第4章微机继电保护软件原理

合集下载

继电保护原理微机继电保护原理

继电保护原理微机继电保护原理
高精度测量
微机继电保护采用数字信号处理 技术,具有高精度的测量和判断 能力,提高了保护的准确性和可
靠性。
灵活性强
微机继电保护可以通过软件编程实 现不同的保护功能,适应性强,易 于扩展和维护。
易于远程控制
微机继电保护可以实现远程控制和 监控,方便了运行和维护。
传统与微机继电保护的结合应用
互补性应用
在电力系统中,可以将传统继电保护和微机继电保护结合使用, 以充分发挥各自的优势,提高整个系统的保护性能。
微机继电保护系统的构成
硬件部分
微机继电保护装置的硬件主要包括中 央处理器、存储器、输入/输出接口 电路等,用于实现各种保护功能。
软件部分
微机继电保护装置的软件主要包括系 统软件和应用软件,系统软件负责管 理硬件资源和应用软件,应用软件根 据保护原理实现具体的保护功能。
微机继电保护的算法
傅里叶变换算法
通过分析电流、电压信号的频 谱,检测设备是否出现故障。
最小二乘法算法
通过最小化误差的平方和,计 算出设备的参数,用于判断设 备是否出现故障。
波形比较算法
通过比较故障前后的电流、电 压波形,判断设备是否出现故 障。
递归最小二乘法算法
通过递归的方式计算设备的参 数,用于判断设备是否出现故
障。
微机继电保护的优点
定期维护
定期对微机继电保护装置 进行维护和检查,确保装 置的稳定运行和延长使用 寿命。
故障处理
在发生故障时,及时进行 故障定位和排除,恢复微 机继电保护装置的正常运 行。
05 微机继电保护的发展趋势 与展望
人工智能在微机继电保护中的应用
人工智能技术
利用人工智能算法,如神经网络、模糊逻辑等,对电力系统中的故障进行快速 识别和判断,提高继电保护的响应速度和准确性。

继电保护原理原理和常见问题处理方法

继电保护原理原理和常见问题处理方法

问题4.防跳问题
防跳回路是指防止跳跃的电气回路。开关装置配有 电气的分闸和合闸按钮,当分闸按钮一直按下时, 开关分闸,如果此时合闸按钮也一直按下,开关 就会出现合闸后立即分闸,分闸后又合闸的跳跃 动作。因此需要防跳回路,以防止开关发生这种 跳跃现象,进而保护开关装置以及负载免受保护
作为本线路主保护的近后备以及相邻线下一线路保护的远 后备。其起动电流按躲最大负荷电流来整定的保护称为 过电流保护,此保护不仅能保护本线路全长,且能保护 相邻线路的全长。
优点:本线路和相邻下一线路全长
缺点:有动作时限(比过流Ⅱ段还要长)
过流Ⅲ段保护是后备保护,过流Ⅲ段保护的IdZ比 第Ⅰ、Ⅱ段的IdZ小得多,其灵敏度比第Ⅰ、Ⅱ 段更高
母线电压开放解释:是根据母线故障电压降低的特性, 正常电压情况下,即使有差动电流,电压闭锁,只有 电压降低到一定程度,才开放逻辑。
问题3.母差保护报交流异常
处理方法:母差保护在电站影响比较大,若有交流异常 应逐一检查装置的采样(包括角度)和极性。
问题4.线路纵差保护报通道告警
处理方法:应和供电局保护班确认,更换跳线或光缆的 芯号
五.输电线路纵联差动保护
采用光纤通道按相传送两侧电流量,本 身具有选相能力,不受系统振荡影响, 在非全相运行中有选择地快速动作, 不受TV断线影响。
由于带有制动特性,可防止区外故 障误动,不受失压影响,不反应负荷 电流,抗过渡电阻能力强。在短线路 上使用,不需要电容电流补偿功能。 在同杆并架线路上应用广泛。
母线大差比率差动用于判别母线区内和区外 故障,小差比率差动用于故障母线的选择
七.主变保护
1.变压器纵差保护 变压器的纵差保护是反应相间短路、高压侧
单相接地短路以及匝间短路的主保护,其 保护范围包括变压器套管及引出线。

继电保护的基本原理和保护

继电保护的基本原理和保护
还有根据电气设备的特点实现反应非电量的保护。 如瓦斯保护、过热保护等。
二、继电保护装置的组成
三、继电保护装置的类型
1、按被保护的对象分,有
输电线路的保护、发电机的保护、变压器的保护、 母线保护、电动机的保护等;
2、按保护原理分,有 电流保护、电压保护、距离保护、高频保护、差动 保护、方向保护等;
二)电力系统的运行状态
1、定义:电力系统在不同运行条件(如负荷水平、 出力配置、系统接线、故障等)下的系统与设备的工 作状况。 2、类型:有正常运行状态、不正常运行状态、故 障状态三种。 ◆正常运行状态——在此状态下,电力系统的有 功功率和无功功率处于平衡,各发电、输电和用电设 备均在规定的长期安全工作限额内运行,电压、频率 均在规定的范围内变化,电能质量合格。
电力系统继电保护绪

第一节 电力系统继电保护的作用
一、电力系统继电保护及自动装置的作用与任务
一)一次设备与二次设备的基本概念
一次设备:是指直接参与生产、输送和分配电能 的生产过程的高压电气设备。 它包括发电机(发电)、变压器(变换)、断 路器、隔离开关、自动开关、接触器、刀开关、母线 (汇集、重新分配电能) 、输电线路(输送电) 、 电力电缆、电抗器、电动机(用电)等。
二)迅速性——指继电保护装置动作尽可能快
凡是作用于断路器跳闸的保护均要求动作要迅 速。 要求快速动作的主要理由和必要性: ①可以提高电力系统并列运行的稳定性。
A B C
k
例:K点发生了三相短路故障时,A母线电压将大大下降到接近 于零,使A厂送不出负荷,发电机转速迅速升高。而B厂母线B 母线,则由于远离短路点,还有较高残压。如果保护动作时间 较长,A、B两厂的发电机转差增大,使系统发生振荡甚至解列。

微机继电保护的原理及发展

微机继电保护的原理及发展

保护 中 , 以上任 务则 是 由微机 系 统 中 的各 程 序运 行 来
实 现的 。结 构 上 的 差 异 造 成 了 微 机 保 护 的 优 越 性 :
( 1 ) 保 护性 能及可 靠性 大 幅提高 。 ( 2 ) 运行 维 护灵 活 、 便捷 , 定期 校 验 简 易化 。 ( 3 ) 各种 附加 功 能 获 取 更 加 便捷 。( 4 ) 各种保 护动 作正 确率 提 高 。( 5 ) 经 济性 强 。 但 同时微机 保 护也 存 在 一定 的局 限性 如 : 装 置 的硬 件 长 期性更新 换代 和装 置 的软 件不 可移植性 』 。
c a l ma i n e q u i p me n t p r o t e c t i o n.
Ke y wo r ds r e l a y; t h e c o mp u t e r p r o t e c t i o n; t r o u b l e s h o o t i n 的安全运行程度要 求越 来越 高,安全指 标成为 电力系统一项重要的性
指 标 ,微 机 保 护 的产 生与 应 用将 电力 安 全 提 升 到 一 个 新 的 高度 。 目前 , 国 内无 论是 输 电线 路 的保 护 、 变压 器保 护 或 其
他 电力主设 备保 护均有 实用的一套微机保护装置 ,以保 障电网的安全运行 。
关键词 继 电保 护 ;微 机 保 护 ;故 障 处 理 T M7 7 1 文献标识码 A 文 章编 号 1 0 0 7— 7 8 2 0 ( 2 0 1 3 ) 0 8—1 7 8— 0 3 中图分类号
Mi c r o pr o c e s s o r Li n e Pr o t e c t i o n Pr i n c i p l e s a n d i t s Fut u r e Tr e n d

139-电子教材-中低压线路保护程序逻辑

139-电子教材-中低压线路保护程序逻辑

第四章 输电线路保护程序逻辑原理在微机保护故障处理程序中,最主要的部分是保护逻辑程序。

各种不同的保护因功能和原理不相同,它们的逻辑程序也不同。

第一节 中低压线路保护程序逻辑原理一、方向元件软件原理三段方向电流保护的方向元件,可以由软压板选择正方向、反方向动作方式。

现以正方向来说明方向元件原理。

为了保证在各种相间短路故障时,方向元件能可靠而灵敏动作,微机保护的方向元件的“接线方式”仍然采用900接线方式。

例如A 相方向元件(称DA 元件)电流量rI 取a I ,电压量r U 取bc U ,电流量与电压量的相位差为r ϕ。

为了使方向元件具有最大灵敏度,类似模拟电路型方向保护,引入转移相量αj e K- ,α角为方向元件内角,并把αj e I - 称为A 相量,bcU 称为B 相量,则绝对值比较方向元件的正方向动作方程式为B A+≥B A - (4-1)当a I 落在最大灵敏线M 方向时,I K 相量落在bc U 方向附近,B A +具有最大值,B A-具有最小值,方向元件处于最灵敏状态。

相量图如图4-1所示。

由相量图4-1分析可见,若以r U 为基准相量,如要使式(4-1)表示的保护正方向元件临界动作,则A和B 相量相位差角αϕ-r 应为 90±,当满足下式关系时保护动作9090-≥-≥αϕr )90(90αϕα--≥≥+ r (4-2)即rI 落在图中动作区域内时,方向元件动作。

如果方向元件内角取 30,而35kV 线路阻抗角 60=L ϕ,显然上述方向元件在3090==-=αϕϕL r 时,相量A和B 方向相同,保护具有最大的灵敏度。

由于微机保护可利用软件十分方便地完成移相和相位比较,因此在微机保护中采用相位比较式方向元件要比绝对值比较方式简单得多。

在微机保护中相位比较式方向元件,就是利用采样计算结果,比较方向元件电流相量r I 和电压相量rU 的相位角,检查其相位差角是否在正方向的取值范围内。

微机型继电保护

微机型继电保护

3.能操作保护出口回路压板、动作信息的复归; 4.管理好打印机和打印报告,防止其卡纸和报告丢失,熟悉打印信息; 5.了解保护装置现有定值; 6.熟悉保护装置的运行环境要求。
检修基本要求
(一)检修时间 在装置无故障的情况下,建议6年检修,每两年可作一次小修。 (二)小修内容
1.检修电源; 2.输入通道检查; 3.检查定值; 4.出口检测; 5.插件完好性检查; 6.校正时钟。 (三)大检修基本内容 1.清洁处理; 2.检查端子; 3.保护静态测试; 4.小修中各项试验 5.保护联动试验。
(五)电源系统 通常这种电源是逆变电源,即将直流逆变为交流,再把交流整定为 微机系统所需的直流电压。 作用:它把水电站的强电系统的直流电源与微机的弱点系统电源完 全隔离开。 微机继电保护装置的抗干扰措施 可靠性是对继电保护的基本要求之一,它包括不误动和不拒动两方面。 除了保护的基本原理应满足可靠性要求,还有两个因素影响保护 的可靠性,这就是干扰和元件损坏,这些都不应该引起误动和拒 动。 为了防止由于干扰使保护的可靠性下降,微机保护通常在硬件及软件 方面采取以下防范:
电流差动保护
差 动 保 护 的 动 作 特 性
各相差动保护判据如下: 1、 当 Iop Icd ,且 Iop 3Icd 时,
Iop 0.6Ires 时满足动作条件; 2、 当 Iop 3Icd ,且 Iop I res 2Icd 时,满足动作条件。 I res 其中,分相差动电流 Iop IM I N , I M I N 分相制动电 I 流 ;I M 、 N 分别是任一相两侧的电流。
中性点直接接点系统的110KV输电线路一般可以配置三段式相间距 离及接地距离保护、四段式零序电流保护、双回路相继速动保护、 不对称故障相继速动保护、三相一次重合闸等保护。

微机继电保护硬件系统的构成与原理

微机继电保护硬件系统的构成与原理

图4 采样保持电路原理
它由一个电子模拟开关K,电容C以及两个阻抗变换 器组成。开关K受逻辑输入端电平控制。在高电平时 K闭合,此时,电路处于采样状态,C迅速充电或放 电到电容上电压等于该采样时刻的电压值(Ui)。K的 闭合时间应满足使C有足够的充电或放电时间即采样 时间。为了缩短采样时间,这里采用阻抗变换器l, 它在输入端呈现高阻抗,输出端呈现低阻抗,使C上 电压能迅速跟踪等于Ui值。K打开时,电容C上保持 住K打开瞬间的电压,电路处于保持状态。同样为了 提高保持能力,电路中亦采用了另一个阻抗变换器2, 它对C呈现高阻抗。采样保持的过供电1班 第四组
§1.1 微机保护装置硬件系统构成
微机保护装置硬件系统包含以下五个部分: (1)数据采集单元即模拟量输入系统。包括电压形成、模拟滤波、采样保 持、多路转换以及模数转换等功能块,完成将模拟输入量准确地转换为所需 的数字量的功能。 (2)数据处理单元即微机主系统。包括微处理器、只读存储器、随机存取 存储器以及定时器等.微处理器执行存放在只读存储器中的程序,对由数据 采集系统输入至随机存取存储器中的数据进行分析处理,以完成各种继电保 护的功能。 (3)数字量输入/输出接口即开关量输入输出系统。由若干并行接口、光电 隔离器及中间继电器等组成,以完成各种保护的出口跳闸、信号警报、外部 接点输入及人机对话等功能。 (4)通信接口。包括通信接口电路及接口以实现多机通信或联网。 (5) 电源。供给微处理器、数字电路、A/D转换芯片及继电器所需的电源。 保护装置的硬件示意图如下所示 :
图5 采样保持过程示意图 Tc为采样脉冲宽度,Ts为采样周期(或称采样间隔)。可见, 采样保持输出信号已经是离散化的模拟量,再经A/D转换后就成 为离散化的数字量。
图5所示采样间隔Ts的倒数称为采样频率fs。采 样频率的选择是微机保护硬件设计中的一个关 键问题。采样频率越高,要求微处理器的速度 越高。因为微机保护是一个实时系统,数据采 集系统以采样的频率不断地向微处理器输入数 据,微处理器必须要来得及在两个相邻采样间 隔时间Ts内处理完对每一组采样值所必须作的 各种操作和运算,否则,微处理器将跟不上实时 节拍而无法工作。相反,采样频率过低,将不 能真实反映被采样信号的情况。

微型机继电保护原理 第四章

微型机继电保护原理 第四章
i 2u1 − i 1u 2 i12 + i 2 2
(5—12) (5—13)
31
上面式子中用到了两个采样值的乘积,故称两点乘积算法。 两点乘积算法具有如下的特点:
1、 由于采用了两个隔
π 的采样值,算法本身所需的数据窗长度为工频 2
1 的 周期,时延(响应时间)为 5ms。 4
2、 此算法是基于正弦波基础上,因此要与带通滤波器配合使用。 3、 算法本身与采样频率无关,因此对采样频率无特殊要求,由于数据须先
经过数字滤波,故采样频率的选择由所用的滤波器来确定。
4、 算法本身无误差。 5、 算法中要进行较多的乘除法,运算工作量较大。
二、半周绝对值积分算法
半 周绝 对 值积 分算法的原理是依据一个正弦量在任意半个周期内绝对值 积分为一常数 S,且积分值 S 与积分起始点即与初相角α无关,因为图 5—3 中两部分的阴影面积显然是相等的。
28
矛盾,一般要根据实际需要进行协调以得到最合理的结果。在选用准确的数学 模型及合理的数据窗长度的前提下,计算精度与有限字长有关,其误差表现为 量化误差和舍入误差两个方面。为了减小量化误差,在保护中通常采用的 A/D 芯片至少是 12 位的,而减小舍入误差则要增加字长。 需要特别指出的是,算法与滤波是密切相关的,整个保护系统的模拟滤波、 数字滤波器完善的程度不同,所选用的算法也因之而异。另外,某些算法本身 就具有良好的数字滤波功能。
π +α0I) 2
(5—2)
(5—3)
式中α1I=ωn1TS+α0I 为 n1TS 时刻电流的相角,可以为任意值。将式(5—2) 和式(5—3)平方后相加,即得 2 I 2 = i1 2 + i 2 2 再将式(5—2)和(5—3)相除后得 tgα1I=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章
微机继电保护的
软件原理
4.1 微机保护主程序框图原理
微机保护装置接通电源(上电)或整组复归时,CPU响应复位中断,进入主程序入口。

4.1.1 初始化
“初始化”是指保护装置在上电或整组复归时首先执行的程序,它主要是对微机系统及其可编程扩展芯片的工作方式初始化、各种标志设置、参数的设置、整定值加载等,以便在后面的程序中按预定方案工作。

初始化包括初始化(一)、初始化(二)及数据采集系统初始化三个部分。

、变压器“△”侧出现零序电流则判为该侧断线;2、“
、 、 ,与零序电流,如出现差流则判断该侧a I b I c I 0
3I 01
3a b c d I I I I I ++->
4.4.3 优先级分配。

相关文档
最新文档