光耦反馈常见几种连接方式及其工作原理

合集下载

光电耦合器的管脚图及工作原理

光电耦合器的管脚图及工作原理

光电耦合器的管脚图及工作原理光电耦合器的作用及工作原理光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。

光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。

当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。

对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。

若基极有引出线则可满足温度补偿、检测调制要求。

这种光耦合器性能较好,价格便宜,因而应用广泛。

图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装图二光电耦合器之内部结构图三极管接收型 6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装图四光电耦合器之内部结构图可控硅接收型 6脚封装图五光电耦合器之内部结构图双二极管接收型 6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。

据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。

(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。

因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。

它由发光二极管(LED)和光敏三极管(Phototransistor)构成。

当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。

这种光电耦合的原理实质上是一种光控转换和能量传递的过程。

具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。

2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。

3. 光敏元件将光信号转换为电流信号,并通过输出端引出。

2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。

- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。

- 传输介质:用于将光信号从发光二极管传递到光敏三极管。

- 封装结构:提供外部环境下的物理保护和隔离。

3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。

它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。

常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。

通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。

它能够将信号从控制电路隔离,确保患者和医护人员的安全。

常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。

光耦反隔离反馈的几种典型接法

光耦反隔离反馈的几种典型接法

光耦反隔离反馈的几种典型接法在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

光电耦合器工作原理

光电耦合器工作原理

光电耦合器工作原理引言概述:光电耦合器是一种能够将光信号转化为电信号或者将电信号转化为光信号的器件。

它在现代通信、传感、自动控制等领域中起着重要作用。

本文将详细介绍光电耦合器的工作原理,包括光电耦合器的基本结构、工作原理以及应用场景。

一、光电耦合器的基本结构1.1 光电耦合器的光输入端光电耦合器的光输入端通常由一个光源和一个透光窗口组成。

光源可以是LED (发光二极管)或激光二极管,透光窗口则用于将外界的光引导到光电耦合器的内部。

1.2 光电耦合器的光敏元件光电耦合器的光敏元件通常由光敏二极管或光敏三极管组成。

光敏元件能够将光信号转化为电信号,并将其输出到光电耦合器的电输出端。

1.3 光电耦合器的电输出端光电耦合器的电输出端通常由一个电流放大器和一个电压输出端口组成。

电流放大器用于放大光敏元件输出的微弱电流信号,而电压输出端口则用于将放大后的电信号输出到外部电路。

二、光电耦合器的工作原理2.1 光电耦合器的光输入过程当外界的光照射到光电耦合器的光输入端时,光会进入光电耦合器的内部。

光源会发出特定波长的光,透过透光窗口进入光电耦合器。

2.2 光电耦合器的光电转换过程光敏元件是光电耦合器的核心部件,它能够将光信号转化为电信号。

当光照射到光敏元件上时,光子会激发光敏元件内部的电子,使其跃迁到导带。

这个过程会产生一个光电流,光电流的大小与入射光的强度成正比。

2.3 光电耦合器的电输出过程光电耦合器的电输出端会将光敏元件输出的微弱电流信号放大,并将其转化为电压信号。

电流放大器会将光敏元件输出的电流信号放大到适合外部电路处理的范围,然后通过电压输出端口输出。

三、光电耦合器的应用场景3.1 通信领域光电耦合器在通信领域中广泛应用,用于光纤通信、光纤传感、光网络等方面。

它能够将光信号转化为电信号,实现光与电的互相转换,提高通信速度和传输质量。

3.2 传感领域光电耦合器在传感领域中也有重要应用。

例如,在光电传感器中,光电耦合器能够将光信号转化为电信号,实现对环境光强度的测量和控制。

光电耦合器的工作原理

光电耦合器的工作原理

光电耦合器的工作原理
光电耦合器通过光电效应将光信号转换成电信号,实现光信号和电信号之间的相互转换。

其工作原理如下:
1. 光输入:光线通过光输入端进入光电耦合器。

2. 光电效应:当光线照射到光电耦合器内的光敏元件上时,光能激发光敏元件中的电子。

3. 电子传输:被激发的电子被传输到光电耦合器中的半导体器件上。

4. 光电转换:在半导体器件中,电子与杂质能级之间发生能级转移,由此产生的电流会随着光信号的强弱而变化。

5. 电信号输出:最后,光电耦合器将电信号输出到电路中,以供后续处理和应用。

总结起来,光电耦合器的工作原理可以概括为:光输入后,光电效应激发光敏元件中的电子,并将其传输到半导体器件上进行光电转换,最终产生的电流作为电信号输出。

这种转换能够实现光信号与电信号之间的相互转换,广泛应用于光通信、光电测量和光电控制等领域。

光耦的作用及工作原理

光耦的作用及工作原理

光耦的作用及工作原理光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。

光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。

隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。

当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。

以六脚光耦TLP641J为例,说明其原理。

一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。

光耦加431组成反馈电路的工作原理

光耦加431组成反馈电路的工作原理

光耦是一种能够将电气信号转换为光信号,或将光信号转换为电气信号的器件。

它由光电器件(光电发射器和光电接收器)组成,常见的光电发射器有发光二极管(LED),光电接收器则一般使用光敏二极管或光电晶体管。

光耦的基本原理是光信号的耦合和隔离。

光耦可以应用于很多领域,包括电力电子、通信和自动控制等。

反馈电路是指在一个系统中,由系统的输出信号经过反馈传递回输入端,作为输入信号的一部分,从而影响系统的整体性能和稳定性的一种电路。

光耦可以结合其他元件(如电阻、电容和放大器等)组成反馈电路,用于信号的隔离、缓冲、放大或控制等功能。

光耦与431(TL431)组成的反馈电路常用于电源的稳压控制,其中431是一种广泛应用于电源管理和控制电路中的精密可调电压源。

这种反馈电路主要通过光耦实现输入信号与输出信号的隔离,并使用431将输出信号进行稳压控制。

光耦与431组成的反馈电路的基本工作原理如下:1.输入端的电压信号经过放大和隔直处理后驱动光电发射器(一般是LED),将电信号转换为光信号。

光信号经过光传导、光电耦合等过程,到达光电接收器。

2.光电接收器接收到光信号后,将其转换为电信号,并通过放大电路进行放大。

放大后的电信号经过滤波电路,得到稳定的参考电压。

这个参考电压就是反馈电路中的参考电压,用于与431进行比较。

3.将参考电压与431进行比较,根据比较结果,431会通过调整其输出,实现对输入信号的控制。

431的输出可以连接到电源调节电路(如开关管或线性调节管等),通过控制电源的输出电压来达到稳压的目的。

需要注意的是,反馈电路中的431对光耦输出的光信号进行检测和反馈控制,实现了输入和输出信号的隔离,从而保证了稳定的电源输出。

同时,光信号的传输也使得整个电路不会受到输入信号的干扰,提高了系统的抗干扰能力。

光耦与431组成的反馈电路的优势在于:1.隔离性能好:光信号可以实现输入和输出信号的隔离,避免了输入和输出之间的电气联系,具有很好的隔离性能,可以减小噪声、提高抗干扰能力和系统稳定性。

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器(Photocoupler),也称为光电继电器(Optocoupler),是一种能够将输入信号转换为光信号再转换为输出电信号的器件。

其主要作用是实现不同电路之间的电隔离,以保护电路的安全性和稳定性。

光电耦合器由光电二极管、光敏三极管、输入控制电路和输出控制电路组成。

1.输入控制电路:输入控制电路通常由输入电源和输入电阻组成。

输入电源与光电二极管的阳极相连,通过输入电阻将输入信号与光电二极管的阴极相连。

输入信号为正电平时,输入电流流过光电二极管,使其发生反向饱和。

2.光电二极管:光电二极管是光电耦合器的输入部分,它是一种普通的二极管,但其结构上存在差异。

光电二极管的结构是由两个PN结反向串联构成,其中阴极是p型材料,阳极是n型材料。

当无光照射时,光电二极管的反向电流很小,工作在反向截止区域。

3.光敏三极管:光敏三极管是光电耦合器的输出部分,它常常采用双基结构,包含有一对PNPN结,工作原理类似于可控硅。

光敏三极管的基极由光电二极管输出光信号控制,发射极用于输出电压。

4.输出控制电路:输出控制电路主要由输出电源、负载电阻和输出电压组成。

输出电源与负载电阻并联,负载电阻与发射极连接。

当光敏三极管发射光照射到通常开关型三极管的基极上时,开关型三极管会关闭,电流通过负载电阻产生电压。

当输入控制电路输出为高电平时,输入电流会使光电二极管的阴极处于正向饱和区,此时光电二极管的发光强度最大。

光敏三极管接收到光信号后,基极电流会大幅度增加,从而将输出电路的开关型三极管关闭,电流流过负载电阻产生相应的电压输出。

当输入控制电路输出为低电平时,光电二极管不发出光,光敏三极管的基极电流减小,将导致输出电路中的开关型三极管打开,负载电阻上的电压为0。

总结来说,光电耦合器通过光电二极管将输入电信号转换为光信号,再通过光敏三极管控制输出电路。

这样可以实现输入电路与输出电路之间的电隔离,提高电路稳定性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光耦反馈常见几种连接方式及其工作原理
来源:互联网•作者:佚名• 2017-11-07 14:12 • 23793次阅读
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光
耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很
多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致
电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几
种典型接法加以对比研究。

1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic
越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大
系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是
利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变
化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于
一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接
补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com
信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为
芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压
上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原
边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,
com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

常见的第2种接法,如图2所示。

与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种
特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压
值将下降,输出电流越大,输出电压下降越多。

因此,采用这种接法的电路,一定要把PWM芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

图2所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电
压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程
类似。

常见的第3种接法,如图3所示。

与图1基本相似,不同之处在于图3中多了一个电阻R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作。

实际上如适当选取电阻值R3,电阻R6可以省略。

调节过程基本上同图1接法一致。

常见的第4种接法,如图4所示。

该接法与第2种接法类似,区别在于
com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的
R6一致,其工作原理基本同接法2。

2、各种接法的比较
在比较之前,需要对实际的光耦TLP521的几个特性曲线作一下分析。

首先是Ic-Vce曲线,如图5,图6所示。

由图5、图6可知,当If小于5mA时,If的微小变化都将引起Ic与Vce的剧烈变化,光耦的输出特性曲线平缓。

这时如果将光耦作为电源反馈网络的一部分,其传递函数增益非常大。

对于整个系统来说,一个非常高的增益容易引起系统不稳定,所以将光耦的静态工作点设置在电流If小于5mA是不恰当的,设置为5~10mA较恰当。

此外,还需要分析光耦的Ic-If曲线,如图7所示。

由图7可以看出,在电流If小于10mA时,Ic-If基本不变,而在电流If大于10mA之后,光耦开始趋向饱和,Ic-If的值随着If的增大而减小。

对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的。

需要说明的是,Ic-If曲线是随温度变化的,但是温度变化所影响的
是在某一固定If值下的Ic值,对Ic-If比值基本无影响,曲线形状仍然同图7,只是温度升高,曲线整体下移,这个特性从Ic-Ta曲线(如图8所示)中可以看出。

由图8可以看出,在If大于5mA时,Ic-Ta曲线基本上是互相平行的。


据上述分析,以下针对不同的典型接法,对比其特性以及适用范围。

本研究
以实际的隔离半桥辅助电源及反激式电源为例说明。

第1种接法中,接到电压误差放大器输出端的电压是外部电压经电阻R4降压之后得到,不受电压
误差放大器电流输出能力影响,光耦的工作点选取可以通过其外接电阻随意
调节。

按照前面的分析,令电流If的静态工作点值大约为10mA,对应的光耦工作温度在0~100℃变化,值在20~15mA之间。

一般PWM芯片的三角波幅值大小不超过3V,由此选定电阻R4的大小为670Ω,并同时确定
TL431的3脚电压的静态工作点值为12V,那么可以选定电阻R3的值为560Ω。

电阻R1与R2的值容易选取,这里取为27k与4.7k。

电阻R5与电容C1为PI补偿,这里取为3k与10nF。

实验中,半桥辅助电源输出负载
为控制板上的各类控制芯片,加上多路输出中各路的死负载,最后的实际功
率大约为30w。

实际测得的光耦4脚电压(此电压与芯片三角波相比较,从
而决定驱动占空比)波形,如图9所示。

对应的驱动信号波形,如图10所示。

图10的驱动波形有负电压部分,是由于上、下管的驱动绕在一个驱动磁环
上的缘故。

可以看出,驱动信号的占空比比较大,大约为0.7。

对于第2种接法,一般芯片内部的电压误差放大器,其最大电流输出能力为3mA左右,超过这个电流值,误差放大器输出的最高电压将下降。

所以,该接法中,如果电源稳态占空比较大,那么电流Ic比较小,其值可能仅略大于3mA,对应图7,Ib为2mA左右。

由图6可知,Ib值较小时,微小的Ib变化将引起Ic剧烈变化,光耦的增益非常大,这将导致闭环网络不容易稳定。

而如果电源稳态占空比比较小,光耦的4脚电压比较小,对应电压误差放大器的输出电流较大,也就是Ic比较大(远大于3mA),则对应的Ib也比较大,同样对应于图6,当Ib值较大时,对应的光耦增益比较适中,闭环网络比较容易稳定。

同样,对于上面的半桥辅助电源电路,用接法2代替接法1,闭环不稳定,用示波器观察光耦4脚电压波形,有明显的振荡。

光耦的4脚输出电压(对应于UC3525的误差放大器输出脚电压),波形如图11所示,可发现明显的振荡。

这是由于这个半桥电源稳态占空比比较大,按接法2则光耦增益大,系统不稳定而出现振荡。

实际上,第2种接法在反激电路中比较常见,这是由于反激电路一般都出于效率考虑,电路通常工作于断续模式,驱动占空比比较小,对应光耦电流Ic 比较大,参考以上分析可知,闭环环路也比较容易稳定。

以下是另外一个实
验反激电路,工作在断续模式,实际测得其光耦4脚电压波形,如图12所示。

实际测得的驱动信号波形,如图13所示,占空比约为0.2。

因此,在光耦反馈设计中,除了要根据光耦的特性参数来设置其外围参数外,还应该知道,不同占空比下对反馈方式的选取也是有限制的。

反馈方式1、3适用于任何占空比情况,而反馈方式2、4比较适合于在占空比比较小的场
合使用。

3、结束语
本研究列举了4种典型光耦反馈接法,分析了各种接法下光耦反馈的原理以
及各种限制因素,对比了各种接法的不同点。

通过实际半桥和反激电路测试,验证了电路工作的占空比对反馈方式选取的限制。

最后对光耦反馈进行总结,对今后的光耦反馈设计具有一定的参考价值。

相关文档
最新文档