静定结构解法

合集下载

结构力学第三章静定结构组合结构及拱

结构力学第三章静定结构组合结构及拱
0 FNJ 右 FQJ 右 sin FH cos (7.5) (0.447) 10 0.894
3.35 8.94 12.29kN (压)
二、三较拱的压力线
如果三铰拱某截面D以左(或以右)所有外力的 合力FRD已经确定,则该截面的弯矩、剪力、轴 力可按下式计算:
15kN K右
Fº =-2.5kN QK右
0 0 (FH 10kN , FQK左 12.5kN , FQK右 2.5kN )
(sin 0.447, cos 0.894)
0 FQK 左 FQK 左 cos FH sin 12.5 0.894 10 0.447
67.5kN
50
A F C G E
B
30
D
M图
kN.m
求AC杆和BC杆剪力
F
FQAC
y
0, FQAC 7.5kN
22.5kN 7.5 32.5 10kN/m FNAD
FAy
+ _
15
+
7.15 67.5kN 35 FQ图 kN
作业
3-20
§3-6 三铰拱受力分析
拱 (arch)
FN DE 135kN ,
FNDF FN EG =-67.5kN
FAy
D
FCx 135kN , FCy 15kN
FNDA
FNDF
D
FN DA FN EB= kN 151
FNDE
2m
F
50kN.m
求AC杆和BC杆弯矩
22.5kN 5kN.m
20kN.m 10kN/m
30kN.m
MD FRD

一级结构师基础辅导:计算静定结构反力和内力的基本方法

一级结构师基础辅导:计算静定结构反力和内力的基本方法

计算静定结构反⼒和内⼒的基本⽅法
在静定结构的受⼒分析中不涉及结构材料的性质,将整个结构或结构中的任⼀杆件都作为刚体看待。

静定结构受⼒分析的基本⽅法有以下三种。

(⼀)数解法
将受⼒结构的整体及结构中的某个或某些隔离体作为计算对象,根据静⼒平衡条件建⽴⼒系的平衡⽅程,再由平衡⽅程求解结构的⽀座反⼒和内⼒。

(⼆)图解法
静⼒平衡条件也可⽤⼒系图解法中的闭合⼒多边形和闭合索多边形来代替。

其中闭合⼒多边形相当于静⼒投影平衡⽅程,闭合索多边形相当于⼒矩平衡⽅程。

据此即可⽤图解法确定静定结构的⽀座反⼒和内⼒。

(三)基于刚体系虚位移原理的⽅法
受⼒处于平衡的刚体系,要求该⼒系在满⾜刚体系约束条件的微⼩的虚位移上所做的虚功总和等于零。

据此,如欲求静定结构上某约束⼒(反⼒或内⼒)时,可去除相应的约束,使所得的机构沿该约束⼒⽅向产⽣微⼩的虚位移,然后由虚位移原理即可求出该约束⼒。

结构力学---第十九章 静定结构的内力分析

结构力学---第十九章 静定结构的内力分析

第十九章 静定结构的内力分析一. 内容提要1. 静定梁(1) 单跨静定梁用截面法求内力 平面结构在任意荷载作用下,其杆件横截面上一般有三种内力,即弯矩M 、剪力F Q 和轴力F N .内力符号通常规定如下:弯矩以使梁的下侧纤维受拉为E ;剪力以使隔离体有順时针方向转动趋势者为E ,轴力以拉力为E 。

计算内力用截面法的规律,即梁内任一横截面上的弯矩等于该截面一侧所有外力对该截面形心的力矩的代数和;梁内任一横截面上的剪力等于该截面一侧与截面平行的所有外力的代数和。

内力图 表示内力沿轴线变化规律的图形称为内力图。

内力图包括弯矩图、剪力图和轴力图。

通常情况下,作内力图用简捷法,而作弯矩图常用叠加法。

(2) 斜梁简支斜梁在沿水平方向均布荷载作用下,支座反力与相应水平简支梁相同,而内力表达式为KK M M = αcos 0Q K Q K F F = αsin 0Q K NK F F -= 根据表达式作出共同内力图(3)多跨静定梁多跨静定梁由基本部分和附属部分组成。

其受力特点是;外力作用在基本部分都受力,按照附属部分依赖于基本部分的特点,可把多跨静定梁用层次图表示,层次图把多跨静定梁拆成若干单跨静定梁,计算出各单跨静定梁,然后将各单跨静定梁的内力图连在一起即得多跨静定梁的内力图。

多跨静定梁的计算顺序是先计算附属部分,再计算基本部分。

2. 静定平面刚架静定平面刚架的内力计算原则上与静定梁相同。

通常先由平衡条件求出支座反力,然后按静定梁计算内力的方法逐杆绘制内力图。

在绘制刚架的弯矩图时,不定义弯矩的正负号,但必须将弯矩图绘在杆件的受拉侧,剪力、轴力的正负号规定与静定梁相同,剪力图和轴力图可以画在轴线的任一侧,但需标明正负。

3. 静定平面桁架理想桁架中的各杆都是二力杆,只产生轴力,计算轴力是可均设拉力。

求解桁架内力的方法有:结点法、截面法、联合法。

结点法是取桁架法结点为隔离体,由平面汇交力系的平衡条件求杆件的轴力,这种方法通常适用求简单桁架所有杆件的轴力;联合应用结点法和截面法求桁架的轴力,称为联合法,适用于联合横架和复杂横架的内力计算。

静定结构内力计算全解[详细]

静定结构内力计算全解[详细]
➢ 杆件结构的组成和分析是两个相关的过程,应当 把受力分析与组成分析联系起来,根据结构的组 成特点确定受力分析的合理途径。
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy

静定结构解题总结

静定结构解题总结

结构位移计算——荷载作用下
不同情况下的位移计算公式
1.梁与刚架
ip M PMi ds EI N P Ni ds EA N P Nil EA
4.拱
ip [ M PMi N N P i ]ds EI EA
2.桁架
ip
这些公式的适 用条件是什么?
3.组合结构
注意图乘法的适用条件 以及复杂图形的分解
结构位移计算——温度作用下
求结构某点沿某方向的位移⊿it。 步骤:
1、虚设力状态,即沿欲求⊿方向设单位荷载 FP=1 。 2、画出虚力状态下的 M , F N 图。 3、根据公式可求出⊿。
it t0 FN l ()
t
h
AM
等截面直杆
步骤:
1、虚设力状态,即沿欲求⊿方向设单位荷载FP=1 。 2、根据平衡条件求出虚设FP=1作用下的 M , F Q , F N ,以及实际荷载作用下的M、 FQ 、FN。 3、根据公式可求出⊿kp。
KP k F Q FQP F N FNP MMP dx dx dx EA GA EI
分段 定点 连线
注意:简支刚架、悬臂刚架、三铰刚架的不 同特点及求解过程。复杂刚架 要求:能速画弯矩图
静定结构的内力图——静定平面桁架
具体步骤: 1、求支座反力 2、根据桁架的特点及题目的要求,选 用结点法、截面法或者两者联合应用 要求:会判断桁架结构中的零杆,能 利用桁架对称性求桁架杆的内力
静定结构的内力图——组合结构
静定结构的解题总结
几何组成分析
方法1: 若基础与其它部分三杆相连, 去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片 看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.

建筑力学:静定结构内力分析

建筑力学:静定结构内力分析
静定平面刚架的组成特点及类型
一、平面刚架结构特点: 刚架是由梁和柱以刚性结点相连组成,优点是
将梁柱形成一个刚性整体,结构刚度较大,内力 分布较均匀合理,便于形成大空间。
图(a)是车站雨蓬,图(b)是多层多跨房 屋,图(c)是具有部分铰结点的刚架。
(a)
(b)
(c)
(d)
(e)
刚架结构优点:
(1)内部有效使用空间大;
受弯杆件称为梁。横截面有矩形,工字形, T形和圆形。
在外力作用下梁的轴线变为一条平面曲线, 称为梁的挠曲线。
平面弯曲
一、梁上的内力:剪力和弯矩
P
l /2
l /2
P
平行于横截面的竖向内力V称为
M
剪力。
V RA
位于荷载作用平面内的内力偶 矩M称为弯矩。
二、截面上内力符号的规定:
N
N 轴力:杆轴切线方向
6qa
2qa 2
2qa 2 2q
4qa 2
M图
14qa 2
(4)绘制结构Q图和N图
2qa2
q
C 6qa
E
2qa2
8qa2 10qa2
6qa 2
3a
D
B
2q A
4a
2qa 2
4qa 2
14qa 2
2qa 2
M图
QDC 0
2a 2a
QDB 0
3.2qa
QBD 6qa
QBE 3.2qa
6qa
QBA 0
2)杆DB
N DC
6qa
2qa 2
D 6qa 2
M BD
B
N BD
QBD
10qa 2
NBD 0 QBD 6qa M BD 10qa2

力学与结构—静定结构内力计算

力学与结构—静定结构内力计算

力学与结构—静定结构内力计算静定结构是指在静态平衡的情况下,具有确定的结构稳定的结构体系。

在静定结构内力计算中,我们主要关注结构中的受力情况,以及内力的计算和分析。

本文将介绍静定结构内力计算的基本原理和方法。

一、静定结构的受力情况静定结构中,每一点的受力都可以通过平衡方程来计算。

平衡方程包括力的平衡方程和力矩的平衡方程。

力的平衡方程:在静态平衡状态下,结构的受力合力为零,即ΣF=0力矩的平衡方程:在静态平衡状态下,结构的受力合力矩为零,即ΣM=0根据这两个平衡方程,我们可以计算出结构中各个节点的受力情况。

二、内力的计算和分析在静定结构中,内力是指结构中材料的内部受力情况。

在计算内力时,我们主要关注结构中的悬臂梁、简支梁、悬链线等情况。

1.悬臂梁悬臂梁是一种固定在一端的梁。

在计算悬臂梁的内力时,我们需要知道梁的长度、材料的性质、外力的作用点和大小等信息。

对于悬臂梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到悬臂梁左端的距离)剪力V=P2.简支梁简支梁是一种两端都可以自由转动的梁。

在计算简支梁的内力时,我们同样需要知道梁的长度、材料的性质、外力的作用点和大小等信息。

对于简支梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到简支梁左端的距离)剪力V=03.悬链线悬链线是一种线性受力的结构,常见于吊桥和高空绳索走廊等场景。

在计算悬链线的内力时,我们需要知道悬链线的长度、绳子的重力、外力的作用点和大小等信息。

对于悬链线,内力可以通过以下公式计算:水平力H=水平方向的外力的合力垂直力V=绳子的重力+垂直方向的外力的合力张力T = sqrt(H^2 + V^2)通过以上的方法,我们可以计算得到静定结构中各个节点的受力情况和内力。

三、静定结构内力计算的应用静定结构内力计算在结构工程中具有重要的应用价值。

通过计算内力,我们可以了解结构的受力情况,选择合适的材料和结构参数,保证结构的安全性和稳定性。

9-简单超静定结构的解法解析

9-简单超静定结构的解法解析

例 两端固定的圆截面杆 AB ,在截面 C 处受一扭转
力偶矩 Me 作用如图。已知杆的扭转刚度为GIp,试
求杆两端的支反力偶矩。
I
Me
II
解: 一次超静定 设想固定端B为
A
C
a
B
b
多余约束,解除后
l
加上相应的多余未
MA A
I
Me
C
II
MB
B
x
知力偶矩MB,得基 本静定系。
平衡方程:设固定端A的支反力偶为MA ,方向同MB
,
补充方程变为
wBFB
FBl3 3EI
ql 4 FBl 3 0 8EI 3EI
解得
FB
3 ql 8
可从右向左作出剪力图和弯矩图
8 ql
81ql
FS 图
18l
8 ql2
1218ql2
M图
也可以取支座 A 处阻止梁端面转动的约束作为 “多余”约束,解除后可得相当系统
q
MA A
B
l
根据原超静定梁端面 A 的转角应等于零的变形 相容条件,可由变形协调条件建立补充方程来求 解。
A A'
l1 l3 cosa
l3
(3)胡克定理
l1
FN1l EA
l3
FN3l cosa
E3 A3
(4)补充方程变为
FN1
FN3
EA E3 A3
cos2 a
联立平衡方程、补充方程,求解得
FN1
FN 2
2 c osa
F
E3 A3 EAcos2
a
F
FN3 1 2
EA
cos3 a
E3 A3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
EI
EI
l
P
解: 1 0
X1
11 X11P0
11l3/3EI
l
1PP3l/2EI
X1=1 Pl
P
X13P/2()
MM 1X1M P
l M1
Pl
MP
书山有路勤为径●▂●学海无涯苦 作舟 专业分享,敬请收藏
3 Pl 2
M
10
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。
超静定问题的求解要同时考虑结构的“变
形、本构、平衡”.
书山有路勤为径●▂●学海无涯苦
2
作舟 专业分享,敬请收藏
4.1 概述
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 1.内力与材料的物理性质、截面的几何形状和尺寸有关。
2.温度变化、支座移动一般会产生内力。
与静定结构相比, 超静定结构的优点为:
(c) 可变体系不能作为基本结构
基本结构指去掉多 余约束后的结构
书山有路勤为径●▂●学海无涯苦
17
作舟 专业分享,敬请收藏
(14 次)
63414
书山有路勤为径●▂●学海无涯苦
18
作舟 专业分享,敬请收藏
8217 1
(1 次)
书山有路勤为径●▂●学海无涯苦
19
作舟 专业分享,敬请收藏
(6 次)
3336
书山有路勤为径●▂●学海无涯苦
20
作舟 专业分享,敬请收藏
(4 次)
3354
书山有路勤为径●▂●学海无涯苦
21
作舟 专业分享,敬请收藏
8318 6 (6 次)
X2 X1
X7
X3
X8
X5
X4
X9
X6
X 10
63810 书山有路勤为径●▂●学海无涯苦
22
作舟 专业分享,敬请收藏
1.内力分布均匀
2.抵抗破坏的能力强
书山有路勤为径●▂●学海无涯苦
3
作舟 专业分享,敬请收藏
4.1 概述
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 三.超静定结构的计算方法
1.力法----以多余约束力作为基本未知量。
2.位移法----以结点位移作为基本未知量.
3.混合法----以结点位移和多余约束力作为 基本未知量.
X6
一个无铰封闭框有 三个多余约束.
书山有路勤为径●▂●学海无涯苦
16
作舟 专业分享,敬请收藏
根据计算自由度 确定超静定次数
W 8 2 1 9 3
确定超静定次数小结:
(a) 方法:比较法,减约束,计算自由度,封闭框计算。
(b) 一个超静定结构可能有多种形式的基本结构, 不同基本结构带来不同的计算工作量。
书山有路勤为径●▂●学海无涯苦
5
作舟 专业分享,敬请收藏
4.2 力法(Force Method)
一.力法的基本概念
待解的未知问题
1
基本1
未知量
在变形条件成立条件下,基本体
系的内力和位移与原结构相同. 书山有路勤为径●▂●学海无涯苦 作舟 专业分享,敬请收藏
6
4.2 力法(Force Method)
分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 法方程。
从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
书山有路勤为径●▂●学海无涯苦
11
作舟 专业分享,敬请收藏
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。
4.力矩分配法----近似计算方法.
5.矩阵位移法----结构矩阵分析法之一.
书山有路勤为径●▂●学海无涯苦
4
作舟 专业分享,敬请收藏
4.1 概述
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 三.超静定结构的计算方法
力法等方法的基本思想: 1.找出未知问题不能求解的原因, 2.将其化成会求解的问题, 3.找出改造后的问题与原问题的差别, 4.消除差别后,改造后的问题的解即为原问题的解
力法 方程
1
11l3 /3EI 1Pq4 l/8EI
X 13ql/8( ) M M 1X 1M P
ql 2 / 2 MP
l
M1
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
练习 P
第四章 静定结构的解法
Methods of Analysis of Statically Indeterminate Structures
书山有路勤为径●▂●学海无涯苦
1
作舟 专业分享,敬请收藏
4.1 概述
一.超静定结构的静力特征和几何特征
几何特征:有多余约束的几何不变体系。
静力特征:仅由静力平衡方程不能求出 所有内力和反力.
去掉一个固定端支
座或切断一根弯曲 X 1 杆相当于去掉三个
X3 X2
约束. 将刚结点变成铰结
点或将固定端支座
X 3 变成固定铰支座相
X1
当于去掉一个约束.
X2
几何可变体系不能 X 3 作为基本体系
X1
X 书山有路勤为径●▂●学海无涯苦 作舟 专业分享,敬2请收藏
15
X2 X1
X3
X2 X1
X3
X5 X4
EI
作弯矩图.
EI
l
l
书山有路勤为径●▂●学海无涯苦
8
作舟 专业分享,敬请收藏
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
P
EI
P
EI
l
解: 1 0
X1
11 X11P0
114l3/3EI
l
1PP3l/2EI
l
P
X13P/8()
X1=1
M1
Pl
MP
3 Pl 8
MM 1X1M P
P
EI
EI
l
5 Pl 8
M 书山有路勤为径●▂●学海无涯苦 作舟 专业分享,敬请收藏
l
9
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
ql 2一/ 8.力法的基本概念 1 0
M
力1.确法定步基骤本:体系 111 X 111 11 1P0
力法 方程
2.写出位移条件,力1法1 X 方1程1P0
34..作 求单 出位系弯数1 矩和图自11由,荷l项载3/弯3E矩I图;1Pq4l/8EI
力法基本体系不惟一.
书山有路勤为径●▂●学海无涯苦
13
作舟 专业分享,敬请收藏
去掉几个约束后成为静 定结构,则为几次超静定
X1 X2
X3
X1
X2
X3
去掉一个链杆或切断 一个链杆相当于去掉 一个约束
X1 X2
X3
书山有路勤为径●▂●学海无涯苦
14
作舟 专业分享,敬请收藏
X2 X1
X3
X3
X2 X1
5.解力法方程X13ql/8() MM 1X1M P
6.叠加法作弯矩图
ql 2 / 2
l
书山有路勤为径●M▂P●学海无涯苦
作舟 专业分享,敬请收藏
M1
7
ql 2一/ 8.力法的基本概念
M
1 0
1 11 1 P 0
11X 1 11
11 X 1 1 P 0
这是科学研究的 基本方法之一。
书山有路勤为径●▂●学海无涯苦
12
作舟 专业分享,敬请收藏
二.力法的基本体系与基本未知量 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构.
几次超静定结构?
比较法:与相近的静定结构
X2
X1
X2
相比, 比静定结构 多几个约束即为几
X1
次超静定结构.
相关文档
最新文档