尺规作图三大几何难题教学提纲
3.3代数学与三大几何作图难题

合作探究三大几何作图问题的解决
探究二 倍立方体
活动1 瘟疫、祭坛与“倍立方体”史话
于是他们就带着这个问题去请教柏拉图,柏拉图 告诉他们,先知发布这个谕示,并不是因为他想得到 一个体积加倍的祭坛,而是因为他希望通过派给他们 这项工作,来责罚希腊人对于数学的忽视和对几何学 的轻视。
另一个故事说克里特王米诺斯为儿子修墓,命令 将原来设计的体积加倍,但仍保持立方的形状。
4
4
合作探究三大几何作图问题的解决
探究二 倍立方体
活动1 瘟疫、祭坛与“倍立方体”史话
关于倍立方问题的起源,有两个神话传说。第一 个是属于古希腊著名数学家、天文学家、哲学家埃拉 托塞尼(前276-前195)的。当先知得到神的 谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须 建造一个祭坛,体积是现有那个祭坛的两倍。工匠们 试图弄清怎样才能造成一个立方体,使其体积为另一 个体积的两倍。为此,他们陷入深深的困惑之中。
探究二 倍立方体
活动3 尝试非严格尺规作图解决“倍立方体”
丢克勒斯(Diocles,约180 B.C.)在他的光学著 作《论取火镜》中用蔓叶线解决了倍立方体问题。
合作探究三大几何作图问题的解决
探究三 化圆为方
活动1 囚徒的冥想与“化圆为方”史话
在古希腊有一位学者叫安纳萨格拉斯。他提出“太 阳是一个巨大的火球”。这种说法现在看来是正确的。 然而古希腊的人们更愿意相信神话故事中说的“太阳是 神灵阿波罗的化身”。因此他们认为安纳萨格拉斯亵渎 了神灵,将其投入狱中,判为死刑。
探究三 化圆为方
活动2 数学家“化圆为方”的多种尝试
尝试 穷竭法 安蒂丰认为这个内接正多边形将与圆重合。既然我们能
做出一个等于任何已知多边形的正方形,那么事实上我们就 能够做出等于一个圆的正方形。
高中生能听懂的有关“三大几何作图难题”的探讨

惊惶的雅典人,向太阳神阿波罗祈祷消除灾难。太阳神指示:
果设原来香案的棱长为1,新香案的棱长就必须是2的立方根。
非尺规作图“倍立方体”
柏拉图先画了两条互相垂直相交于O点的直线m和l,在l 上截取线段OC=1;在m上截取线段OD=2。再把两个 木匠用的角尺,像下图那样放在上面,使两把角尺的直 角点A、B,分别在两条直线上,并且另外两条臂分别通 过C、D两点(如图):
O R A R V B 3R 3R 底面半径:R
1 AVB AOB 3
母线:3R
A
B
非尺规作图“三等分角” B O
O
A
B A
4 x 3 3 x a( , a为已知数)
没有有理根
三大几何问题(3):倍立方体
作一个立方体,使它的体积是已知立方体的体积 的两倍
非尺规作图“倍立方体”
环,把线轴按在一张纸上,并在小环内套一支铅
笔,用铅笔拉紧线,并保持线
在拉紧状态,然后在纸上画出
由线轴松开的线的轨迹,就得 到了阿基米德螺线。
阿基米德的非尺规作图“化圆为方”
阿基米德螺线化圆为方
达芬奇的非尺规作图“化圆为方”
达芬奇式化圆为方
意大利著名艺术大师达芬奇利用巧妙方法来解决 化圆为方.
“化圆为方”的本质
(4)若已知直线和一已知圆相交,可求其交点。
3.尺规作图的五种基本图形
(1)作一个角等于已知角 (2)平分已知角
(3)作已知直线的垂直平分线
(4)作一条线段等于已知线段 (5)过一点作已知直线的垂线
4.三大几何问题
(1)化圆为方
求作一正方形,使其面积等于一已知圆
(2)三等分角
分任意角为三等分
(3)倍立方体
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明是高中数学中的重要内容,而尺规作图是几何证明中不可或缺的方法之一。
尺规作图是通过使用尺规等工具,将已知条件用线段长度的比来表示,从而得到所需的未知量与如何构造的方法。
下面我们将详细介绍几何证明尺规作图的解题规范与解题技巧。
一、解题规范1. 了解题目要求在做题之前,先要看清题目要求,明确自己要证明的结论与所给条件。
了解题目要求可以帮助我们更好地把握证明的方向和方法。
2. 审题慎思细心审题可以发现题目中隐藏的一些线索,例如特殊的几何图形、相似三角形、等分线段等,这些都是解决尺规作图问题的有力工具。
审题还可以发现题目中的难点和易错点,帮助我们专注于解决问题的关键。
3. 掌握几何知识尺规作图是几何证明的一种方法,因此掌握几何知识是必不可少的。
在解题过程中,我们需要运用一些基本的几何定理和定向线段的概念,在能充分运用几何知识才能更好地解决问题。
4. 认真细致在做尺规作图的题目时,需要认真细致地推敲每一步,因为一个细节的错误会导致整个证明的失败。
要尽可能地避免粗心大意和漫不经心,特别是在标记线段、角度时,要用尽一切手段保证准确无误。
5. 多角度考虑尺规作图的证明方法有时并不唯一,有些题目可能有多种可能性,因此需要多角度思考。
可以考虑不同的角度进行证明,或者换一种方式来描述线段长度的比,寻找解题的突破口。
二、解题技巧1. 正确标记相似三角形相似三角形是尺规作图中常用的几何单元,正确标记相似三角形对于解决问题非常关键。
在标记相似三角形时,可以根据题目给定的线段长度比例来确定线段的长度关系,从而帮助我们找到相应的相似三角形。
2. 确定相应角和高线在寻找尺规作图的策略时,需要特别关注相应角和高线。
相应角是指两个三角形中相对应的角度相等,高线则是指垂直于底边的线段。
通过找到相应角和高线,可以帮助我们更好地利用相似三角形求解问题。
3. 使用中垂线和平分线中垂线和平分线可以将一个线段等分成两个相等的线段,在解决尺规作图问题时非常有用。
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明是几何学中重要的一部分,它要求使用严密的逻辑和几何性质来证明一个命题的正确性。
而尺规作图是解决几何证明问题的常用方法之一。
下面将介绍几何证明尺规作图的解题规范与解题技巧。
一、解题规范1. 我们需要明确题目的要求和条件,仔细阅读题目中给出的已知条件,并且画出所给图形。
2. 我们需要明确证明的结论,推理过程需要围绕这个结论展开。
有时候,在解题过程中,我们需要找到并证明一些中间结论。
中间结论可以是题目本身给出的,也可以是通过推理得到的。
3. 然后,我们需要分析题目给出的条件和结论,寻找其中的几何性质和特点。
这需要对几何定理和公理有一定的了解,并且有一定的几何直觉。
4. 接下来,我们可以运用几何性质和特点来进行推理和证明。
在推理过程中,我们可以使用尺规作图来构造一些新的几何图形,并且通过观察和比较这些图形的性质来推理得到结论。
5. 在推理过程中,我们需要使用严密的逻辑,遵循正确的证明格式和证明步骤。
我们需要使用明确的几何术语和符号,以确保我们的推理过程清晰和准确。
6. 我们需要总结和归纳得到的结论,并且验证这些结论是否满足题目的要求。
我们需要检查我们的证明过程,确保没有漏掉任何重要的步骤或者推理。
二、解题技巧1. 运用已知条件构造辅助线。
有时候,题目给出的条件可能不足以直接推导出结论,这时候我们可以构造一些辅助线来帮助我们解决问题。
辅助线能够将原来的复杂问题简化为若干个简单的几何问题。
2. 利用相似三角形和比例关系。
在几何证明中,相似三角形和比例关系是经常用到的性质。
通过观察图形和条件,我们可以发现一些相似的三角形和长度比例,从而得到一些关于角度和长度的结论。
4. 利用尺规作图。
尺规作图是解决几何证明问题的常用方法之一。
通过使用尺子和圆规来构造一些新的几何图形,我们可以发现一些几何性质和关系,从而得到一些结论。
5. 利用反证法。
有时候,我们无法直接得到结论,但是我们可以假设结论不成立,然后通过逻辑推理来得出一个矛盾,从而证明结论是正确的。
最新尺规作图三大几何难题

尺规作图三大几何难题安溪六中校本课程之数学探秘尺规作图三大几何问题一、教学目标1.让学生了解尺规作图三大几何问题如何产生的?2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。
3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值?二、问题背景传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
另外两个著名问题是三等分任意角和化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。
它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。
但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。
这一过程中隐含了近代代数学的思想。
经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是“不可能用尺规完成的作图题”。
认识到有些事情确实是不可能的,这是数学思想的一大飞跃。
然而,一旦改变了作图的条件,问题则就会变成另外的样子。
比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。
数学家们在这些问题上又演绎出很多故事。
直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。
或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明尺规作图是几何学中非常重要的一部分,它涉及到数学的基本概念和推理方法。
在进行几何证明尺规作图时,正确的解题规范和解题技巧能够帮助我们更快更准确地完成题目,提高解题效率。
下面我们将详细介绍几何证明尺规作图的解题规范和解题技巧。
一、解题规范1. 熟悉基本概念在进行几何证明尺规作图时,首先要对一些基本概念有很好的理解和掌握,比如点、直线、角度、相似等概念,这些都是尺规作图的基础。
只有熟悉了这些基本概念,才能更好地理解和解决题目。
2. 仔细阅读题目在解题之前一定要仔细阅读题目,理解题目的要求,明确对于需要证明的结论,这样有助于我们在解题时有一个清晰的方向,不至于偏离主题。
3. 注意观察图形在题目给出的图形中,要仔细观察各个线段的长度、各个角的大小,有时候可以从图形中找到一些隐藏的规律或者结论,对于解题有很大的帮助。
4. 使用尺规作图工具在进行几何证明尺规作图时,一定要使用尺规作图工具,比如直尺和圆规。
尤其是在证明中使用尺规作图,很多结论需要通过作图来证明,合理地使用尺规作图工具可以让证明更加直观清晰。
5. 逻辑清晰,步骤完整在进行证明时,一定要逻辑清晰,步骤完整。
要遵循证明结构的一般原则,依次呈现问题、设计步骤、进行操作、推理论证等环节。
这样才能使证明过程严谨、完整。
6. 思维灵活在解题过程中,要保持思维的灵活性,有时候可能需要借助一些非常规的方法来解决问题。
不要被题目所限制,要尝试不同的思路,寻找最优解。
二、解题技巧1. 尺规作图基本技巧使用尺规作图工具时,要注意准确度和精确度,画直线要用直尺,画弧线要用圆规;尺规作图的基本几何图形如平行线、垂直线、等腰三角形、全等三角形等的作图方法必须熟练掌握。
2. 利用已知条件在做几何证明尺规作图题目时,要充分利用已知条件,通过对已知条件进行分析,灵活地运用几何知识和尺规作图工具完成作图和证明。
3. 利用图形的对称性对称性是几何图形中非常重要的性质,利用图形的对称性可以简化作图和证明的过程,缩短解题时间。
华师大版数学八年级上册《阅读材料 由尺规作图产生的三大难题》说课稿3

华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》说课稿3一. 教材分析华师大版数学八年级上册《阅读材料由尺规作图产生的三大难题》是一节阅读材料课,通过介绍尺规作图产生的三大难题,让学生了解数学史上的重要事件,提高学生学习数学的兴趣,培养学生数学思维能力。
本节课的内容包括:了解尺规作图的定义,掌握尺规作图的基本方法,了解三大难题及其历史背景,了解三大难题的解决过程及对数学发展的影响。
二. 学情分析八年级的学生已经掌握了初中数学的基本知识,对几何图形的认识有一定的基础。
但是,对于尺规作图的定义和方法,以及尺规作图产生的三大难题的历史背景和解决过程,学生可能比较陌生。
因此,在教学过程中,需要引导学生逐步理解尺规作图的概念,了解三大难题的产生背景,以及感受数学发展的历程。
三. 说教学目标1.了解尺规作图的定义和基本方法。
2.了解尺规作图产生的三大难题及其历史背景。
3.了解三大难题的解决过程及对数学发展的影响。
4.培养学生的数学思维能力,提高学生学习数学的兴趣。
四. 说教学重难点1.尺规作图的定义和基本方法。
2.尺规作图产生的三大难题及其历史背景。
3.三大难题的解决过程及对数学发展的影响。
五. 说教学方法与手段本节课采用讲授法、阅读法、讨论法等多种教学方法。
在讲解尺规作图的定义和方法时,采用讲授法,引导学生掌握基本概念;在介绍三大难题及其历史背景时,采用阅读法,让学生自主阅读教材,了解数学发展历程;在讲解三大难题的解决过程时,采用讨论法,引导学生分组讨论,共同探讨问题的解决方法。
六. 说教学过程1.导入:引导学生回顾已学的几何知识,提问:“你们知道什么是尺规作图吗?”让学生复习旧知识,为新课的学习做好铺垫。
2.讲解尺规作图的定义和方法:详细讲解尺规作图的定义,通过示例让学生掌握尺规作图的基本方法。
3.阅读教材:让学生自主阅读教材,了解尺规作图产生的三大难题及其历史背景。
4.讲解三大难题的解决过程:针对三大难题,分别讲解其解决过程,让学生了解数学发展的历程。
几何证明尺规作图的解题规范与解题技巧

几何证明尺规作图的解题规范与解题技巧几何证明中,尺规作图是一种重要的解题方法,它可以帮助我们构造出特定形状的图形,从而解决几何问题。
针对尺规作图的解题规范与解题技巧,主要包括以下几个方面:1. 确定所需构造的图形在使用尺规作图解决几何问题时,首先需要明确需要构造的图形是什么,这样才能有针对性地进行尺规作图。
在题目中找到关键信息,明确需要构造的线段、角度、三角形等特定图形。
2. 了解尺规作图的基本操作掌握好尺规作图的基本操作是解题的前提。
尺规作图的基本操作包括画线段、画角度、画垂直线、画平行线等操作。
熟练掌握这些基本操作,可以帮助我们在解题过程中快速准确地构造所需的图形。
3. 选择合适的基本图形在进行尺规作图时,通常可以利用一些基本图形来进行构造。
利用已知的线段和角度构造等腰三角形、直角三角形等。
在解题过程中,需要灵活选择合适的基本图形进行构造,从而达到解题的目的。
4. 根据已知条件构造图形在解题过程中,首先根据已知条件进行图形的初步构造。
根据已知线段的长度、已知角度的大小等条件,可以先进行基本的图形构造,从而为后续的解题过程奠定基础。
5. 利用尺规作图的特点进行推理在进行尺规作图的解题过程中,可以利用尺规作图的一些特点进行推理。
利用垂直角、平行线的性质进行证明,推导出所需的结论。
在解题过程中,需要善于利用尺规作图的特点进行推理,从而得到解题的关键步骤。
6. 注意构造的准确性在进行尺规作图时,需要注意构造的准确性。
尤其是在画线段、画角度的过程中,要保持尺规的准确度,避免出现误差。
只有构造准确的图形,才能保证解题的正确性。
7. 熟练掌握尺规作图的技巧尺规作图是一门技术活,需要通过大量的练习来提高自己的技巧。
熟练掌握尺规作图的技巧,可以在解题过程中更加得心应手,提高解题的效率和准确性。
尺规作图是解决几何问题的重要方法,通过遵循解题规范和掌握解题技巧,可以更加高效地应用尺规作图解决各类几何问题。
希望以上的几何验题规范与解题技巧对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图三大几何难
题
安溪六中校本课程之数学探秘
尺规作图三大几何问题
一、教学目标
1.让学生了解尺规作图三大几何问题如何产生的?
2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。
3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值?
二、问题背景
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
另外两个著名问题是三等分任意角和化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。
它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。
但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。
这一过程中隐含了近代代数学的思想。
经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是
“不可能用尺规完成的作图题”。
认识到有些事情确实是不可能的,这是数学思想的一大飞跃。
然而,一旦改变了作图的条件,问题则就会变成另外的样子。
比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。
数学家们在这些问题上又演绎出很多故事。
直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。
或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:
1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
2.化圆为方,即作一正方形,使其与一给定的圆面积相等。
3.三等分角,即分一个给定的任意角为三个相等的部分。
三、问题探秘
1.立方倍积
关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。
”由此可见这神是很喜欢数学的。
居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。
结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。
」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟
疫仍不见消灭。
人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。
」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。
由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。
而由于这一个传说,立方倍积问题也就被称为提洛斯问题。
2.化圆为方
方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。
有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。
由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr2与已知圆的面积相等。
由这个直角三角形不难作出同面积的正方形来。
但是如何作这直角三角形的边。
即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。
3.三等分角
三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。
但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的。
纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。
二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。
4.三大几何难题的结果及其意义
化圆为方,立方倍积和三等分角这三大古希腊几何作图难题的结果又是如何被证明的呢?带着问题让我们来探究一下。
(1)化圆为方问题的结果
我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。
实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。
我们假设圆的半径为单位1,那么正方形的边长就是根号π。
直到1882年,化圆为方的问题才最终有了合理的答案。
德国数学家林德曼(Lindemann,1852~1939)在这一年成功地证明了圆周率π=3.1415926......是超越数,并且尺规作图是不可能作出超越数来,所以用尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。
德国数学家林德曼
(2)倍立方积和三等分角问题的结果
直到1830年,18岁的法国数学家伽罗华首创了后来被命名为“伽罗华理论” 理论,该理论能够证明倍立方积和三等分角问题都是尺规作图不能做到的问题。
1837年,法国数学家汪策尔(Wantzel,1814~1848)终于给出三等分角和倍立方积的问题都是尺规作图不可能问题的证明。
(3)三大几何作图难题的意义
虽然三大几何作图难题都被证明是不可能由尺规作图的方式做到的,但是为了解决这些问题,数学家们进行了前赴后继的探索,最后得到了不少新的成果,发现了许多新的方法。
同时,它反映了数学作为一门科学,它是一片浩瀚深邃的海洋,仍有许多未知的谜底等待这我们去发现。
四、网络搜索与争论
搜索网络发现有人会用尺规作图三等分角:
争论1:
不是吧!!“三等分角”的命题已经被数学家伽罗瓦证明是不可能的啊。
他用的是《近世代数》和《群论》。
你竟然能做出来。
我看看你的过程,冒昧的先说一句,我觉得应该有逻辑漏洞。
楼主听了别生气,大家一起探讨。
争论2:
看了半天没看懂你的过程,最好一步一张图啊。
而且最后也没给出证明,说明为什么这样就是三等分啊。
建议你还是别多想这个问题了,你要真能做出来,就是推翻整个《近世代数》理论,诺贝尔数学奖肯定没问题。
争论3:
靠,还说很多人做出来,真是荒唐。
我估计那些人就学了点几何,然后自己拿了张纸在那瞎画,先看看《近世代数》和伽罗瓦的证明再说吧。
不要做井底之蛙,夜郎自大!
争论4:你的看法是什么?。