosα=±45, 又α与β关于y 轴对称,则sinβ=sinα=35,cosβ=−cosα=45(或cosβ=−cosα=−45),所以cos(α−β)=cosαcosβ+sinαsinβ=−cos 2α+sin 2α=−1625+925=−725.同理,cos(α+β)=−cos 2α−sin 2α=−1625−925=−1 故cos(α+β)cos(α−β)=725.故答案选:A.9.【答案】BD【解析】 【分析】本题考查不等式的性质以及基本不等式的应用,属于基础题. 利用题目条件,对照选项逐个判断即可. 【解答】对于选项A ,由题意,易知x <0,y >0,取x =−1,y =2,可知x 2>−xy 不成立,故A 错误;对于选项B ,由题意,易知x <0,y >0,从而|x|−|y|=−x −y =−(x +y)<0, 故|x|<|y|,B 正确;对于选项C ,取x =−1,y =2,可知lgx 2>lgy 2不成立,故C 错误; 对于选项D ,由于x ,y 异号,从而y x ,xy 均小于0, 故yx +xy =−[(−yx )+(−xy )]≤−2√(−yx )⋅(−xy )=−2,当且仅当x =−y 时取等号,而由于x +y >0,从而等号取不到,即yx+xy <−2,故D正确.故答案选:BD.10.【答案】BC【解析】 【分析】本题主要考查两条直线的位置关系,考查直线与圆的位置关系,考查直线与双曲线的位置关系,考查直线与抛物线的位置关系,考查中点坐标,考查直线垂直的判定,属于中档题.利用直线与圆锥曲线的位置关系,联立直线与曲线的方程,根据解的情况逐一判断即可. 【解答】解:由|PA|=|PB|,得知点P 在AB 的垂直平分线l 上,因为线段AB 的中点坐标为(−1,2),k AB =−13,且AB 与直线l 垂直,且过AB 中点,所以l 的方程为y =3x +5,所以3x −y +1=0与l 平行,可知两直线无交点,故A 不正确;联立方程组{x 2+y 2=43x −y +5=0,消y ,可得10x 2+30x +21=0,△=900−4×10×21>0,可知两直线有交点,故B 正确; 将直线l 的方程代入双曲线x 22−y 2=1,得17x 2+60x +52=0,△=3600−4×17×52=3600−3536>0,所以l 与双曲线相交,故C 正确;联立方程组将直线l 的方程代入y 2=3x ,得y 2=y −5,△<0,方程无实数解,故D 不正确. 故答案选:BC.11.【答案】ACD【解析】 【分析】本题主要考查的是等比数列的判定和性质以及错位相减法的应用,属于中档题. 利用为等比数列,判定A 正确;b n+1−b n 与0比较,得出数列单调性判断B 错误.根据,进一步判定D 正确.【解答】解:因为2S n =3−a n ,所以当n =1时,2S 1=3−a 1, 即2a 1=3−a 1,即a 1=1,又2S n+1=3−a n+1,所以2S n+1−2S n =a n −a n+1,即3a n+1=a n , 所以{a n }是首项为1,公比为13的等比数列,所以a n =(13)n−1,故A 正确; 因为b n =na n 3=n3n ,所以b n+1−b n =n+13n+1−n3n =1−2n 3n+1<0,{b n }是递减数列,故B 错误;因为S n =3−a n 2=32(1−13n ),所以S na n=3n −12,故C 正确;T n =13+232+⋯+n−13n−1+n 3n ①,13Tn =132+233+⋯+n−13n +n 3n+1②,①-②得23T n =13+132+133+⋯+13n −n3n+1=13(1−13n )1−13−n3n+1=12(1−13n )−n3n+1,所以T n =34(1−13n )−n2⋅3n >0, 所以2T n −S n =32(1−13n)−n 3n−32(1−13n)=−n 3n<0,所以S n T n>2,故D 正确.故答案选:ACD.12.【答案】ACD【解析】 【分析】本题主要考查了简单多面体及其结构特征,线面垂直的判定,棱柱,棱锥,棱台的侧面积,表面积和体积,球的表面积和体积的应用,属于较难题.利用三棱锥的侧面的特征和侧棱的长度,可判断外接球球心的位置,可判断出A 选项;利用反证法,假设BC ⊥AD ,通过线面垂直的判定和性质可得到BC ⊥BD ,得到CD >BC ,与条件矛盾,可判断出B 选项;根据条件分别过D 作AC 的垂线DE ,过B 作AC 的垂线BF ,再结合条件分别在几个直角三角形依次求出DE ,AE ,BF ,EF 和BE ,最后在直角三角形BED 中,求出BD 的长度,即可判断C 选项;利用条件结合面面垂直的性质,可得到AB ⊥平面DBC ,即AB 为三棱锥D −ABC 在平面DBC 上的高,在直角三角形ABD 中可求出BD 的长度,结合条件中的AB =DC =2,BC =AD =4,可得到DB ⊥DC ,故可求得三棱锥D −ABC 的体积为4√33,即可判断D 选项.【解答】解:设O 为AC 的中点,则OA =OB =OC =OD =√5,所以三棱锥D −ABC 外接球的半径为√5,所以三棱锥D −ABC 外接球的体积为定值,故A 正确;若在翻折过程中,存在某个位置,使得BC ⊥AD ,又AB ⊥BC ,则BC ⊥平面ABD , 所以BC ⊥BD ,从而斜边CD 的长大于直角边BC ,这与CD =2,BC =4矛盾,故B 错误;当平面DAC ⊥平面ABC 时,过D 作AC 的垂线DE ,垂足为E , 则DE ⊥平面ABC ,DE =4√55,AE =8√55, 在平面ABC 上,过B 作AC 的垂线BF ,垂足为F ,则BF ⊥平面DAC ,BF =4√55,EF =6√55, 则BE =√BF 2+EF 2=√525,在直角三角形BED 中,BD =√DE 2+BE 2=2√855,故C 正确;当平面DBC ⊥平面ABC 时,平面DBC ∩平面ABC =BC , 又AB ⊥BC ,AB ⊂平面ABC ,所以AB ⊥平面DBC ,计算得DB =2√3,因为AB =DC =2,BC =AD =4,所以DB ⊥DC , 所以S △DBC =12×DB ×DC =2√3, 所以三棱锥D −ABC 的体积为13×2×2√3=4√33,故D 正确.故答案选:ACD.13.【答案】5【解析】 【分析】本题考查向量的模,向量数量积的运算,属于基础题. 根据向量的数量积的性质求解即可. 【解答】解:因为|a →|=3,|b →|=4,a ⃗ −b ⃗ =(−4,3),|a →−b →|=√a ⃗ 2−2a ⃗ ⋅b ⃗ +b ⃗ 2=√(−4)2+32=5,所以a ⃗ ⋅b ⃗ =0,则|a ⃗ +b ⃗ |=√a ⃗ 2+2a ⃗ ⋅b ⃗ +b ⃗ 2=√32+42=5.故答案为:5.14.【答案】f(x)=sinx +x【解析】 【分析】本题考查函数求导以及周期性,属于基础题. 按题目要求举出反例即可. 【解答】解:f(x)=sinx +x ,则f′(x)=cosx +1是周期函数,而f(x)不是周期函数. 符合题意.15.【答案】0【解析】 【分析】本题考查了抛物线的性质及几何意义、直线与抛物线的位置关系和圆锥曲线中的最值问题,属于中档题.根据条件,直线AB 的方程可设为x =ty +1,与抛物线联立,设P(−1,m),得出PA ⃗⃗⃗⃗⃗ 和PB ⃗⃗⃗⃗⃗ ,由韦达定理和向量的数量积可得PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的最小值. 【解答】解:因为抛物线y 2=4x 的焦点为F(1,0), 所以直线AB 的方程可设为x =ty +1, 代入抛物线方程得y 2−4ty −4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4t ,y 1⋅y 2=−4.因为P 为该抛物线准线上的动点,可设P(−1,m), 则PA⃗⃗⃗⃗⃗ =(x 1+1,y 1−m)=(ty 1+2,y 1−m), PB ⃗⃗⃗⃗⃗ =(x 2+1,y 2−m)=(ty 2+2,y 2−m), 所以PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(ty 1+2)(ty 2+2)+(y 1−m)(y 2−m) =(t 2+1)y 1y 2+(2t −m)(y 1+y 2)+4+m 2 =(t 2+1)⋅(−4)+(2t −m)⋅4t +4+m 2 =(2t −m)2≥0.即PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的最小值为0.16.【答案】2(−∞,−2)【解析】【分析】本题考查利用导数求函数最值,考查不等式的恒成立问题,关键是利用导数判断函数的单调性,进而将问题转化为求函数的最值问题.因为f(x)为偶函数,所以f(x)的最小值就是f(x)在[0,+∞)上的最小值,由单调性求得最小值即可;由(1)可知f′(x)=−2sinx+2x,代入f′(x)>2e x+ax−2等价于−2sinx+2x>2e x+ ax−2,即2e x+2sinx+(a−2)x−2<0,利用导数判断单调性,再对a的取值进行讨论,得出结论.【解答】解:(1)因为f(x)为偶函数,所以f(x)的最小值就是f(x)在[0,+∞)上的最小值,f′(x)=−2sinx+2x,x≥0,令m(x)=−2sinx+2x,则m′(x)=2−2cosx≥0,所以f′(x)在[0,+∞)上单调递增,所以f′(x)≥f′(0)=0,所以f(x)在[0,+∞)上单调递增,所以f(x)的最小值为f(0)=2.(2)f′(x)>2e x+ax−2等价于−2sinx+2x>2e x+ax−2,即2e x+2sinx+(a−2)x−2<0.令g(x)=2e x+2sinx+(a−2)x−2,则g′(x)=2e x+2cosx+(a−2),g(0)=0,g′(0)=a+2.当a≥−2时,g(x)≥2e x+2sinx−4x−2,设ℎ(x)=2e x+2sinx−4x−2,ℎ′(x)=2e x+2cosx−4,令t(x)=2e x+2cosx−4,则t′(x)=2e x−2sinx,注意到x∈(0,+∞),e x>x>sinx,所以t′(x)>0,所以ℎ′(x)在[0,+∞)上单调递增,所以ℎ′(x)≥ℎ′(0)=0,所以ℎ(x)在[0,+∞)上单调递增,g(x)≥ℎ(x)≥ℎ(0)=0,不合题意.当a<−2时,设φ(x)=g′(x),φ′(x)=2e x−2sinx>0,所以g′(x)在[0,+∞)上单调递增,所以g′(0)=a+2<0,所以存在x0>0,使得g′(x)=0,当x∈(0,x0)时,g′(x)<0,所以g(x)在(0,x0)上单调递减,于是有g(x)<g(0)=0,即存在x∈(0,x0),使得2e x+2sinx+(a−2)x−2<0,即f′(x)>2e x+ax−2.综上所述,a的取值范围为(−∞,−2).17.【答案】解:(1)由a n+a n+1=λn,可得a1+a2=λ,a2+a3=2λ,a3+a4=3λ,a4+a5=4λ,所以a2=λ−1,a3=λ+1,a4=2λ−1,a5=2λ+1.因为a2是a1,a5的等比中项,所以a22=a1⋅a5,即(λ−1)2=1⋅2λ+1,则λ2=4λ,又λ≠0,所以λ=4.(2)由(1)知a n+a n+1=4n.当n为偶数时,S n=(a1+a2)+(a3+a4)+(a5+a6)+⋯+(a n−1+a n)=4+12+20+⋯+4(n−1)=4n×n22=n2;当n为奇数时,S n=a1+(a2+a3)+(a4+a5)+(a6+a7)+⋯+(a n−1+a n)=1+8+16+24+⋯+4(n−1)=1+(4n+4)×n−122=n2.综上所述,S n=n2,n∈N∗.【解析】本题考查了等比中项,等差数列的前n项和,以及并项法求数列前n项和,属于中档题.(1)由a1,a2,a5成等比数列,求得λ;(2)由(1)得到a n+a n+1=4n,对n进行奇数,偶数分类讨论,利用并项法即可得到结果.18.【答案】解:(1)选择条件①由sinAsinB +sinBsinA+1=c2ab及正弦定理,可得ab+ba+1=c2ab,则a2+b2−c2=−ab,由余弦定理,得cosC=a 2+b2−c22ab=−ab2ab=−12,因为0<C<π,所以C=2π3;选择条件②由(a+2b)cosC+ccosA=0及正弦定理,可得(sinA+2sinB)cosC+sinCcosA=0,即sinAcosC+cosAsinC=−2sinBcosC,即sin(A+C)=−2sinBcosC,在△ABC中,A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,即sinB=−2cosCsinB,因为sinB≠0,所以cosC=−12,因为0<C<π,所以C=2π3;选择条件③由√3asin A+B2=csinA及正弦定理,可得√3sinAsin A+B2=sinCsinA,因为sinA≠0,所以√3sin A+B2=sinC,在△ABC中,A+B+C=π,可得sin A+B2=cos C2,故√3cos C2=2sin C2cos C2,因为0<C<π,所以cos C2≠0,则sin C2=√32,故C=2π3.(2)由正弦定理,得absinAsinB =(csinC)2,所以ab=(csinC )2sinAsinB=(√7sin 2π3)2×314=2,所以△ABC的面积S=12absinC=12×2×sin2π3=√32.【解析】本题主要考查了正弦定理,余弦定理,两角和与差的三角函数公式,三角形面积公式的应用,属于中档题.(1)根据已知及正弦定理,余弦定理,两角和与差的三角函数公式的计算,求出角C的大小;(2)根据已知及正弦定理,三角形面积公式的计算,求出△ABC的面积.19.【答案】解:(1)当a=b≠0时,函数f(x)=a(e x+e−x)的定义域为R.因为对任意的x∈R,都有−x∈R,且f(−x)=a(e−x+e x)=f(x),所以f(x)为偶函数.(2)因为当a,b∈(0,1)时,f(x)的最小值为√2,且ae x>0,be−x>0,所以f(x)=ae x+be−x≥2√ae x⋅be−x=2√ab=√2,(当且仅当ae x=be−x时,即x=12ln ba时,等号成立.)即ab=12,所以b=12a<1,所以12<a<1,所以2−2a>0,2a−1>0.所以11−a +21−b=11−a+21−12a=11−a+4a2a−1=11−a+22a−1+2=22−2a+22a−1+2=(22−2a+22a−1)⋅[(2−2a)+(2a−1)]+2=2(2a−1)2−2a +2(2−2a)2a−1+6≥2√4+6=10,当且仅当2−2a=2a−1,ab=12,即a=34,b=23时,等号成立,所以11−a +21−b的最小值为10.【解析】本题主要考查函数奇偶性和最值的应用,结合指数幂的运算以及基本不等式是解决本题的关键,属于中档题.(1)利用函数奇偶性定义求解即可;(2)利用函数的最值,结合基本不等式进行求解即可.20.【答案】(1)证明:因为三棱柱ABC−A1B1C1的底面ABC为正三角形,D是AB的中点,所以CD⊥AB.又在三棱柱ABC−A1B1C1中,AB=BB1,∠ABB1=60∘,所以B1D⊥AB.因为CD∩B1D=D,且CD与B1D都属于平面B1DC,所以AB⊥平面B1DC.因为AB⊂平面AA1B1B,所以平面B1DC⊥平面AA1B1B(2)解:因为平面AA1B1B⊥底面ABC,平面AA1B1B∩底面ABC=AB,B1D⊥AB,所以B1D⊥底面ABC.故以D 为坐标原点,DB ,DC ,DB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系D −xyz.设AB =2,则A(−1,0,0),B(1,0,0),C(0,√3,0),B 1(0,0,√3), 则BC ⃗⃗⃗⃗⃗ =(−1,√3,0),B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,√3,−√3),B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ =(−2,0,0). 设平面BCB 1的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1), 平面CB 1A 1的法向量为n 2⃗⃗⃗⃗ =(x 2,y 2,z 2).由{n 1⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,得{−x 1+√3y 1=0,√3y 1−√3z 1=0,取x 1=√3,得n 1⃗⃗⃗⃗ =(√3,1,1); 由{n 2⃗⃗⃗⃗ ⋅B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,n 2⃗⃗⃗⃗ ⋅B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,得{−2x 2=0,√3y 2−√3z 2=0,取y 2=1,得n 2⃗⃗⃗⃗ =(0,1,1). 所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ ||n 2⃗⃗⃗⃗⃗⃗ |=√5×√2=√105, 由图知二面角B −CB 1−A 1是钝二面角, 所以二面角B −CB 1−A 1的余弦值为−√105.【解析】本题主要考查的是面面垂直的判定以及二面角的求解,属于中档题. (1)利用线面垂直得到面面垂直;(2)建立空间坐标系,利用法向量,求解二面角即可.21.【答案】(1)解:由题得x+√6⋅x−√6=−13,化简得x 26+y 22=1(|x|≠√6),所以C 是中心在原点,焦点在x 轴上,不含左、右顶点的椭圆. (2)证明:由(1)知直线l 与x 轴不重合,可设l:x =my +2, 联立{x =my +2,x 26+y 22=1,得(m 2+3)y 2+4my −2=0.设P(x 1,y 1),Q(x 2,y 2),则y 1+y 2=−4mm 2+3,y 1y 2=−2m 2+3,Δ=24m 2+24>0,所以m =12(1y 1+1y 2).因为G(3,y 1),Q(my 2+2,y 2),所以直线QG 的斜率为y 2−y 1my2−1=y 2−y 112(1y 1+1y 2)y 2−1=2y 1,所以直线QG 的方程为y −y 1=2y 1(x −3),所以直线QG 过定点H(52,0). 因为OM ⊥QG ,所以△OHM 为直角三角形,取OH 的中点N(54,0),则|MN|=12|OH|=54,即|MN|为定值. 综上,存在定点N(54,0),使得|MN|为定值.【解析】本题主要考查直线的斜率,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查一元二次方程根与系数的关系,考查圆锥曲线中的轨迹方程,属于中档题. (1)分别求由直线AE 与BE 的的斜率,根据直线AE 与BE 的斜率之积为−13,化简即可求曲曲线C 的方程,注意直线 AE 与BE 斜率的条件;(2)由(1)知直线l 与x 轴不重合,可设l:x =my +2,联立{x =my +2,x 26+y 22=1,得(m 2+3)y 2+4my −2=0,设P(x 1,y 1),Q(x 2,y 2),则y 1+y 2=−4mm 2+3,y 1y 2=−2m 2+3,求出m ,由G(3,y 1),Q(my 2+2,y 2),求出直线QG 的斜率及直线方程,求出直线QG 过定点H ,由OM ⊥QG ,则△OHM 为直角三角形,取OH 的中点N ,即可求出|MN|为定值.22.【答案】解:(1)f′(x)=ax −1=a−x x(x >0).①若a ≤0,则f′(x)<0,所以f(x)在(0,+∞)上单调递减; ②若a >0,令f′(x)=0,得x =a.当x ∈(0,a)时,f′(x)>0;当x ∈(a,+∞)时,f′(x)<0, 则f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)不等式f(x)≤1x −2e 等价于alnx −x −1x +2e ≤0在(0,+∞)上恒成立, 令g(x)=alnx −x −1x +2e , 则g′(x)=ax −1+1x 2=−x 2−ax−1x 2,对于二次函数y =x 2−ax −1,△=a 2+4>0,所以其必有两个零点,又两零点之积为−1,所以两个零点一正一负,设其中一个零点x0∈(0,+∞),则x02−ax0−1=0,即a=x0−1x0,则0<x<x0时,g′(x)>0;x>x0时,g′(x)<0,此时g(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减,故g(x0)≤0,即(x0−1x0)lnx0−x0−1x0+2e≤0,设函数ℎ(x)=(x−1x )lnx−x−1x+2e,则ℎ′(x)=(1+1x2)lnx+1−1x2−1+1x2=(1+1x2)lnx.当x∈(0,1)时,ℎ′(x)<0;当x∈(1,+∞)时,ℎ′(x)>0,所以ℎ(x)在(0,1)上单调递减,在(1,+∞)上单调递增.又ℎ(1e)=ℎ(e)=0,所以x0∈[1e,e],由a=x0−1x0在[1e,e]上单调递增,得a∈[1e−e,e−1e].故a的取值范围为[1e −e,e−1e].【解析】本题主要考查了利用导数研究函数的单调性,二次函数的零点与一元二次方程的关系,不等式的恒成立问题的应用.(1)根据已知及利用导数研究函数的单调性的计算,分a>0、a≤0两种情况讨论f(x)的单调性;(2)根据已知及利用导数研究函数的单调性,二次函数的零点与一元二次方程的关系,不等式的恒成立问题的计算,构造函数,结合导函数,求出a的取值范围.第21页,共21页。
江苏省2021届高三上学期第二次百校联考 数学试题含答案

ex − mxe (ln x +1) ≥ [ f (x) − x3 − 3x2 + e]xe 对任意 x ∈ (1, +∞ )恒成立,则
A.a=3
B.b=1
C.m 的值可能是﹣e
D.m 的值可能是 − 1 e
三、填空题(本大题共 4 小题, 每小题 5 分,共计 20 分.请把答案填写在答题卡相应位置
2
2 π ]上有且仅有 4 个零点,则下列结论正确的是
A. ω =2
B.ϕ = π 6
C. f (x) 在( − π ,0)上单调递增 3
D. f (x) 在(0,2 π )上有 3 个极小值点
12.经研究发现:任意一个三次多项式函数 f (x) = ax3 + bx2 + cx + d (a≠0)的图象都只有一
10.已知实数 x,y 满足﹣3<x+2y<2,﹣1<2x﹣y<4,则
A.x 的取值范围为(﹣1,2)
B.y 的取值范围为(﹣2,1)
C.x+y 的取值范围为(﹣3,3)
D.x﹣y 的取值范围为(﹣1,3)
11.已知函数 f (x) = 2sin(ωx + ϕ) ( ω ∈ N∗ , ϕ < π )的图象经过点 A(0, 3 ),且 f (x) 在[0,
至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)
r
r
r
9.已知向量 a =(1,3), b =(﹣2,1), c =(3,﹣5),则
r rr A.( a +2 b )∥ c
rr C. a + c = 10 + 34
r rr B.( a +2 b )⊥ c
rr r D. a + c = 2 b
江苏省苏州市2021届高三第一学期开学调研数学试卷

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为 A .第一象限B .第二象限C .第三象限D .第四象限 3.421(2)x x-的展开式中x 的系数为 A .﹣32B .32C .﹣8D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为 A .0.2 B .0.3 C .0.4 D .0.65.在△ABC 中,AB+AC=2AD ,AE+2DE=0,若EB=XAB+YAC ,则 A .y =2x B .y =﹣2x C .x =2y D .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Qlog 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为 A .1800 B .2700 C .7290 D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是 A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1 C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 1外接球半径为3 8.设a >0,b >0,且2a +b =1,则12a a a b++ A .有最小值为4B .有最小值为221+ C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()Ry f t ==sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有 A .()y f x =的图象不经过第三象限 B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点 12.数列{}n a 为等比数列 A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+=.14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为.15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k =. 16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2=3S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC 中,a =()3f π,且,求2b +c 的取值范围. 18.(本小题满分12分)已知各项均不相等的等差数列{}n a 的前4项和为10,且1a ,2a ,4a 是等比数列{}n b 的前 3项.(1)求{}n a ,{}n b ; (2)设1(1)n n n n c b a a =++,求{}n c 的前n 项和n S .19.(本小题满分12分)如图,在四棱锥S —ABCD 中,ABCD 是边长为4的正方形,SD ⊥平面ABCD ,E ,F 分别为AB ,SC 的中点.(1)证明:EF ∥平面SAD ;(2)若SD =8,求二面角D —EF —S 的正弦值.20.(本小题满分12分)某省2021年开始将全面实施新高考方案,在6门选择性考试科目中,物理、历史这两门科目采用原始分计分:思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A ,B ,C ,D ,E 共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)某校生物学科获得A 等级的共有10名学生,其原始分及转换分如表:现从这10名学生中随机抽取3人,设这3人中生物转换分不低于95分的人数为X ,求X 的分布列和数学期望;(2)假设该省此次高一学生生物学科原始分Y 服从正态分布N(75.8,36).若Y~N(μ,2σ),令Y μησ-=,则η~N(0,1),请解决下列问题:①若以此次高一学生生物学科原始分C 等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留整数)②现随机抽取了该省800名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记ξ为被抽到的原始分不低于71分的学生人数,求P(ξ=k )取得最大值时k 的值.附:若η~N(0,1),则P(η≤0.8)≈0.788,P(η≤1.04)≈0.85. 21.(本小题满分12分)如图,已知椭圆22221x y a b+=(a >b >0)的长轴两个端点分别为A ,B ,P(0x ,0y )(0y >0)是椭圆上的动点,以AB 为一边在x 轴下方作矩形ABCD ,使AD =kb (k >0),PD 交AB 于 E ,PC 交AB 于F .(1)若k =1,△PCD 的最大面积为12,离心率为3,求椭圆方程; (2)若AE ,EF ,FB 成等比数列,求k 的值.22.(本小题满分12分)已知函数()ln sin 1f x x x x =-++.(1)求证:()f x 的导函数()f x '在(0,π)上存在一零点; (2)求证:()f x 有且仅有两个不同的零点.。
苏州中学2021届10月月考高三数学试卷

2 2 4 5 2 江苏省苏州中学 2020-2021 学年第一学期调研考试 高三数学一、 单项选择题:本题共 8 小题,每小题 5 分,共 40分.1.已知集合 A = {x | x 2- x - 2 ≤ 0}, B = {x | y = x },则 A B = ()A. {x | -1 ≤ x ≤ 2}B. {x | 0 ≤ x ≤ 2}C. {x | x ≥ -1}D. {x | x ≥ 0}⎛ π ⎫ 3 ⎛ π ⎫2.已知sin α - ⎪ = ,α ∈ 0, ⎪, 则 cos α = ( )⎝ ⎭ ⎝ ⎭A.B.1010C.D.2103 若 b < a < 0 ,则下列不等式:① a > b ;② a + b < ab ;③ ab正确的不等式的有( ) < 2a - b 中,A .0 个B .1 个C .2 个D .3 个4 若函数 f (x ) = ax 2 + bx (a > 0,b > 0) 的图象在点(1,f (1)) 处的切线斜率为 2 , 8a + b 则的最小值是( )abA .10B . 9C .8D . 35 Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 I (t ) (t 的单位:天)的 Logistic 模型: I (t )= K1 + e -0.23(t -53) ,其中 K 为最大确诊病例数.当 I (t * ) = 0.95K 时,标志着已初步 遏制疫情,则 t * 约为( ) (ln19 ≈ 3) A . 60B . 63C . 66D . 693 2 7 2 22⎨ ,⎧x l n x , 6 已知函数 f (x ) = ⎪x ⎪⎩ e xx > 0 x ≤ 0 则函数 y = f (1- x ) 的图象大致是( )A.B.C.D.7 若定义在 R 上的奇函数 f (x )满足对任意的 x ∈R ,都有 f (x +2)=-f (x )成立, 且 f (1)=8,则 f (2 019),f (2 020),f (2 021)的大小关系是( ) A .f (2 019)<f (2 020)<f (2 021) B .f (2 019)>f (2 020)>f (2 021) C .f (2 020)>f (2 019)>f (2 021)D .f (2 020)<f (2 021)<f (2 019)8 地面上有两座相距 120 m 的塔,在矮塔塔底望高塔塔顶的仰角为 α,在高塔塔底望矮塔塔顶的仰角为α 2,且在两塔底连线的中点 O 处望两塔塔顶的仰角互为余角,则两塔的高度分别为( )A. 50 m ,100 mB. 40 m ,90 mC. 40 m ,50 mD. 30 m ,40 m二、 多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选 项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.9 等腰直角三角形直角边长为 1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( ) B. (1 + 2)πC. 2 2πD. (2 +2π)A.2π- 210 关于 x 的不等式(ax -1)(x + 2a -1) > 0 的解集中恰有 3 个整数,则 a 的值可以为 ( ) A .2B .1C .-1D . 111 声音是由物体振动产生的声波,其中包含着正弦函数.纯音的数学模型是函数y = A sin ωt ,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学 模型是函数 f (x ) = sin x + 1sin 2x ,则下列结论正确的是( )2A. 2π 是 f ( x ) 的一个周期B. f ( x ) 在 0, 2π 上有3 个零点C. f ( x )最大值为3 3 D. f (x ) 在⎡0, π ⎤上是增函数4⎢⎣ 2 ⎥⎦12 对于具有相同定义域 D 的函数 f (x ) 和 g (x ) ,若存在函数 h (x ) = kx + b ( k ,b为常数),对任给的正数 m ,存在相应的 x 0 ∈ D ,使得当 x ∈ D 且 x > x 0 时,总有⎧0 < f (x ) - h (x ) < m⎨0 < h (x ) - g (x ) < m 则称直线l : y = kx + b 为曲线 y = f (x ) 与 y = g (x ) 的“分⎩, 渐近线”. 给出定义域均为 D= {x x > 1} 的四组函数, 其中曲线 y = f (x ) 与y = g (x ) 存在“分渐近线”的是( )A. f (x ) = x 2 , g (x ) =B. f (x ) = 10- x+ 2 , g (x ) =2x - 3xC. f (x ) = x 2 +1x, g (x ) =x ln x +1 ln xD. f (x ) = 2x 2x +1, g (x ) = 2(x -1- e - x )二、 填空题:本题共 4 小题,每小题 5 分,共 20 分. 13 若二次函数 f (x )=-x 2+2ax +4a +1 有一个零点小于-1,一个零点大于 3, 则实数 a 的取值范围是_ .x14 在整数集Z 中,被5 除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4.给出如下四个结论:①2020∈[0];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4]④“整数a,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中正确结论有(填写正确结论标号).15 已知sin θ+cos θ=7,θ∈(0,π),则tan θ=.1316 A、B、C 是平面上任意不同三点,BC=a,CA=b,AB=c,则y=c+b a +b c的最小值是.四、解答题:本题共6 小题,第17 题为10 分,第18-22 题每题12 分.解答时应写出文字说明、证明过程或演算步骤.17.已知集合A={x|y=log2(-4x2+15x-9),x∈R},B={x||x-m|≥1,x∈R}.(1)求集合A;(2)若p:x∈A,q:x∈B,且p 是q 的充分不必要条件,求实数m 的取值范围.18.已知函数f (x)=A sin(ωx+φ)⎛A>0,ω>0,0<φ<π⎫的部分图象如图所示,其中点⎝2⎭P(1,2)为函数f(x)图象的一个最高点,Q(4,0)为函数f(x)的图象与x轴的一个交点,O 为坐标原点.(1)求函数f (x)的解析式;(2)将函数y=f (x)的图象向右平移2 个单位长度得到y=g(x)的图象,求函数h(x)=f (x)·g(x)的图象的对称中心.19.如图,在三棱柱ABC-A1B1C1中,△ABC 和△AA1C 均是边长为2 的等边三角形,点O 为AC 中点,平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB 与平面A1BC1所成角的正弦值.20.已知函数f (x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f (x)=1;(2)若函数f (x)在R 上单调递增,求实数a 的取值范围;(3)若a<1,且不等式f (x)≥2x-3 对一切实数x∈R 恒成立,求实数a 的取值范围.21 在平面直角坐标系 xOy 中,已知椭圆(a>b>0)的左、右顶点分别为 A、B,焦距为 2,直线 l 与椭圆交于 C,D 两点(均异于椭圆的左、右顶点).当直线l 过椭圆的右焦点F 且垂直于x 轴时,四边形ABCD 的面积为6.(1)求椭圆的标准方程;(2)设直线AC, BD 的斜率分别为k1 , k2 .①若k2 = 3k1,求证:直线l 过定点;②若直线l 过椭圆的右焦点F,试判断k1是否为定值,并说明理由.k222 设函数f (x)= ln (x + 1)+a (x2-x ),其中a ∈R .(1)讨论函数f (x)极值点的个数,并说明理由;(2)若∀x > 0, f (x)≥ 0 成立,求a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2
sin
2x
1
3 2
sin
2x
6
.
据此可得函数的值域为: 1
3 ,1 2
3
2
.
13.
(1)
A
2,
-3
,
B
-1,
0
,AB
的中点为:
1 2
,
-
3 2
,AB
的斜率为
1.
所以 AB 的垂直平分线为 x−y−2=0,与 3x−y=0 的交点为(−1,−3),
所以圆心坐标为 C 1, 3,r CA 3,
11.已知两点 A(1, 0) , B(1,0) ,若直线 x y a 0 上存在点 P(x, y) 满足 AP BP 0 , 则实数 a 满足的取值范围是__________
四. 解答题:本题共 3 小题,每题 15 分,共 45 分.解答时应写出文字说明、证明过程 或演算步骤.
12.设函数 f (x) sinx, x R .
D.(- 1 ,0)∪(0,+∞)
2
2
2.设点 A , B , C 不共线,则“ AB AC BC ”是“ AB AC ”()
A.充分不必要条件 C.充分必要条件
B.必要不充分条件 D.既不充分又不必要条件
3.将函数 f x cos 2x 图象上所有点向左平移 个单位长度后得到函数 g x 的图象,
D. 3 16
5.已知点列 An an,bn n N* 均在函数 y ax a 0, a 1 图像上,点列 Bn n, 0 满足
AnBn AnBn1 ,若数列 bn 中任意连续三项能构成三角形的三边,则 a 的范围为()
A. 0,
5 1 2
5 2
1
,
B.
5 2
1 ,1
高三小练 12 答案 1.C 2.C 3.B 4.B 5.B 6.B 7.ABD 8.ACD9.BC
x2 ( y 1)2 1
10.
2
11. 2, 2
12.. (1)由题意结合函数的解析式可得: f x sin x ,
函数为偶函数,则当 x 0 时, 0 k k Z ,即 k k Z ,结合
(1)已知 [0, 2), 函数 f (x ) 是偶函数,求 的值;
(2)求函数 y [ f (x )]2 [ f (x )]2 的值域.
12
4
13.已知圆 C 圆心在直线 3x y 0 上,且经过点 A(2, -3) , B(-1, 0) , (1)求圆 C 的标准方程; (2)若点 P(x, y) 在圆 C 上,求 y 2 的取值范围.
C. a2 b2 的最小值是 2 2
D. a2 的取值范围是 0,
b 1
xex,x 1
9.已知函数
f
(x)
ex x3
,x
1
,函数
g(x)xfLeabharlann (x) ,下列选项正确的是()
A.点 (0, 0) 是函数 f (x) 的零点
B. x1 (0,1), x2 (1,3) ,使 f (x1) f (x2 )
1,
5 1 2
C. 0,
3 1 2
3 1 2
,
D.
32 1 ,1
1,
3 1 2
6.已知点 M (a,b)(ab 0) 是圆 x2 y2 r2 内一点,直线 g 是以 M 为中点的弦所在直线,
直线 l 的方程为 bx ay r2 0 ,则( A. l g ,且 l 与圆相交 C. l / / g ,且 l 与圆相交
苏州中学高三数学小练 12(2020.12.8)
一、 单项选择题:本题共 6 小题,每小题 5 分,共 30 分
1.已知向量 a =(-2,-1), b =(λ,1),若 a 与 b 的夹角为钝角,则 λ 的取值范围是()
A.(- 1 ,+∞ ) 2
B.(2,+∞)
C.(- 1 ,2)∪(2,+∞)
4
如果 g x 在区间0, a 上单调递减,那么实数 a 的最大值为()
A. 8
B. 4
C. 2
D. 3 4
4.在△ ABC 中,3CD BD ,AD 为 BC 边上的高,O 为 AD 的中点,若 AO AB AC ,
则 λ•μ=( )
A. 3 4
B. 3 16
C. 3 4
x2
14.已知圆 C : x2 y 12 5 ,直线 l : mx y 1 m 0 .
(1)求证:对 m R ,直线 l 与圆 C 总有两个交点; (2)设直线 l 与圆 C 交于点 A, B ,若 AB 17 ,直线 l 的倾斜角;
(3)设直线 l 与圆 C 交于点 A, B ,若定点 P 1,1 满足 2 AP BP ,求此时直线 l 的方程.
2
2
0,2 可取 k 0,1,相应的 值为 , 3 .
22
(2)由函数的解析式可得:
y
sin2
x
12
sin2
x
4
1
cos
2
x
6
1
cos
2x
2
2
2
1
1 2
cos
2x
6
cos
2x
2
1
1 2
3 2
cos
2x
1 2
sin
2x
sin
2
x
1
1 2
3 2
cos
2x
)
B. l g ,且 l 与圆相离 D. l / / g ,且 l 与圆相离
二、 多项选择题:本题共 3 小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有 多项符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.
7.已知圆 O 与直线 l1 : y 2x 4 和 l2 : y 2x 6 共有两个公共点,则圆 O 的方程可以是
C.函数 f (x) 的值域为 e1,
D.若关于 x 的方程g(x)2 2ag(x) 0 有两个不相等的实数根,则实数 a 的取值范围是
2 e2
,
e2 8
(e 2
,
)
三.填空题:本题共 2 小题,每小题 5 分,共 10 分
10.已知圆 C:
与直线
相切,且圆 D 与圆 C 关
于直线 对称,则圆 D 的方程是___________.
A. x 12 y 32 5
B. x 12 y 22 5
C. x 12 y 32 25
D. x 12 y 102 25
8.已知 a 、 b 为正实数,直线 x y a 0 与圆 x b2 y 12 2 相切,则()
A.直线 x y a 0 与直线 x y b 0 的距离是定值 B.点 a,b 一定在该圆外