相互独立事件的集合关系

合集下载

§10.2-事件的相互独立性课件-高一下学期数学人教A版必修第二册第十章

§10.2-事件的相互独立性课件-高一下学期数学人教A版必修第二册第十章
(2) P(Ω)=1,P(∅ )=0.
(3) 如果 A⊆B,P(A)≤P(B). (4) A,B 是一个随机试验中的两个事件,
P(A∪B)=P(A)+P(B)-P(A∩B). 特别:①当 A 与 B 互斥时,P(A∪B)=P(A)+P(B).
②当 A 与 B 对立时,P(B)=1-P(A) 或 P(A)=1-P(B).
(0, 0)}, 所以AB={(1, 0)}. 由古典概型概率计算公式,得
P(A)=P(B)= 1 , P(AB)= 1 . 于是P(AB)=P(A)P(B).
2
4
积事件AB的概率P(AB)恰好等于P(A)与P(B)的乘积.
新课讲授 下面两个随机实验各定义了一对随机事件A和B,你觉
得事件A产生与否会影响事件B产生的概率吗?
下面我们来讨论一类与积事件有关的特殊问题.
探究1 下面两个随机实验各定义了一对随机事件A和B,你
觉得事件A产生与否会影响事件B产生的概率吗? 实验1:分别抛掷两枚质地均匀的硬币,A= “第一枚硬币 正面朝上",B="第二枚硬币反面朝上”. 实验2: —个袋子中装有标号分别是1, 2, 3, 4的4个球,除 标号外没有其它差异. 采用有放回方式从袋中依次任意摸 出两球. A= “第一次摸到球的标号小于3”,B = “第二 次摸到球的标号小于3”.
解:(2)“从 8 个球中任意取出 1 个,取出的是白球”的概率为 58,若这一事件发生了,则“从剩下的 7 个球中任意取出 1 个, 取出的仍是白球”的概率为4,若前一事件没有发生,则后一
7 事件发生的概率为5.可见,前一事件是否发生,对后一事件
7 发生的概率有影响,所以两者不是相互独立事件.
例 2. 判断下列各对事件是不是相互独立事件: (3)掷一枚骰子一次,“出现偶数点”与“出现 3 点或 6 点”.

概率与统计1

概率与统计1

【解析】三人均达标为0.8×0.6×0.5=0.24, 解析】三人均达标为0.8×0.6× 0.8 三人中至少有一人达标为1 三人中至少有一人达标为1-0.04=0.96
5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 14 为了准时起床,他用甲、乙两个闹钟叫醒自己, 为了准时起床,他用甲、乙两个闹钟叫醒自己,假设 甲闹钟准时响的概率是0.80, 甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是 0.80 0.90, 0.90,则两个闹钟至少有一准时响的概率是 。.
题型二 相互独立事件同时发生的概率问题 2009北京卷文)(本小题共13分 北京卷文)(本小题共13 例2 (2009北京卷文)(本小题共13分) 某学生在上学路上要经过4个路口, 某学生在上学路上要经过4个路口,假设在各路口 是否遇到红灯是相互独立的, 是否遇到红灯是相互独立的,遇到红灯的概率都
1 1 1 4 P ( A) = 1 − × 1 − × = 3 3 3 27
(Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多 是4min为事件B,这名学生在上学路上遇到 4min为事件B 为事件 的事件
Bk ( k = 0,1, 2 )
2 16 P ( B0 ) = = 3 81
1 的概率都是 2 若某人获得两个“支持” 则给予10万元的创业资助; 10万元的创业资助 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得
一个“支持”,则给予5万元的资助;若未获得“支持”,则不予 一个“支持” 则给予5万元的资助;若未获得“支持” 资助. 资助.求: 该公司的资助总额为零的概率; (1) 该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率. 该公司的资助总额超过15万元的概率. 15万元的概率

人教A版高中数学必修第二册教学课件:事件的相互独立性

人教A版高中数学必修第二册教学课件:事件的相互独立性


1 12
+
1 8
+
1 4

11 24
,所以事件A,B,C只发生两个的概率为
11 24
.
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
(3)记A:出现偶数点,B:出现3点或6点,
则A={2,4,6},B={3,6},AB={6},
所以P(A)= 3 = 1 ,P(B)= 2 = 1 ,P(AB)= 1 .
62
63
6
【变式训练2】端午节放假,甲回老家过节的概率为 1 ,乙、丙回老家 3
过节的概率分别为 1 ,1 .假定三人的行动相互之间没有影响,那么这段 45
时间内至少1人回老家过节的概率为 ( )
A. 59
B. 1
C. 3
D. 1
60
2
5
60
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
所以P(AB)=P(A)P(B),
所以事件A与B相互独立.

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

件 B:甲和乙选择的景点不同,则条件概率 P(B|A)=( D )
A.176
B.78
C.37
D.67
பைடு நூலகம்
[解析] 由题意知,事件 A:甲和乙至少一人选择庐山,共有 n(A)=C12·C13+1=7 种 情况,事件 AB:甲和乙选择的景点不同,且至少一人选择庐山,共有 n(AB)=C12·C13=6 种情况,P(B|A)=nnAAB=67.故选 D.
2
— 19 —
(新教材) 高三总复习•数学
— 返回 —
条件概率的 2 种求法 (1)利用定义,分别求 P(A)和 P(AB),得 P(B|A)=PPAAB,这是求条件概率的通法. (2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n(A),再求事件 A 与事件 B 的交事件中包含的基本事件数 n(AB),得 P(B|A)=nnAAB.
满 2 局或 3 局,且在 11 分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”
模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立.
(1)求 4 局比赛决出胜负的概率;
(2)设在 24 分钟内,甲、乙比赛了 3 局,比赛结束时,甲乙总共进行 5 局的概率.
— 13 —
— 4—
(新教材) 高三总复习•数学
— 返回 —
2.条件概率 (1)概念:一般地,设
A,B
为两个随机事件,且
P(A)>0,我们称
P(B|A)=PPAAB

在事件 A 发生的条件下,事件 B 发生的条件概率,简称条件概率.
(2)两个公式
nAB
①利用古典概型,P(B|A)= nA .
②概率的乘法公式:P(AB)= P(A)P(B|A) .

相互独立事件同时发生的概率公式相互独立事件的定义和性质相互独立事件和互斥事件的区别

相互独立事件同时发生的概率公式相互独立事件的定义和性质相互独立事件和互斥事件的区别

相互独立事件的定义:如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

若A,B是两个相互独立事件,则A与,与,与B都是相互独立事件。

相互独立事件同时发生的概率:两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。

若A1,A2,…A n相互独立,则n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1·A2·…·A n)=P(A1)·P(A2)·…·P (A n)。

相互独立事件同时发生的概率计算:(1)利用相互独立事件的概率乘法公式直接求解;(2)(2)正面计算较繁或难以入手时,可从其对立事件入手计算。

相互独立事件的定义相互独立是设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立。

设A,B是试验E的两个事件,若P(A)>0,可以定义P(B∣A)。

一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B)。

1特殊事件必然事件记作Ω,样本空间Ω也是其自身的一个子集,Ω也是一个“随机”事件,每次试验中必定有Ω中的一个样本点出现,必然发生。

不可能事件记作Φ,空集Φ也是样本空间的一个子集,Φ也是一个特殊的“随机”事件,不包含任何样本点,不可能发生。

事件关系事件A是事件B的子事件,事件A发生必然导致事件B发生,事件A的样本点都是事件B的样本点,记作A⊂B。

若A⊂B且B⊂A,那么A=B,称A和B为相等事件,事件A与事件B含有相同的样本点。

和事件发生,即事件A发生或事件B发生,事件A与事件B至少一个发生,由事件A与事件B所有样本点组成,记作A∪B。

积事件发生,即事件A和事件B同时发生,由事件A与事件B的公共样本点组成,记作AB或A∩B。

相互独立事件与互斥事件的区别相互独立事件之间的发生互不影响,但可能会同时发生。

对立事件和独立事件的

对立事件和独立事件的
可推广到三个以上互不相容事件的和的 概率,即:
P(A+B+C+…)=P(A)+P(B)+P(C)+…
2, 概率的一般加法公式:
设A、B为任意两个事件,则 P(A+B)=P(A)+P(B)-P(AB) 显然, 互不相容事件的概率的加法公式 是一般加法公式的特例.
新授
一、对立事件的概率
P( A) 1 P( A)
课堂练习
教材P144 / 1,2,3,4, 5
课后作业
教材P145 / 1,2,3,6
1,四个人在议论逻一辑位推作理家的年龄。甲说
“她不会超过35岁。” 乙说“她不超过
40 岁。” 丙说“她的岁数在50以下。” 丁

“她绝对在40岁以上。” 实际上只有一 个
人说A、对甲了说。的那对么下列说法正确的是( ) B、她的年龄在45~50岁之间 C、她的年龄在50岁以上 D、丁说的对
逻辑推理
2,经过破译敌人的密码,已经知道“香蕉
苹果大鸭梨”的意思是“星期三秘密进攻”,
“苹果甘蔗水蜜桃”的意思是“执行秘密计
划”,“广柑香蕉西红柿”的意思是“星期三
的胜利属于我们”,那么“大鸭梨”的意思

()
A、秘密 C、进攻
B、星期三 D、执行
类比推理
先给出一对相关的词,要求从备选项 中找出一对与之在逻辑关系上最为贴近或 相似的词。
5.相互对立事件
如果“事件A与B满足: AB=φ且A+B=U 则称事件A与B为相互对立事件。
又称互为逆事件. A的对立事件记作:A
“A与B互为对立事件” 就是说: “A与B不能 同时发生(互不相容), 但二者必有一个发生.

事件的相互独立性

事件的相互独立性

设 A, B 是两事件 , 如果满足等式 P( AB) P( A) P(B)
则称事件 A, B 相互独立,简称 A, B 独立.
注. 1º若 P( A) 0,则
P(B A) P(B) P( AB) P( A)P(B)
说明 事件 A 与 B 相互独立,是指事件 A 的 发生与事件 B 发生的概率无关.
例4 若每个人血清中含有肝炎病毒的概率为 0.4%, 假设每个人血清中是否含有肝炎病毒 相互独立,混合100个人的血清,求此血清 中含有肝炎病毒的概率. 解
Ai {第i人的血清含有肝炎病毒},i 1, 2,...100
B {100个人的混合血清中含有肝炎病毒} 则 P( Ai ) 0.004
[r(2 r)]n rn(2 r)n
(2) 问:哪个系统的可靠性更大?
令 f ( x) xn (n 2),则
0r1
f ( x) n(n 1)xn2 0 ( x 0)
(2 r)n 2 rn
故曲线y f ( x)是凹的,从而 f (2 r) f (r) f ( (2 r) r ) f (1) 1
P(BC ) P(B)P(C ),
P(
AC
)
P( A)P(C ),
P( ABC ) P( A)P(B)P(C ),
则称事件 A, B,C 相互独立 .
3. n 个事件的独立性
定义 若事件 A1,A2 ,… ,An 中任意两个事件 相互独立,即对于一切 1 ≤i< j ≤n, 有
P( Ai Aj ) P( Ai )P( Aj )
通路上各元件
都正常工作
而 系统Ⅰ正常工作
两条通路中至少
有一条正常工作
B1 C D A1A2 An An1An2 A2n

事件的相互独立性 课件 高中数学新人教A版必修第二册 (1)

事件的相互独立性 课件 高中数学新人教A版必修第二册 (1)

P(BC)=P(B)P(C)成立即可.
利用古典概型概率公式计算可得P(A)=0.5,P(B)=0.5,P(C)=0.5,P(AB)=0.25,
P(AC)=0.25,P(BC)=0.25.
可以验证P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C).
所以根据事件相互独立的定义,事件A与B相互独立,事件B与C相互独立,事件A与C
简称独立.
知识点二 相互独立事件的性质
如果事件 A 与 B 相互独立,那么 A 与 B , A 与 B, A 与 B 也都相互独立.
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.不可能事件与任何一个事件相互独立.( √ )
2.必然事件与任何一个事件相互独立.( √ )
4 3 2
乙、丙三人在理论考试中“合格”的概率依次为5,4,3,在实际操作考试中“合格”的
1 2 5
概率依次为2,3,6,所有考试是否合格相互之间没有影响.
(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能
性最大?

记“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格



1 15 15
所以整个电路不发生故障的概率为 P=P(A)×P1=2×16=32.
核心素养之数学抽象
HE XIN SU YANG ZHI SHU XUE CHOU XIANG
方程思想在相互独立事件概率中的应用
典例 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一
1
等品而乙机床加工的零件不是一等品的概率为 4,乙机床加工的零件是一等品而丙机
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相互独立事件的集合关系
互斥事件交集为空,那么相互独立事件呢?有交集的事件一定是相互独立事件吗?
如果相互独立事件没有明确的集合关系,那么它们之间就没有集合图像吗?
我来帮他解答
互斥事件交集为空,那么相互独立事件呢?
独立事件的交集一般不为空,除非某一事件的概率为空.
你画一个正方形□,□内为全体事件,以面积的大小表示事件的多少.
再画一横线,变成了日,日的上面的框内为事件A,
然后画一竖线,变成了田.田的左侧两个框内为事件B,
此时,左上方为事件AB,
AB为独立事件.
因为无论你如何上下移动横线,事件AB的面积除以事件A的面积始终等于事件B的面积除以全体事件的面积.
同样,无论如何移动竖线,事件AB的面积除以事件B的面积始终等于事件A的面积除以全体事件的面积.
当你把竖线换成斜线结果就不同了,或者当你把□形换成○形结果也会不同的.你试试,此时的AB就不是独立事件了.
相互独立事件可以这样理解:
在事件A的概率为P(A),事件B的概率为P(B),事件AB的概率为P(AB),则
P(AB)/P(A)=P(B),就是说在发生了A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的.
在不发生事件A的概率为P(A非),事件B的概率为P(B),不发生事件A发生B的概率为P(A非B),则
P(A非B)/P(A非)=P(B),就是说在不发生A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的.
换句话说,是否发生A与发生B的概率无关.
当然将所有的A换成B,将B换成A,上边的说法仍然成立.
有交集的事件一定是相互独立事件吗?
不是的.前面说的将竖线变成斜线后的关系就是反例,我举一个实例:
事件A:今天西安城区平均温度高于30°,
事件B:明天西安城区平均温度高于30°.
今天明天连续两天温度高于30°的情况有吗?我想是有的.
如果今天西安城区平均温度高于30°,那么明天西安城区平均温度高于30°的可能性我觉得会更高一些,于是这两个事件就不是独立事件了.
如果相互独立事件没有明确的集合关系,那么它们之间就没有集合图像吗?
我想前面的两个你清楚了,后面的这个就不用我说了吧.
当A1A2A3……An相互独立P(A1A2A3……An)=P(A1)*P(A2)*P(A3)*P(A4)*……*P(An)
解读独立事件的概率和条件概率
1.理解独立事件的本质:一个事件是否发生对另一个事件是否发生不产生联系,事件的相互独立性的概念可以推广到n个事件之间的相互独立.条件概率具有概率的一般性质,即概率值都在[o,1」内,若事件B,C互斥,则尸(BUC}A)-P(B}A)+P(C IA)等.
2.
学会分析事件之间的关系,一个实际问题中往往涉及多个事件,正确理解这些事件之间
的相互关系是解决问题的核心.一般的思路是先把所要解决的随机事件分成若干个互斥事件的和,再把这些互斥事件中的每一个事件分成若干个相互独立事件的乘积,把所要求的随机事件的概率计算转化为已知的一些事件的概率之积、之和的计算.侧,甲、乙两袋装有大小相同的红球和白球.甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.从甲、乙两袋中各取2个球. (l)若n一3,求取到的4个球全是红球的概率; (2)若取到的4个球中至少有2个红球的概率为3一子,求n.4’一_.分析:第(l)问是两个相互独立事件同时发生的概率;第(2)问可以转化为其对立事件进而求解.解:(1)记“取到的4个球全是红球”为事件A,则点评:把复杂问题简单化是解决数学问题的一...... (本文共计1页) [继
续阅读本文]。

相关文档
最新文档