高一数学必修1第一章集合全章教案
高一数学第一章“集合”教案

【导语】青春是⼀场远⾏,回不去了。
青春是⼀场相逢,忘不掉了。
但青春却留给我们最宝贵的友情。
友情其实很简单,只要那么⼀声简短的问候、⼀句轻轻的谅解、⼀份淡淡的惦记,就⾜矣。
当我们在毕业季痛哭流涕地说出再见之后,请不要让再见成了再也不见。
这篇《⾼⼀数学第⼀章“集合”教案》是⾼⼀频道为你整理的,希望你喜欢! 【篇⼀】 ⼀、⽬的要求 1.通过本章的引⾔,使学⽣初步了解本章所研究的问题是集合与简易逻辑的有关知识,并认识到⽤数学解决实际问题离不开集合与逻辑的知识。
2.在⼩学与初中的基础上,结合实例,初步理解集合的概念,并知道常⽤数集及其记法。
3.从集合及其元素的概念出发,初步了解属于关系的意义。
⼆、内容分析 1.集合是中学数学的⼀个重要的基本概念。
在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题。
例如,在代数中⽤到的有数集、解集等;在⼏何中⽤到的有点集。
⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具。
这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础。
例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑。
2.1.1节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦。
3.这节课主要学习全章的引⾔和集合的基本概念。
学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义。
本节课的教学重点是集合的基本概念。
4.在初中⼏何中,点、直线、平⾯等概念都是原始的、不定义的概念,类似地,集合则是集合论中的原始的、不定义的概念。
人教版高一数学必修1集合的教案

高一数学必修1的教案人教版高一数学必修1集合的教案作为一名优秀的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
那么优秀的教案是什么样的呢?下面是小编收集整理的人教版高一数学必修1集合的教案,仅供参考,大家一起来看看吧。
人教版高一数学必修1集合的教案1教学目标:1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:集合概念、性质教学难点:集合概念的理解教学过程:1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集)。
元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x—2> x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为??为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的'关系:隶属关系元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。
如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??元素通常用小写的拉丁字母表示,如a、b、c、p、q??2、“∈”的开口方向,不能把a∈A颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作NXX或N+ 。
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。
高中数学 第一章 集合 1.2.1 子集真子集教案 苏教版必修1-苏教版高一必修1数学教案

§1.2.1 子集、真子集教学目标⒈了解集合之间包含关系的意义⒉ 理解子集、真子集的概念教学重点子集含义,学会使用Venn 图来表示集合之间的关系,由集合之间的包含关系求参数的取值范围。
教学难点子集与真子集的含义四、教学过程(一)、创设情境,引入新课观察以下几个例子,看看两集合间有什么关系⑴A={1,2,3},B={1,2,3,4,5}⑵设A 为某校高一(6)班男生全体组成的集合,B 是这个班学生全体组成的集合⑶E={2,4,6},F={6,4,2}(二)、推进新课⑴子集: ,记为⑵子集的性质1. ;2.思考:B A ⊆与A B ⊆能否同时成立?(3)真子集: ,记为⑷真子集性质1. ;2.⑸区分元素与集合,集合与集合的关系、预习巩固见必修一教材第9页练习1,第10页练习4、典型例题题型一 子集的有关概念1.⑴写出集合{}b a ,的所有子集及其真子集;⑵写出集合{}c b a ,,的所有子集及其真子集。
2. 若集合{1,2}⊆M ⊆{1,2,3,4},试写出满足条件的所有的集合M.例2 用适当的符号填空 ⑴{}00 Φ0 {}0Φ ⑵{}R x x x ∈=+Φ,01|2 {}{}R x x x ∈=+,01|02题型 二 由集合间的关系求参数问题例3 {}{},3|,1|<=<=x x B x x A 则A 与B 有什么关系?变题2:{}{}0|,1|≤+=<=a x x B x x A ,若B A ⊆,求a 的取值范围。
变题1:{}{}a x x B x x A <=<=|,1|,若A B ⊆,求a 的取值范围。
例 4 设集合A={}R x x x x ∈=+,04|2,B=(){}R x a x a x x ∈=-+++,0112|22,若A B ⊆,求a 的取值范围。
(五)、 随堂练习判断下列说法是否正确⑴{}Φ表示空集 ( )⑵Φ是任何集合的真子集 ( ) ⑶{}3,2,1不是{}2,1,3 ( ) ⑷{}1,0的所有子集是{}{}{}1,0,1,0 ( )⑸如果B ⊆A 且A ⊆B 那么A 必是B 的真子集 ( )⑹B ⊆A 与A ⊆B 不能同时成立 ( )已知集合{}01|2=-=x x A ,{}02|2=+-=b ax x x B ,A B ⊆,求a,b 的取值范围3.已知{}9,8,7,6,5,4,3,2,1=M ,集合P 满足M P ⊆,若P a ∈,且P a ∈-10, 问:这样的集合P 有多少个?(六)、课堂小结(七)、课后作业。
高中数学 第一章《集合》教案 新人教A版必修1

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
高一数学全册教学教案第一章集合与简单逻辑

同步教材视频
第一章集合与简易逻辑
4. 主要性质和运算律
第一章集合与简易逻辑
5.有限集的元素个数 定义:有限集A的元素的个数叫做集合A的基数,记为n(A). 规n(φ )=0. 基本公式:
2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB (或BA) 注意: 也可写成;也可写成; 也可写成;也可写成。
3. 规定: 空集是任何集合的子集 . φA
第一章集合与简易逻辑
三 “相等”关系
实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同 时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B, 即: A=B
第一章集合与简易逻辑
一、复习引入: 1.说出 CSA 的意义。
2.填空:若全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么 CUA= ,CUB= . 3.已知6的正约数的集合为A={1,2,3,6},10的正约数为B={1,2,5,10},那么6 与10的正公约数的集合为C= . 4. 如果集合 A={a,b,c,d} B={a,b,e,f}用韦恩图表示(1)由集合A,B的公共元素组成的集 合;(2)把集合A,B合并在一起所成的集合.
例二 解不等式x-3>2,并把结果用集合表示出来.
第一章集合与简易逻辑
第一章集合与简易逻辑
五 小结:子集、真子集的概念,等集的概念及其符号 几个性质:
最新人教版高中数学必修一第一章集合与函数概念教案名师优秀教案

人教版高中数学必修一第一章集合与函数概念教案第一章集合1 、1、1集合的含义【探索新知】在小学、初中我们就接触过“集合”一词。
例子:(1)自然数集合、正整数集合、实数集合等。
2(2)不等式2x,x,7,0解的集合(简称解集)。
2(3)方程解的集合。
x,3x,2,0(4)到角两边距离相等的点的集合。
2(5)二次函数图像上点的集合。
y,x(6)锐角三角形的集合(7)二元一次方程解的集合。
2x,y,1(8)某班所有桌子的集合。
现在,我们要进一步明确集合的概念。
问题1、从字面上看,怎样解释“集合”一词,、如果上面例子中的数、点、图形、数对和物体等称为“研究对象”,那么集合又是什2么呢,知识点一:1、集合、元素的概念再看例子(9)质数的集合。
1y,(10)反比例函数图像上所有点。
x222x(11)、、 xy,y,2y(12)所有周长为20厘米的三角形。
问题3、从集合中元素个数看,上面例子(1)(2)(4)(5)(6)(7)(9)(10)(12)与例子(3)(8)(11)有什么不同,知识点二 2、有限集和无限集choose water fountains, water-saving products should be purchased.As compared to open v-Groove type water supply system, sealed nipple water system can save water 81.35% saving bedding consumption 56.3%; sanitation and drinking water, and a variety of harmful gases concentrations decline, increased laying rate 13.79%, economicefficiency improved. Chicken Coop construction should pay attention to several problems, chicken distribution notes: a rational structure of the hen-house layout, can provide a good environment for chicken, making its full productive potential, so other than in understanding the physiological characteristics of the chicken itself, and must be properly planned and constructed sheds. 1. sites to choose away from populated areas, traffic convenient, away from the road 2. Gaozao terrain, a lot of sunshine. Winter sun as possible, summer wind, and not after the rain water. Larger, leaving room for development 3. Abundant water resources pollution-free, easy to access, sufficient power is guaranteed 4. Building structure, the economy, saving money, and saving energy, it is facing in accordance with local environmental and physiological condition, lighting is good, easy to ventilation, easy to operate, so conducive to cooling in the summer, to insulation in winter cold 5. Layout of premises should be reasonable, do distinguish betweenproduction and non-production areas and non-production areas and water sources are on a chicken farm in the wind, net road and dirt road separating uncrossed, dung farm is located in the指出:集合论是德国数学家Cantor(1845,1918)在十九世纪创立的,集合知识是现代数学的基本语言,为进一步研究数学提供了极大的便利。
高中数学必修1教案 第一章 集合与函数概念 1.1 集合 1.1.1集合的含义与表示

1、1、1集合的含义与表示一、【学习目标】1、了解集合含义;理解元素与集合“属于”关系;熟记常用数集专用符号;2、深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题;3、能选择集合不同的语言形式描述具体的问题;二、【自学内容和要求及自学过程】1、阅读教材1.1.1前两段,回答下列问题(集合的含义)(1)我校全体高一学生能否构成一个集合?(2)高一的所有女生能否构成一个集合?(3)剑桥英语词典的所有英语单词能否构成一个集合?其实,生活中有很多东西能构成集合,我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,你能给出集合的含义吗?结论:(1)、(2)、(3)均可以构成集合;我们把研究的对象统称为元素,那么把一些元素组成的总体叫集合,简称集.【教学效果】:此部分自学效果相当成功,学生们都能快速的理解教学内容.2、阅读教材1.1.1第三段,回答问题(集合与元素的关系)(4)如果用A 表示我校全体高一学生组成的集合,用a 表示高一学生中的一位同学,b 是高二年级的一位同学,那么a 、b 与集合A 分别有什么关系?由此可见元素与集合之间有什么关系?结论:(4)a 是集合A 的元素,b 不是集合A 的元素.元素与集合的关系有两种:属于和不属于.用符号表示即为∈和∉.亦即A b A a ∉∈;.【注意】:我们一般用大写字母A 、B 、C 、...表示集合,用小写字母a 、b 、c 、...表示元素【教学效果】:自学效果明显,老师稍加点拨重复即可.3、阅读教材1.1.1,回答问题(元素三大性质)(5)大于3小于11的偶数能否构成集合?(引申:你能说出它们的元素吗)(6)我国的小河流能否构成集合?(引申:若不能,为什么?若能,你能说出它的元素吗?)(7)问题(5)、(6)说明集合中的元素具有什么性质?(8)由实数31、23、34、31组成的集合有几个元素?(你能说出原因吗?)(9)问题(8)说明集合中的元素具有什么性质?(10)由实数31、23、34组成的集合记为M ,由实数23、31、34组成的集合记为N ,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?结论:(5)能;(6)不能;(7)确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在集合中,要么不在集合中,这就是集合中元素的确定性;(8)4个;(9)互异性.给定集合的元素是互不相同的,即集合中的元素不重复出现,这就是集合的互异性;(10)集合M 和N 相等.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的,可以发现:如果两个集合中的元素完全相同,那么这两个集合 .【教学效果】:老师需要注意的是对于无序性的强调与讲解.无序性是相对的,而不是绝对的.无序性是对于两个相等的集合元素的顺序比较而得来的,不是说从小到大排列就是有序,而其他的排列就是无序,这一点,第一需要老师讲清楚,第二需要学生理解清楚.4、阅读教材1.1.1中《数学中一些常用的数集及其记法》,完成任务(11)快速写出常见数集的记号结论:常见数集的专用符号:N :非负整数集(或自然数集)(全体非负整数的集合);N *或N +:正整数集(非负整数集N 内排除0的集合);Z :整数集(全体整数的集合);Q :有理数集(全体有理数的集合);R ;实数集(全体实数的集合).归纳:通过以上的学习,我们可以归纳出几种表示集合的方法?结论:自然语言;大写字母;【教学效果】:这一部分学生都能快速的理解.需要注意的是让学生明白,这几个是专用的符号,不是我们规定一个大写字母表示一个集合就能通用的,这是需要学生们理解的.5、阅读教材第3页到第4页,回答下列问题(列举法、描述法)(12)除字母表示法和自然语言之外,还能用什么方法表示集合?(13)集合共有几种表示法?结论:(12)方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N 、Q ,所有的正方形组成的集合记为A 等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.可以用下列方法:列举法:把集合中的全部元素一一列举,并用花括号“{ }”括起来表示集合,这种表示集合的方法叫做列举法;描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,如:所有直角三角形的集合可以表示为{x|x 是直角三角形},也可以写成{直角三角形}.(13)表示一个集合有四种方法:字母表示法、自然语言、列举法、描述法.【注意】:一个集合的描述方法不单单是一种,有时候是可以用多种描述方法的,譬如方程x 2-4=0的解组成的集合,可以用列举法:{2,-2};可以用描述法:}04{2=-x x . 【教学效果】:对于列举法,一定要让同学们明白,列举法是对于集合元素较少或者元素排列有规律的集合而言的;而对于描述法,需要学生们注意的是点集和数集的代表元素是不同的.这一部分同学们的自学效果很好,对于点集和数集,在做练习三的时候,具体的讲了一下,学生们的反响也很不错.三、【巩固与练习】1、自学教材1.1.1 例1,然后完成练习一练习一:用列举法表示下列集合:(1)所有绝对值等于8的数的集合A ;(2)所有绝对值小于8的整数的集合B.2、自学教材1.1.1 例2,然后完成练习二练习二:分别用列举法和描述法描述方程x2-9=0的解组成的集合.3、根据今天学习的知识,完成练习三练习三:完成教材1.1.1 练习 1、2(注意:当集合中的元素个数较少时,通常用列举法表示,否则用描述法表示)【教学效果】通过练习,学生们都达到了预期的学习目标.四、【作业】1、必做题:教材习题1.1 A组第1题(1)(3)(6);第3题(1)(3);2、选做题:教材习题1.1A组第2题,第4题.五、【小结】本节课我们学习了集合的初步知识.重点是函数的三大性质:确定性、无序性、互异性,以及集合的四种表示方法:语言表示法、大写字母表示法、列举法、描述法等等.通过这一节课的学习,学生们达到了预期的学习目标,效果很好.六、【教学反思】本节课基本上每一个学生都达到了预期的学习目标,但是其中隐藏的知识盲点,还是有的.特别是集合的无序性,在以后的教学中一定要注意点明无序性是相对而言的,是对于两个相同的集合,不同的元素排列顺序而言的.通过这节课的实践,先学后教,能极大的提高学生的学习积极性.其实每个人都在说“先学后教,当堂训练”,但是每个人都做到了吗?做到的只是极少数的.实践证明,这些教学任务,通过学生们的自学,能够完成.。
数学高一第1章 集合 2集合的基本关系教学案 必修1

§2集合的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.1.子集的概念对于两个集合A与B,如果集合A中的________元素都是集合B中的元素,即若a∈A,则a∈B,我们就说集合A______集合B,或集合B______集合A,记作______(或B⊇A),这时我们说集合A是集合B的子集.2.Venn图我们常用封闭曲线的内部表示集合,称为Venn图.3.集合A与集合B相等对于两个集合A与B,如果集合A中的__________元素都是集合B中的元素,同时集合B中的__________元素都是集合A中的元素,就说集合A与集合B相等,记作______.4.真子集对于两个集合A与B,如果________,并且________,就说集合A是集合B的真子集,记作A B(或B A).5.子集的有关性质(1)任何一个集合是它本身的子集,即______.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么____________________________________.(3)空集是任何集合的______,即∅____A.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是( )A.P=Q B.P QC.P Q D.P∩Q=∅2.下列集合中,不同于另外三个集合的是( )A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}3.对于集合A、B,“A⊆B不成立”的含义是( )A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是( )A.0 B.1 C.2 D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是( )A.S P M B.S=P MC.S P=M题号12345 6答案二、填空题7.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A ⊆B 与B ⊇A 是相同的.§2 集合的基本关系知识梳理1.任何一个 包含于 包含 A ⊆B 3.任何一个 任何一个 A =B4.A ⊆B A ≠B 5.(1)A ⊆A (2)A ⊆C (3)子集 ⊆作业设计1.B [∵P ={x |y =x +1}={x |x ≥-1},Q ={y |y ≥0},∴P Q .]2.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]3.C4.B [只有④正确.]5.B [由N ={-1,0},知N M ,故选B.]6.C [运用整数的性质方便求解.集合M 、P 表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.]7.④解析 只有④中M 和N 的元素相等,故答案为④.8.a ≥2解析 在数轴上表示出两个集合,可得a ≥2.9.6解析 (1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7};(2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; (2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立; (3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立, 则B ={-3,2}∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6. 11.解 ∵B ⊆A ,∴①若B =∅,则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示.要使B ⊆A ,则⎩⎪⎨⎪⎧ m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧ m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.6解析 A 可以为∅,{2},{3},{7},{2,3},{2,7}.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}. 又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧ 1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}. ∵A ⊆B ,∴⎩⎪⎨⎪⎧ 2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
练:A={2,4,8,16},则4∈A,8∈A,32∉A.8.空集:是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
空集不是无;它是内部没有元素的集合。
可以将集合想象成一个装有元素的袋子,而空集的袋子是空的,但袋子本身确实是存在的。
用符号Ø或者{ }表示。
注意:{Ø}是有一个Ø元素的集合,而不是空集。
举例当两圆相离时,它们的公共点所组成的集合就是空集;当一元二次方程的根的判别式值△<0时,它的实数根所组成的集合也是空集。
8.集合的分类观察下列三个集合的元素个数1. {4.8, 7.3, 3.1, -9};2. {x∈R∣0<x<3};3. {x∈R∣x2+1=0}由此可以得到集合的分类:::()empty set ⎧⎪⎨⎪∅-⎩有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合(二)例题讲解:例1.用“∈”或“∉”符号填空:⑴8 N ; ⑵0 N ; ⑶-3 Z ; ;例2.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练:⑴给出下面四个关系:3∈R,0.7∉Q,0∈{0},0∈N,其中正确的个数是:( )A .4个B .3个C .2个D .1个(2)求集合{2a ,a 2+a }中元素应满足的条件?(3)若t1t 1+-∈{t},求t 的值. 1.1.2一、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。
当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。
⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为{}1,2,3,4,5,......例1.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程2x x =的所有实数根组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:{}()x A p x ∈ 如:{x|x-3>2},{(x,y)|y=x 2+1} 说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
写法{实数集},{R}也是错误的。
例2.用描述法表示下列集合:(1) 由适合x 2-x-2>0的所有解组成的集合;(2) 到定点距离等于定长的点的集合;(3) 方程220x -=的所有实数根组成的集合(4) 由大于10小于20的所有整数组成的集合。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
练: 1.用适当的方法表示集合:大于0的所有奇数2.集合A ={x|43x -∈Z ,x ∈N},则它的元素是 。
3.判断下列两组集合是否相等?(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}课后作业:§1.2.1 集合间的基本关系教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集;1.2.1集合间的基本关系⒈子集:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这 两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:()A B B A ⊆⊇或 读作:A 包含于B ,或B 包含A当集合A 不包含于集合B 时,记作A ⊈B(或B ⊉A)用Venn 图表示两个集合间的“包含”关系: 2.真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集。
记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A )3.集合相等 定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。
如:A={x|x=2m+1,m ∈Z},B={x|x=2n-1,n ∈Z},此时有A=B 。
4.空集定义:不含有任何元素的集合称为空集。
记作:φ用适当的符号填空:φ {}0; 0 φ ; φ {φ}; {}0 {φ}5.几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A 都有φ⊆A 。
⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
练习 ⑴2 N ; {2} N ; φ A;⑵已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N},则A B ; A C ; {2} C ; 2 C说明:⑴注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系; ⑵在分析有关集合问题时,要注意空集的地位。
⑶结论:一般地,一个集合元素若为n 个,则其子集数为2n 个,其真子集数为2n -1个,特别地,空集的子集个数为1,真子集个数为0。
1.2.2 集合间的基本运算考察下列集合,说出集合C 与集合A ,B 之间的关系:(1){1,3,5}A =,{}{2,4,6},1,2,3,4,5,6B C ==;(2){}A x x =是有理数,{}{},B x xC x x ==是无理数是实数; 1.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B的并集,即A 与B 的所有部分,记作A ∪B , 读作:A 并B 即A ∪B={x|x ∈A 或x ∈B}。
Venn 图表示:B A 表示:A B ⊆2.交集定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,叫作集合A 、B 的交集(intersection set ),记作:A ∩B 读作:A 交B 即:A ∩B ={x|x ∈A ,且x ∈B}Venn 图表示:常见的五种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.3. 全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U ,是相对于所研究问题而言的一个相对概念。
补集的定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,叫作集合A 相对于全集U 的补集,记作:U C A ,读作:A 在U 中的补集,即{},U C A x x U x A =∈∉且Venn 图表示:(阴影部分即为A 在全集U 中的补集) AUC U A说明:补集的概念必须要有全集的限制课后作业:§1.2函数及其表示教学目标:1、 掌握函数的三种表示方法:列表法、图 像法、解析法,体会三种表示方法的特点。
2、 掌握函数图像的画法及解析式的求法。
了解区间的概念。
3、 理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用 教学重点:通过实例领悟构成函数的三要素,会求一些简单函数的定义域、值域。
教学难点:了解映射概念及含义,会判断给定的对应关系是否是映射。