高一数学必修1第一章1-3-1-2

合集下载

高中数学课本全套pdf

高中数学课本全套pdf

高中数学课本全套pdf篇一:人教版必修1高一数学全套打包,150页)人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生,在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而1不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程x2?1?0的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

2对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

新人教版高一数学必修一目录

新人教版高一数学必修一目录

新人教版高一数学必修一目录
一、第一章函数
1. 基本概念
2. 函数的表示法
3. 函数的图象
4. 函数的性质
二、第二章曲线
1. 曲线的表示法
2. 曲线的切线
3. 兰联形曲线
4. 椭圆曲线
5. 双曲线
三、第三章相关与回归
1. 相关系数
2. 线性回归与回归直线
四、第四章初等函数
1. 指定法求方程的根
2. 二次函数及加减乘除法
3. 牛顿迭代法求方程的根
五、第五章指数函数
1. 指数函数的基本性质
2. 常用指数函数
3. 对数函数及其应用
六、第六章对数函数及其应用
1. 对数函数的基本性质
2. 对数函数及其应用
七、第七章几何极限
1. 无穷小分析法
2. 无穷量极限
3. 二元函数极限
4. 级数的极限
八、第八章函数的微分
1. 导数的概念
2. 定义型微分
3. 导数的性质及应用
九、第九章函数的积分
1. 定积分及其应用问题
2. 微积分的应用ii
3. 曲线的积分性质。

人教版高一数学必修一至必修五教材目录

人教版高一数学必修一至必修五教材目录

必修一、二、三、四、五章节内容必修一必修四第一章集合与函数的概念第一章三角函数1.1 集合 1.1任意角和弧度制1.2 函数及其表示 1.2任意角的三角函数1.3 函数的基本性质 1.3三角函数的诱导公式第二章基本初等函数 1.4三角函数的图像与性质2.1 指数函数 1.5函数y=Asin(?x+?)2.2对数函数 1.6 三角函数模型的简单应用2.3 幂函数第二章平面向量第三章函数的应用 2.1平面向量的实际背景及基本概念3.1函数与方程 2.2平面向量的线性运算3.2 函数模型及其应用 2.3平面向量的基本定理及坐标表必修五 2.4 平面向量的数量积第一章解三角形 2.5 平面向量应用举例1.1 正弦定理和余弦定理第三章三角恒等变换1.2 应用举例 3.1 两角和与差的正弦、余弦第二章数列 3.2 简单的三角恒等变换2.1 数列的概念与简单表示方法必修二2.2 等差数列第一章空间几何体2.3等差数列的前n项和 1.1 空间几何体的结构2.4 等比数列 1.2 空间几何体的三视图和直观图2.5 等比数列前n项和 1.3 空间体的表面积与体积第三章不等式第二章点、直线、平面间的关系3.1 不等关系与不等式 2.1空间点、直线、平面之间的位3.2一元一次不等式及其解法 2.2 直线、平面平行的判定及其性质3.3 二元一次不等式(组)及其解法 2.3 直线、平面垂直的判定及其性质3.4基本不等式第三章直线与方程3.1直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用。

高一数学必修1-2知识点总结

高一数学必修1-2知识点总结

高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A =A ∅=B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b<≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤; (2)存在0x I∈,使得0()f x M=.那么,我们称M是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符表示;当n 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关.(0,)+∞上p,q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xfxfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =. 高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结高一数学必修1第一章主要包括三个部分:集合论、函数与映射、数列与数列的极限。

下面将对这三个部分进行总结。

一、集合论1. 集合的概念:集合是由一些确定的事物(称为元素)构成的整体。

2. 集合的表示方法:列举法、描述法和图示法。

3. 集合的运算:并集、交集、补集、差集、元素的判断和包含关系。

4. 集合的性质:幂集、集合的基数和集合的运算律。

二、函数与映射1. 函数的定义与表示:函数是一个对应关系,每个输入都有唯一的输出。

2. 映射的定义与表示:映射是一个集合到另一个集合的对应关系。

3. 函数的性质:定义域、值域、单调性、奇偶性、判定性质等。

4. 反函数与复合函数:反函数是一个函数的逆过程,复合函数是两个函数的结合。

三、数列与数列的极限1. 数列的概念:数列是按照一定规律排列的一组数。

2. 等差数列与等比数列:等差数列是指每一项与前一项之差都相等的数列,等比数列是指每一项与前一项之比都相等的数列。

3. 数列的通项公式与递推公式:通项公式是通过数列项的位置计算项的值,递推公式是通过前一项计算后一项的值。

4. 数列的极限:数列极限是数列中项的无限逼近某个数的过程,包括数列的有界性、极限存在与不存在以及数列极限的计算。

综上所述,高一数学必修1第一章主要是基础的数学知识点。

通过学习集合论、函数与映射以及数列与数列的极限,可以奠定后续数学学习的基础。

这些知识点在高中数学中会贯穿始终,为后续的学习打下坚实的基础。

因此,学生应该重视这些知识点的学习,理解其概念、运算法则,尽量多做相关习题,从而提高数学的综合素养和解题能力。

同时,也应注重数学的实际运用,将所学的数学知识应用到现实生活中,培养数学思维和解决问题的能力。

高一数学1至3章知识点

高一数学1至3章知识点

高一数学1至3章知识点引言:数学作为一门学科,对我们的生活有着重要的影响。

高一数学是一门重要的学科,涵盖了很多基础知识点,这些知识点对于我们后续学习和实际应用都非常重要。

本文将重点介绍高一数学1至3章的知识点。

第一章:集合集合是数学中的重要概念,是由一些确定的对象组成的整体。

在高一数学中,我们学习了集合的表示方法、集合的运算以及集合的关系。

首先,我们需要了解集合的表示方法。

集合可以用描述法或列举法来表示。

在描述法中,我们使用条件语句来描述集合中的元素的特征。

例如,{x | x > 1}表示大于1的整数集合。

在列举法中,我们直接列出集合中的元素。

例如,{1, 2, 3}表示由整数1、2、3组成的集合。

其次,我们学习了集合的运算。

常见的集合运算有并集、交集、差集和补集。

并集表示两个集合中的所有元素的集合,交集表示同时属于两个集合的元素的集合,差集表示属于一个集合但不属于另一个集合的元素的集合,补集表示在某个特定集合中的所有元素之外的元素的集合。

通过学习集合的运算,我们可以更好地理解集合之间的关系。

最后,我们研究了集合的关系。

常见的集合关系有等价关系和包含关系。

等价关系是指集合中的元素在某种特定情况下具有相同的性质。

例如,如果A、B、C都是集合S的子集,那么我们可以说A、B、C之间存在等价关系。

包含关系是指一个集合包含另一个集合的所有元素。

例如,如果集合A包含集合B的所有元素,那么我们可以说A包含B。

第二章:函数函数是数学中另一个重要的概念,描述了不同元素之间的关系。

在高一数学中,我们学习了函数的定义、函数的性质以及函数的图像。

首先,我们需要了解函数的定义。

函数是一种特殊的关系,它使得一个集合中的每个元素都和另一个集合中的唯一一个元素相关联。

函数通常用符号f来表示,其中x是自变量,y是函数的值。

我们可以使用函数关系图来可视化函数的定义和性质。

其次,我们学习了函数的性质。

函数有各种性质,例如定义域、值域、单调性、奇偶性等。

高一数学必修1一二章知识点总结

高一数学必修1一二章知识点总结

高一数学必修1 各章知识点总结第一章集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}(3) 元素的无序性: 如:{a,b,c}和{a,c,b} 是表示同一个集合3. 集合的表示:{ ⋯} 如:{我校的篮球队员},{太平洋,大西洋,印度洋, 北冰洋}(1) 用拉丁字母表示集合:A={ 我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集N* 或N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c ⋯⋯}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn 图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x 2= -5} 二、集合间的基本关系1.“包含”关系—子集注意:A B有两种可能( 1)A 是B的一部分,;(2)A 与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5 ≥5 ,且5≤5,则5=5)实例:设A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。

A A②真子集:如果 A B,且 A B 那就说集合 A 是集合 B 的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果 A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学必修1第一章1-1-3-2

高一数学必修1第一章1-1-3-2

第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
(4)已知 U={x|x 是实数},Q={x|x 是有理数},则∁UQ= ________. (5)已知 U=R,A={x|x>15},则∁UA=________. (6)已知全集 U={1,2,3,4,5},A={1,2,3},B={2,3,4},则 ∁U(A∩B)=( A.{2,3} C.{4,5} ) B.{1,4,5} D.{1,5}
[分析]
由补集的意义可知 A 与∁UA 都是 U 的子集, A 且
与∁UA 的元素互不相同,从而列式求解.
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
[ 解 析 ]
由 已 知 , 得
|a+1|=3, 2 a +2a-3=a+3,

|a+1|=a2+2a-3, a+3=3.
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
自主预习 1.全集 一般地,如果一个集合含有我们所研究问题中所涉及的 所有元素,那么就称这个集合为 全集 ,用字母 U 表示.
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
2.补集 如果 A 是全集 U 的一个子集, U 中所有不属于 A 的元 由 素构成的集合,叫做 A 在 U 中的补集,记作∁UA.用描述法表 .. 示为 {x|x∈U 且 x∉A} ,用 Venn 图表示为 .
第一章
1.1
1.1.3
第1课时
成才之路 ·数学 ·人教A版 · 必修1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
(5)函数的最大(小)值,实际上是函数图象的最高(低)点的 纵坐标,因而借助函数图象的直观性,可得出函数的最值.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
通过以上所学,完成下列练习. (1)函数 y=2x-1 在[-2,3]上的最小值为________,最大 值为________. 1 (2)函数 y= x 在[2,3]上的最小值为________,最大值为 ________;在[-3,-2]上的最小值为________,最大值为 ________.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
自主预习 问题 1:观察下图所示的函数图象,有何特征?
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
探究:图(1)函数 y=-x2-2x 的图象有最高点 A,没有最 低点;图(2)函数 y=-2x+1,x∈(-1,+∞)的图象没有最高 点,也没有最低点;图(3)函数 y=x2,x∈(-1,1)的图象无最 1 高点,有最低点;图(4)函数 y= x的图象没有最高点,也没有 最低点;图(5)函数 y=x2-2x,x∈[0,4]的图象有最高点 E,最 低点 D.
命题方向 1 利用图象法求函数最值
利用图象法求函数最值的方法 (1)利用函数图象求函数最值是求函数最值的常用方 法.这种方法以函数最值的几何意义为依据,对图象易作出 的函数求最值较常用.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
(2)图象法求最值的一般步骤是:
第一章
1.3
[答案] (1)× (2)√
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
2.填空: (1)函数 y=|x|的单调增区间为
[0,+∞).
(2)函数 y=ax+b(a≠0)的单调区间为 (-∞,+∞) ;函 数 y=(a2-1)x 为减函数,则 a 的取值范围是 (-1,1). (3)函数 y=-x2+bx+c 在(-∞,2]上为增函数,则 b 的 取值范围是
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
x-1 (2012· 包头高一检测)已知函数 f(x)= , x+2 (1)求证:f(x)在[3,5]上为增函数; (2)求 f(x)在[3,5]上的最大、小值.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[答案] 3 0 -4
(1)-5 0
5
1 (2) 3
1 2
1 - 2
1 - 3
(3)-3
5

第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
思路方法技巧
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[解析]
观察函数图象可以知道, 图象上位置最高的点是
(3,3),最低的点是(-1.5,-2),所以函数 y=f(x)当 x=3 时取 得最大值即 ymax=3; 当 x=-1.5 时取得最小值即 ymin=-2.
第一章
Байду номын сангаас
1.3
1.3.1 第2课时
成才之路· 数学
人教A版 ·必修1
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修1
第一章
集合与函数概念
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3 函数的基本性质
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3.1 单调性与最大(小)值
课前自主预习
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
温故知新 1.判断正误: (1)若函数 f(x)在区间(a,b)和(c,d)上均为增函数,则函 数 f(x)在区间(a,b)∪(c,d)上也是增函数. (2)若函数 f(x)和 g(x)在各自的定义域上均为增函数, f(x) 则 +g(x)在它们定义域的交集(非空)上是增函数.
新课引入 某小卖部从批发市场批发某种笔芯, 进价是每支 0.35 元, 以每支 0.5 元的价格销售,卖不掉的笔芯还可以每支 0.08 元 的价格退回批发市场.在一个月(30 天)中,有 20 天每天可以 卖出 400 支,其余 10 天每天只能卖出 250 支. 假设每天从批发市场买进的笔芯的数量相同,则每天进 货多少支才能使每月所获得的利润最大?最大利润是多少?
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[解析]
设每天从批发部买进笔芯 x 支,250≤x≤400,
每月的纯收入为 y 元, y=0.3x+1 050, 则 x∈[250,400]. 易解: 当每天进货 400 支时,每月所获得的利润最大,最大利润是 1 170 元.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
总结:(1)最大值的概念: 一般地,设函数 y=f(x)的定义域为 I,如果存在实数 M 满足:①对于任意的 x∈I,都有 f(x)≤M ;②存在 x0∈I,
使得 f(x0)=M .那么,称 M 是函数 y=f(x)的最大值. (2)最小值的概念: 设函数 y=f(x)的定义域为 I,如果存在实数 M 满足:① 对于任意的 x∈I, 都有 f(x)≥M ; ②存在 x0∈I, 使得 f(x0)=M . 那么,称 M 是函数 y=f(x)的最小值.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
【归纳提升】 (1)M 首先是一个函数值,它是值域的一 个元素.如 f(x)=-x2(x∈R)的最大值为 0,有 f(0)=0,注意 对定义②中“存在”一词的理解. (2)对于定义域内的全部元素,都有 f(x)≤M 成立,“任 意”是说对每一个值都必须满足不等式.
[4,+∞).
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
3.从函数 f(x)=x2 的图象上还可看出,当 x=0 时,y=0 是所有函数值中 最小值. 而对于 f(x)=-x2 来说, x=0 时, y=0 是所有函数值中 最大值.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章 1.3 1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
∴x1-x2<0,x1+2>0,x2+2>0, ∴f(x1)-f(x2)<0,∴f(x1)<f(x2), x-1 ∴函数 f(x)= 在 x∈[3,5]上为增函数. x+2 2 (2)由(1)知,当 x=3 时,函数 f(x)取得最小值为 f(x)=5, 4 当 x=5 时,函数 f(x)取得最大值为 f(5)= . 7
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
第一章
第 2 课时 函数的最值
第一章 集合与函数概念
成才之路 ·数学 ·人教A版 · 必修1
课前自主预习
探索延拓创新 方法警示探究
思路方法技巧
课堂基础巩固
建模应用引路
课后强化作业
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[解析]
设 1≤x1<x2≤2,
4 4 即 f(x1)-f(x2)=x1+x -x2-x 1 2 4x2-x1 =(x1-x2)+ x x 1 2 x1x2-4 =(x1-x2) x1x2 ∵1≤x1<x2≤2, ∴x1-x2<0,1<x1x2<4, ∴x1x2-4<0,x1x2>0,
成才之路 ·数学 ·人教A版 · 必修1
作出函数 f(x)=|x-3|+ x2+6x+9的图象,并说明该函 数的最值情况.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[解析] -2x,x≤-3 原函数可化为 f(x)=|x-3|+|x+3|=6,-3<x≤3, 2x,x>3 图象如图: 由图象可知,函数有最小值为 6,无最大值.
成才之路 ·数学 ·人教A版 · 必修1
【互动探究】 本例中,若所给区间是[1,4],则函数最值 又是什么?
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
[解析]
按例题的证明方法,易证 f(x)在区间[2,4]上是增
函数,又函数在[1,2]上是减函数,所以函数 f(x)的最小值是 4. 又 f(4)=5,所以函数的最大值是 5.
第一章
1.3
1.3.1 第2课时
成才之路 ·数学 ·人教A版 · 必修1
相关文档
最新文档