相似图形练习题精选[1]

合集下载

图形的相似专项训练

图形的相似专项训练

图形的相似专项训练一、选择题1.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为( )A .20米B .18米C .16米D .15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30, ∴旗杆的高=130=152⨯米. 故选:D .【点睛】 本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.2.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC ,∴AD AE AB AC= ,故不正确;B. ∵//DE BC , ∴AG AE GF EC = ,故不正确;C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】 本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.3.如图,在ABC ∆中,点D E F 、、分别在边AB AC BC 、、上,// ,//DE BC DF AC ,则下列结论一定正确的是( )A .DE CE BF AE= B .AE CE CF BF = C .AD AB CF AC= D .DF AD AC AB = 【答案】B【解析】【分析】 根据平行线分线段成比例定理,可得B 正确.【详解】解://DE BC Q ,//DF AC , ∴AE AD CE BD =,BF BD CF AD=,∴AE CF CE BF=, 故B 选项正确,选项A 、C 、D 错误,故选:B .【点睛】本题主要考查平行线分线段成比例,找准对应边是解题的关键.4.如图,点E 是ABCD Y 的边AD 上一点,2DE AE =,连接BE ,交AC 边于点F ,下列结论中错误的是( )A .3BC AE =B .4AC AF = C .3BF EF =D .2BC DE =【答案】D【解析】【分析】 由平行四边形的性质和相似三角形的性质分别判断即可.【详解】解:∵在ABCD Y 中,//AD BC ,AD BC =,∴AEF CBF V :V ,∴AE AF EF CB CF BF==, ∵2DE AE = ∴332BC DE AE ==,选项A 正确,选项D 错误, ∴133AF AE AE CF CB AE ===,即:3CF AF =, ∴4AC AF =,∴选项B 正确,∴133EF AE AE BF CB AE ===,即:3BF EF =, ∴选项C 正确,故选:D .【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,能熟练利用相似三角形对应边成比例是解题关键.5.如图,点A 在双曲线y ═k x(x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.435D.2525+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴21545 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=32 25.故选B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴225AC BC+∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.7.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、1S、2S,若S=2,则1S+2S=().A.4 B.6 C.8 D.不能确定【答案】C【解析】试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF ∥BC ,EF=12BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8.故选C .考点:平行四边形的性质;三角形中位线定理.8.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C作CH⊥AB于点H,则易得△ABC∽△ACH.∴CH ACBC AB=,即AC BC3412CHCHAB55⋅⨯=⇒==.∴如图,点E(3,125),F(7,0).设直线EF的解析式为y kx b=+,则123k b{507k b=+=+,解得:3k5{21b5=-=.∴直线EF的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.9.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】 解:分别过B 和A 作BE ⊥x 轴于点E,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.10.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为( )A .9B .12C .14D .18【答案】A【解析】【分析】 如图,BC =2m ,CE =12m ,AB =1.5m ,利用题意得∠ACB =∠DCE ,则可判断△ACB ∽△DCE ,然后利用相似比计算出DE 的长.【详解】解:如图,BC =2m ,CE =12m ,AB =1.5m ,由题意得∠ACB =∠DCE ,∵∠ABC =∠DEC ,∴△ACB ∽△DCE , ∴AB BC DE CE=,即1.5212DE =, ∴DE =9.即旗杆的高度为9m .故选A .【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A.4.4 B.4 C.3.4 D.2.4【答案】D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.12.如图,将图形用放大镜放大,应该属于( ).A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.13.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则FE EC=( )A .12B .13C .14D .38【答案】C【解析】【分析】连接OE 、OF 、OC ,利用切线长定理和切线的性质求出∠OCF =∠FOE ,证明△EOF ∽△ECO ,利用相似三角形的性质即可解答.【详解】解:连接OE 、OF 、OC .∵AD 、CF 、CB 都与⊙O 相切,∴CE =CB ;OE ⊥CF ; FO 平分∠AFC ,CO 平分∠BCF .∵AF ∥BC ,∴∠AFC+∠BCF =180°,∴∠OFC+∠OCF =90°,∵∠OFC+∠FOE =90°,∴∠OCF =∠FOE , ∴△EOF ∽△ECO ,∴=OE EF EC OE,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..14.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AF FC =12,故A 正确,不符合题意; B 、过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC , ∴∠DCF =∠DFC ,故B 正确,不符合题意;C 、图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意.D 、设AD =a ,AB =b 由△BAE ∽△ADC ,有b a =2a . ∵tan ∠CAD =CD AD =b a =22,故D 错误,符合题意. 故选:D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.15.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.16.如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D .下列结论:①△AC 1C 为等腰三角形;②△AB 1D ∽△BCD ;③α=75°;④CA =CB 1,其中正确的是( )A .①③④B .①②④C .②③④D .①②③④【答案】B【解析】【分析】 将△ABC 绕点A 顺时针旋转得到△AB 1C 1,得到△ABC ≌△AB 1C 1,根据全等三角形的性质得到AC 1=AC ,于是得到△AC 1C 为等腰三角形;故①正确;根据等腰三角形的性质得到∠C 1=∠ACC 1=30°,由三角形的内角和得到∠C 1AC=120°,得到∠B 1AB=120°,根据等腰三角形的性质得到∠AB 1B=30°=∠ACB ,于是得到△AB 1D ∽△BCD ;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C 1AB 1=∠BAC=45°,推出∠B 1AC=∠AB 1C ,于是得到CA=CB 1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.17.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D【答案】D【解析】【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D.故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.18.如图,正方形ABDC 中,AB =6,E 在CD 上,DE =2,将△ADE 沿AE 折叠至△AFE ,延长EF 交BC 于G ,连AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S ∆FCG =3,其中正确的有( ).A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 利用折叠性质和HL 定理证明Rt △ABG ≌Rt △AFG ,从而判断①;设BG=FG=x ,则CG=6-x ,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC 为等腰三角形,由此推出1802FGC FCG -∠∠=o ,由①可得1802FGC AGB -∠∠=o ,从而判断③;过点F 作FM ⊥CE ,用平行线分线段成比例定理求得FM 的长,然后求得△ECF 和△EGC 的面积,从而求出△FCG 的面积,判断④.【详解】解:在正方形ABCD 中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt △ABG ≌Rt △AFG ,故①正确;由Rt △ABG ≌Rt △AFG∴设BG=FG=x ,则CG=6-x ,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG=3,CG=6-3=3∴BG=CG,故②正确;又BG=CG,∴1802FGC FCG-∠∠=o又∵Rt△ABG≌Rt△AFG∴1802FGC AGB-∠∠=o∴∠FCG=∠AGB∴AG∥CF,故③正确;过点F作FM⊥CE,∴FM∥CG∴△EFM∽△EGC∴FM EFGC EG=即235FM=解得65 FM=∴S∆FCG=116344 3.6225ECG ECFS S-=⨯⨯-⨯⨯=V V,故④错误正确的共3个故选:C.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.19.如图,已知△ABC,D、E分别在边AB、AC上,下列条件中,不能确定△ADE∽△ACB 的是()A.∠AED=∠B B.∠BDE+∠C=180°C.AD•BC=AC•DE D.AD•AB=AE•AC【答案】C【解析】【分析】A、根据有两组角对应相等的两个三角形相似,进行判断即可;B:根据题意可得到∠ADE=∠C,根据有两组角对应相等的两个三角形相似,进行判断即可;C、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A、由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;B、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;C、由AD•BC=AC•DE,得不能判断△ADE∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.20.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C 【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=25,过C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD455=,求得C (854555,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴2542CD OD==,∴CD85=,OD45=,∴C(45,85),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.。

《图形的相似》专题练习含答案解析

《图形的相似》专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: ;(2)请在图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,在B 处测得点C 的仰角为38°,塔基A 的俯角为21°,又测得斜坡上点A 到点B 的坡面距离AB 为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt △ABC 中,∠ACB=90°,AC=5,CB=12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆O 与斜边AB 交于点E ,连接DE .(1)求证:AC=AE ;(2)求AD 的长.15.如图,矩形ABCD 的长,宽分别为和1,且OB=1,点E (,2),连接AE ,ED .(1)求经过A ,E ,D 三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB 放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D 的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG ∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

图形的相似专项训练及答案

图形的相似专项训练及答案

图形的相似专项训练及答案一、选择题1.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.2.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】 根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD:AF=3:5,∴AD:DF=3:2,∵AB∥CD∥EF,∴AD BCDF CE=,即362CE=,解得,CE=4,故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形(不含全等的三角形)( )对.A.4 B.5 C.6 D.7【答案】B【解析】【分析】由平行四边形的性质可得AD//BC,AB//CD,根据相似三角形的判定方法进行分析,即可得到图中的相似三角形的对数.【详解】∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴△ADM∽△EBM,△ADF∽△ECF,△DFM∽△BAM,△EFC∽△EAB,∵∠AFD=∠BAE,∠DAE=∠E,∴△ADF∽△EBA,∴图中共有相似三角形5对,故选:B.【点睛】本题考查平行四边形的性质及相似三角形的判定,平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.4.如图,正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则AO DO=().A.13B.25C.23D.12【答案】D【解析】【分析】由已知条件易证△ADE≌△BAF,从而进一步得△AOD∽△EAD.运用相似三角形的性质即可求解.【详解】∵四边形ABCD是正方形∴AE=BF,AD=AB,∠EAD=∠B=90︒∴△ADE≌△BAF∴∠ADE=∠BAF,∠AED=∠BFA∵∠DAO+∠FAB=90︒,∠FAB+∠BFA=90︒,∴∠DAO=∠BFA,∴∠DAO=∠AED∴△AOD∽△EAD∴12 AO AE DO AD==故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.5.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11【答案】B【解析】【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA , ∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.6.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C 515D .3418【答案】D【解析】【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可.【详解】解:90,ABC ∠=︒Q DE BC ⊥,//,DE BA ∴,CED CAB ∴∆∆:,CE CD ED CA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===-3,534x x ED -∴== 3155,x x ∴=-15,8x ∴= 158,54ED ∴= 3,2ED ∴= Q DE BC ⊥,2222153341()().828BE DB DE ∴=+=+=故选D .【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.7.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、1S 、2S ,若S=2,则1S +2S =( ).A .4B .6C .8D .不能确定 【答案】C【解析】 试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF ∥BC ,EF=12BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8.故选C .考点:平行四边形的性质;三角形中位线定理.8.已知正方形ABCD 的边长为5,E 在BC 边上运动,DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,问CE 为多少时A 、C 、F 在一条直线上( )A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323 CE NE==⨯=故选C.【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.9.若△ABC∽△DEF,△ABC与△DEF的相似比为2︰3,则S△ABC︰S△DEF为( )A.2∶3 B.4∶9 C23D.3∶2【答案】B【解析】【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】 因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方. 10.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A .2516-B .258-C .254-D .25-【答案】B【解析】【分析】如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .首先证明△CFO ∽△OEA ,推出2()COF AOE S OC S OA∆∆=,因为CA :AB =13:24,AO =OB ,推出CA :OA =13:12,推出CO :OA =5:12,可得出2()COF AOE S OC S OA ∆∆==25144,因为S △AOE =9,可得S △COF =2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .∵A 、B 关于原点对称,∴OA =OB ,∵AC =BC ,OA =OB ,∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.11.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A.55B.45C.35D.25【答案】D【解析】【分析】先判断出△ABC与△DBE相似,求出BD,最后用勾股定理即可得出结论.【详解】如图1,在Rt△ABC中,AB=5,BC=10,∴AC=55,连接BE,∵BD是圆的直径,∴∠BED=90°=∠CBA,∵∠BAC=∠EDB,∴△ABC∽△DEB,∴AB AC DE DB=,∴5355DB =,∴DB=35在Rt△ABD中,2225BD AB-,故选:D.【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.12.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30,∴旗杆的高=130=152⨯米.故选:D.【点睛】本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.13.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.14.如图,E是矩形ABCD中AD边的中点,BE交AC于点,F ABFV的面积为2,则四边形CDEF的面积为()A .4B .5C .6D .7【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF S x =V ,求出x 即可解答.【详解】解:∵AD ∥BC ,E 是矩形ABCD 中AD 边的中点,∴AEF ~CBF V V ,设AEF S x =△,那么4BCF S x =V ,∵2ABF S =V , ∴()1x 2422x +=+, 解得:x 1=, ∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键.15.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A .2B .3C .4D .5【答案】B【解析】∵四边形ABCD 是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB ,∠AEG=∠EFB ,∴△AEG ∽△BFE , ∴AE AG BF BE=, 又∵AE=BE , ∴AE 2=AG•BF=2,∴AE=2(舍负),∴GF 2=GE 2+EF 2=AG 2+AE 2+BE 2+BF 2=1+2+2+4=9,∴GF 的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG ∽△BFE .16.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.17.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D 、由AD•AB=AE•AC 得,∠A=∠A ,故能确定△ADE ∽△ACB , 故选:C .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.18.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A.4.4 B.4 C.3.4 D.2.4【答案】D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.19.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.5【答案】B【解析】【分析】由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:GH CH AB BC=、GH BHCD BC=,然后两式相加即可.【详解】解:∵AB∥GH,∴△CGH∽△CAB,∴GH CHAB BC=,即2GH CHBC=①,∵CD ∥GH ,∴△BGH ∽△BDC ,∴GH BH CD BC =,即3GH BH BC =②, ①+②,得:123GH GH CH BH BC BC +=+=,解得:6 1.25GH ==. 故选:B .【点睛】 本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为( )A .9B .12C .14D .18【答案】A【解析】【分析】 如图,BC =2m ,CE =12m ,AB =1.5m ,利用题意得∠ACB =∠DCE ,则可判断△ACB ∽△DCE ,然后利用相似比计算出DE 的长.【详解】解:如图,BC =2m ,CE =12m ,AB =1.5m ,由题意得∠ACB =∠DCE ,∵∠ABC =∠DEC ,∴△ACB ∽△DCE ,∴AB BC DE CE=,即1.5212DE =, ∴DE =9.即旗杆的高度为9m .故选A .【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。

相似图形(习题及答案).

相似图形(习题及答案).

相似图形(习题)➢ 复习巩固1. 在比例尺为 1:6 000 000 的海南地图上,量得海口与三亚的距离约为 3.7 厘米,则海口与三亚的实际距离约为千米. 2. 若 x + 2 = y + 7 = z + 3 ,且 x +y +z =14,则 y - z=.5 6 2 3. 已知 b + c = a + c = a + b= k ,求k 的值.a b cx + z4. 如图,已知直线 a ∥b ∥c ,直线 m ,n 与直线 a ,b ,c 分别交于点 A ,C ,E ,B ,D ,F ,AC =4,CE =6,BD =3,则 BF =( )A .7B .7.5C .8D .8.55.如图,在△ABC 中,点 D ,E 分别在边 AB ,AC 上,DE ∥BC ,已知 AD =CE ,AE =6, BD = 32,则 CE 的长是 .36.如图,AD∥BE∥CF,直线m,n 与这三条平行线分别交于点A,B,C 和点D,E,F,已知AB=EF,AC=6,DE=1,则EF 的长为.7.如图,在△ABC 中,点D,E,F 分别在边AB,AC,BC 上,且DE∥BC,EF∥AB,若AD=2BD,则CF.BF8.如图,在正五角星中,C,D 两点都是AB 的黄金分割点,已知AB=1,求CD 的长.9.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.已知某女士身高165 cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿多高的高跟鞋?(结果精确到0.1 cm)10.顶角为36°的等腰三角形称为黄金三角形,其底与腰的比恰为黄金比.如图,在△ABC 中,AB=AC,∠A=36°,BD 平分∠ABC 交AC 于点D,若AB=4,则CD= .11.我们已经知道,如果线段MN 被点P 分成MP 和PN,且MP=PN,那么称线段MN 被点P 黄金分割.点P 叫做线MN MP段MN 的黄金分割点,MP 与MN 的比叫做黄金比,通过计算可知黄金比为5 -1.若一个矩形的短边与长边之比等于黄2金比,则称这个矩形为黄金矩形.(1)已知图中正方形ABCD 的边长为1,请你以AD 为短边,用尺规作一个黄金矩形,要求保留作图痕迹并需要写出作法,不需要证明.(2)你能尝试着作出一条线段的黄金分割点吗?12.如图,在△ABC 中,BD:DC=5:3,E 为AD 的中点,连接BE 并延长,交AC 于点F.过点D 作DG∥AC交BF 于点G,则BE:EF= .13.下列说法:①有一个角相等的两个平行四边形相似;②有一组邻边对应成比例的两个平行四边形相似;③有一个角相等的两个菱形相似;④邻边之比是2:1 的两个矩形相似;⑤所有的正方形都相似;⑥有一个角相等的两个等腰梯形相似.其中正确的是.14.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的等腰直角三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是()A B C D15.如图,已知矩形ABCD 中,AB=2,在BC 上取一点E,沿AE将△ABE 向上折叠,使B 点落在AD 上的F 点处,若矩形ECDF∽矩形ABCD,则AD= .16.两个四边形相似,其中一个四边形的三个内角分别是80°,60°,70°,那么另一个四边形的最大内角是,最小内角是.➢思考小结1.请回顾全等图形和相似图形的相关概念,并填空.全等图形:能够完全重合的两个图形称为全等图形.全等图形的形状和大小都相同.相似图形:形状相同的图形叫做相似图形.各角分别相等、各边成比例的两个多边形叫做相似多边形.全等图形和相似图形都满足相同;当大小相同时,这两个图形就是;图形可以看做是图形中的一种特殊情况.2.如果比例的左右两端都只含有同一个未知数,则这个比例可以看成是;在几何问题中,既可以借助线段间比例关系列方程求解,也可以借助线段间比例关系来表达线段长.5 【参考答案】 ➢ 复习巩固 1. 2222. 493. k =2 或 k =-14. B5. 86. 27. 128. CD 的长为- 2 . 9. 她应该穿 7.8 cm 的高跟鞋. 10. 6 - 2 11.略 . 12. 13:3 13. ③④⑤ 14. D 15.+1 16. 150°;60° ➢ 思考小结1. 形状;全等图形;全等;相似2. 方程5 5。

相似图形练习题同步练习

相似图形练习题同步练习

相似图形练习题同步练习相似图形是数学中重要的概念,涉及到比例和比例关系的运用。

掌握相似图形的性质和求解方法,对于解决实际问题和数学的深入理解都具有重要意义。

下面是一些相似图形的练习题,帮助大家巩固相关知识。

练习题1:已知三角形ABC与三角形DEF相似,知道AC/DF = 2/3,AD/DB = 4/5。

若AB = 12,求EF的长度。

解决思路:根据相似三角形的性质:相似三角形的对应边成比例。

在本题中,我们可以根据已知条件写出比例关系:AC/DF = AD/DB = AB/DE代入已知数值,可得:2/3 = 4/5 = 12/DE解方程可得:DE = 15所以,EF的长度为15。

练习题2:已知矩形ABCD与矩形EFGH相似,已知长边的比例为3:5,宽边的比例为2:3,若矩形ABCD的长为18,求矩形EFGH的面积。

解决思路:相似矩形的对应边也成比例。

在本题中,已知长边的比例为3:5,宽边的比例为2:3,我们可以根据已知条件写出比例关系:AB/EF = 3/5AD/EG = 2/3已知AB = 18,代入已知数值,可得:18/EF = 3/518/EG = 2/3从中可以解得EF = 30,EG = 27矩形EFGH的面积为:30 * 27 = 810练习题3:已知直角三角形ABC与直角三角形DEF相似,知道AC/DF = 4/5,BC/EF = 3/4。

若AC = 12,求DE的长度。

解决思路:根据相似三角形的性质:相似三角形的对应边成比例。

在本题中,我们可以根据已知条件写出比例关系:AC/DF = BC/EF代入已知数值,可得:4/5 = 3/4解方程可得:EF = 15所以,DE的长度为15。

练习题4:已知正方形ABCD与正方形EFGH相似,已知边长的比例为2:3,若正方形ABCD的边长为9,求正方形EFGH的面积。

解决思路:相似正方形的对应边也成比例。

在本题中,已知边长的比例为2:3,我们可以根据已知条件写出比例关系:AB/EF = 2/3已知AB = 9,代入已知数值,可得:9/EF = 2/3解方程可得:EF = 13.5正方形EFGH的面积为:(13.5)^2 = 182.25通过以上的练习题,相信大家对相似图形的性质和求解方法有了更深入的了解。

相似图形 同步练习 (含答案)

相似图形 同步练习 (含答案)

1 6.3 相似图形 一、选择题 1.下列图形中不一定是相似图形的是( )

A.两个等边三角形 B.两个等腰直角三角形 C.两个长方形 D.两个正方形

2.如图K-14-1所示,△ABC∽△DBE,且BD=13AB,则△ABC与△DBE的相似比为( )

图K-14-1 A.2∶3 B.1∶3 C.3∶2 D.3∶1 3.2017·河北若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比 ( ) A.增加了10% B.减少了10% C.增加了(1+10%) D.没有改变 4.如图K-14-2,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD等于( )

图K-14-2 A.2 B.2.4 C.2.5 D.3 5.已知两个五边形相似,其中一个五边形的最长边的长度为20,最短边的长度为4,另一个五边形的最短边的长度为3,则它的最长边的长度为( ) A.15 B.12 C.9 D.6 二、填空题

6.若△ABC∽△A′B′C′,且ABA′B′=2,则△ABC与△A′B′C′的相似比是________,△A′B′C′与△ABC的相似比是________. 7.已知△ABC∽△A1B1C1,且∠A=50°,∠B=95°,则∠C1=________°. 8.在△ABC与△A′B′C′中,AB=6,BC=8,A′C′=4.5,B′C′=4,若△ABC∽△A′B′C′,则必有A′B′=________. 2

9.图K-14-3中的两个四边形相似,则xy=________,α=________°. 图K-14-3 10.如果一个直角三角形的两条直角边长分别是5 cm,12 cm,另一个与它相似的直角三角形的斜边长是26 cm,那么第二个直角三角形的面积是________cm2. 三、解答题 11.仔细观察下列图形,其中形状相同的图形有哪些?请你用线段将它们连起来.

图K-14-4 12.如图K-14-5所示,在格点图中画出所给图形的相似形,使新图形的各顶点仍然在格点上.

27.1图形的相似(基础练习)

巩固练习第27章 图形的相似27.1 图形的相似(1)1、在下面的图形中,形状相似的一组是( )2、下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形3、要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm 、60cm 、80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( )A .1种B .2种C .3种D .4种4、下列说法正确的是( )A .人们从平面镜及哈哈镜里看到的不同镜像相似.B .人们从平面镜里看到的像与人的关系是相似图形,但不是全等图形.C .拍照时,镜头的取景与照片上的画面是相似的D .放幻灯片时投在屏幕上的画面与幻灯片上的图形是全等的5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?27.1图形的相似(2)巩固练习:1.△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ).A .32B .23C .52D .942.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形; (3)所有的等腰三角形;(4)所有的等边三角形; (5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个3. 图中两个四边形是相似形,仔细观察这两个图形,它们对应边之间存在怎样的关系?对应角之间又有什么关系?4.如图,四边形EFGH相似于四边形ABCD,求∠A、∠C、∠H以及x、y、z的值.5.如图,△ABC与△DEF相似,求未知边x、y的长度。

6.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EF AB相似,求EF的长.。

相似图形的习题(附答案).docx

【模拟试题】(答题时间:30分钟)点,若 EF=18cm, MN = 8cm,则 AB 的长是() 2. 如图2所示,AB 〃CD, AE 〃FD, AE, FD 分别交BC 于点G, H,则图中共有相似三 角形().(2)A. 4对B. 5对C. 6对D.7对3. 如图3,电灯P 在横杆AB 的正上方,AB 在灯光下的影长为CD, AB 〃CD, AB = 2m, CD=5m,点P 至l 」CD 的距离是3m ,贝ij 点P 至0 AB 的距离是().p/\ A __ 4c(3)DA 5 门6 小6c io A. —m B.—m C.—m D ・—m 6 7 5 34. 如图4,把APQR 沿着PQ 的方向平移到AP' Q‘ R z 的位置,它们重叠部分的面积是 APQR面积的一半,若PQ=0,则此三角形移动的距离PP'是().D. V2-15. 如图5,小明想用皮尺测量池塘A, B 之间的距离,但现在利用皮尺无法直接测量到这 一距离.学习了数学的有关知识后,他想出了一个主意:先在地上取一个可以直接到达A, B 两点的点O,连接OA, OB,分别在OA, OB±取中点C, D,连接CD,并测得CD=a, 由此他就知道了 AB 间的距离是().1. 如图1所示,在梯形ABCD 屮,AB 〃CD, 中位线EF 交对角线AC, BD 于M, N 两A. 10cmB. 13cmC. 20cmD. 26cmA.6.如图 6,已知厶ABC S /\DBE, AB = 6, DB = 8,则 S AABC : S ZSDBE = ___________________(6)7.由三角形三条中位线所围成的三角形的而积是原三角形而积的 _________ . &如图,AABC 中,ZBAC=120° , AB = AC, BC=4,请你建立适当的直角坐标系, 并写出A 、B 、C 各点的坐标.9. 某市有A 、B 、C 、D 四个大型超市,分别位于一条东西走向的平安大路两侧,请建立 适当的直角坐标系并写出四个超市相应的坐标.10. 方格纸中的每个小方格都是边长为1的正方形,我们把以格点I'可连线为边的三角形称为“格点三角形”.图中的AABC 是格点三角形,在建立平面直角坐标系后,点B 的坐标 为(一1, — 1).(1) 把AABC 向左平移8格后得到厶A|B]C|,画出△ A 】B|Ci 的图形并写出点B 】的坐标.(2) 把AABC 绕点C 顺时针旋转90°后得到△ A 2B 2C,画出△ A 2B 2C 的图形并写出点 B 2的坐标.(3) 把AABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,画!1!AAB 3C 3 的A. —a2B. 2a (5)C. aD. 3aDAB图形.y(1)若李华距灯柱OP的水平距离OA = a,求他的影子AC的长.(2)若李华在两辱辽乙囲彳了疋,则他前后的两个影子的长度之和(DA + AC)是否是定值?请说明理由.【试题答案】1.D 点拨:AB = 2MF, MF=MN + NF,贝ij NF= (EF-MN) F2=5cm, MF = Bcm, AB = 26cm.2. C 点拨:本题考查对相似三角形的判定和识图能力,由已知△BFHs^BAG, ABFHs^CDH, ABFH^ACEG, ABAG^ACEG, ABAG^ACDH, △GCEs^HCD.共6 对.3.C4.D点拨:本题涉及平移与相似三角形的性质,平移后重叠三角形与APOR相似,且面积比为1:2,则边长比为1:V2 , P‘ Q=l,则PP‘ =V2-1.5.B 点拨:VCD是OA, OB的中点,A AOCD与厶OAB相似比为1:2.6.9:16点拨:利用相似三角形的性质,)2=—.S 沁BD 167.- 点拨:中位线围成的三角形的各边长是原三角形边长的丄.4 2&答案不唯一,可以是以BC所在直线为x轴,以BC的垂直平分线为y轴.VZBAC=120° , AB = AC,故y 轴必经过A 点,ZBCA= ZABC=30° , BO=OC 1o Fx= -BC=2,在RtAAOC中,利用勾股定理得A (0,三丄),B (-2, 0), C (2, 0)・2 39.答案不唯一,例如,以D为坐标原点,建立直角坐标系,各点相应的坐标为A (10, 7), B (6, -1), C (-2, 5), D (0, 0)・10.(1)画出△ A.BiCi的图形,如图所示,点Bi的坐标为(一9, -1).(2)画出△ A2B2C的图形如图所示,点B2的坐标为(5, 5).(3)画出△AB3C3的图形如图所示,答案不唯一.11.(1)由己知:AB〃OP,・••△ABCs^OPC,AC AB• ~OC~~OP yOP = I, AB = h,OA = a,a + AC I l-h(2) VAB//OP,.AB _ AC _h m AC _ h m AC _ hA AABC^AOPC,'~0P~~6c~T S OC-AC~T^h y' ~OA~~l^hh/• AC =------- • OA,I-hh同理可得DA= -------- • O' A.l-hh hni ADA + AC=—- (OA+O‘ A)=匕是定值.l-h l-h。

图形的相似 练习题

图形的相似练习题图形的相似练习题在数学中,图形的相似是一个重要的概念。

相似图形是指形状相似但大小不同的图形。

通过学习相似图形,我们可以更好地理解几何学中的比例和比例关系。

下面,我将给大家提供一些有关图形相似的练习题,希望能够帮助大家加深对这一概念的理解。

1. 给定两个三角形ABC和DEF,已知∠A=60°,∠B=45°,∠D=30°,且AB=4cm,DE=6cm。

问这两个三角形是否相似?如果是,写出它们的相似比。

解析:由于∠A=60°,∠B=45°,∠D=30°,根据角度对应,可以得出∠C=75°,∠E=105°。

而且由于三角形的内角和为180°,所以∠C+∠A+∠B=180°,∠E+∠D+∠F=180°。

代入已知的角度,可以得到∠C=75°,∠F=45°。

所以,两个三角形的对应角度相等。

另外,根据三角形的性质,两个三角形的边长之比应该相等。

由于AB=4cm,DE=6cm,所以4/6=2/3。

所以,两个三角形相似,且它们的相似比为2:3。

2. 给定一个矩形ABCD,长为8cm,宽为4cm。

在矩形的AB边上取一点E,使得AE=3cm。

连接DE,求矩形ABCD和三角形ADE的相似比。

解析:由于矩形ABCD是一个直角矩形,所以∠A=90°。

又因为AE=3cm,AD=4cm,所以三角形ADE是一个等腰直角三角形。

根据等腰直角三角形的性质,∠AED=45°。

另外,根据矩形的性质,AD=BC=4cm,AB=CD=8cm。

所以,三角形ADE和矩形ABCD的对应边长之比为3/4。

3. 给定一个平行四边形ABCD,已知AB=6cm,BC=8cm,AD=10cm。

在平行四边形ABCD中,连接AC,交BC于点E。

求证:三角形AED和三角形BEC相似。

解析:首先,根据平行四边形的性质,AD∥BC,所以∠AED和∠BEC是对应角,它们相等。

相似图形练习题

相似图形练习题相似图形练习题相似图形是数学中的一个重要概念,它在几何学中起着至关重要的作用。

相似图形是指具有相同形状但大小不同的图形。

在解决相似图形练习题时,我们需要运用一些几何知识和技巧。

首先,我们来看一个简单的相似图形练习题。

假设有一个三角形ABC和一个三角形DEF,已知∠A = ∠D,∠B = ∠E,∠C = ∠F,且AB/DE = BC/EF =AC/DF。

我们需要证明这两个三角形是相似的。

为了证明这个结论,我们可以利用三角形内角和定理和三角形的相似性定理。

根据三角形内角和定理,三角形ABC的三个内角之和等于180度,即∠A +∠B + ∠C = 180度。

同样地,三角形DEF的三个内角之和也等于180度,即∠D + ∠E + ∠F = 180度。

由于∠A = ∠D,∠B = ∠E,∠C = ∠F,所以∠A + ∠B + ∠C = ∠D + ∠E + ∠F。

因此,三角形ABC和三角形DEF的内角和相等。

接下来,我们利用三角形的相似性定理来证明这两个三角形是相似的。

根据三角形的相似性定理,如果两个三角形的对应角相等,则它们是相似的。

由于∠A = ∠D,∠B = ∠E,∠C = ∠F,所以三角形ABC和三角形DEF的对应角相等。

因此,根据三角形的相似性定理,我们可以得出结论:三角形ABC和三角形DEF是相似的。

除了上述的相似图形练习题,还有一些其他类型的相似图形练习题。

例如,给定一个长方形ABCD,其中AB = 6cm,BC = 4cm。

现在我们需要构造一个相似于长方形ABCD的长方形,且其周长是原长方形的两倍。

我们该如何解决这个问题呢?首先,我们可以计算原长方形ABCD的周长。

根据长方形的性质,周长等于两倍的长加两倍的宽,即2(AB + BC) = 2(6 + 4) = 20cm。

接下来,我们需要构造一个相似的长方形,且其周长是20cm。

假设新的长方形的长为x,宽为y。

根据题目要求,我们可以列出方程2(x + y) = 20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似图形练习题精选
精华提炼:线段的比与成比例线段的区别:_______________________ 比例的基本性质:____________ 合比性质;______________ 等比性质_____________________ 黄金分割的定义:____________________________.黄金比=________ 相似三角形的判定:__________________________________________ 相似三角形的性质:___________________________________________ 位似图形的定义:__________________________。(是一种特殊的相似图形) 位似中心: 位似比: 练习题精选: 一、 填空题:(试试你的身手!) ⒈若AB=1m,CD=25cm,则AB∶CD= ;若线段AB=m, CD=n, 则AB∶CD= . ⒉若MN∶PQ=4∶7,则PQ∶MN= , MN= PQ, PQ= MN。 ⒊若线段a,b,c,d成比例,其中a=5㎝,b=7㎝,c=4㎝,则,d= . ⒋若a·b=c·d则有a∶d= ;若m∶x=n∶y, 则x∶y= . ⒌已知4x-5y=0,则(x+y)∶(x-y)的值为 . ⒍若x∶y∶z=2∶7∶5,且x-2y+3z=6,则x= ,y= ,z= ; ⒎设x3 =y5 =z7 ,则x+yy =__ _,y+3z3y-2z =__ __. ⒏已知点C是线段AB的黄金分割点,且AC>BC,则AC∶AB= . ⒐如图1,D、E是ΔABC 的边 AB、AC 上的点, DE 与 BC 不平行, 请填上一个你认为合适的条件: 使得ΔADE∽ΔACB. ⒑.已知:ΔABC , P是边 AB 上的一点,连结 CP.(如图2) (1)当∠ACP 满足 条件时,ΔACP∽ΔABC. (2)当 AC∶AP= 时, ΔACP ∽ΔABC ⒒在ΔABC和ΔA′B′C′中, ∠A=∠A′= 40°∠B = 80°∠B′= 60°则ΔABC和ΔA′B′C′ 。(填“相似”与“不相似”) ⒓在如图3的ΔABC中,DE∥BC, 且 AD= 32BD, DE = 4cm , 则BC = 。
⒔如图4在ΔABC中, DE∥BC, BC = 6cm,
SΔADE∶SΔABC =1∶4 , 则DE的长为 。
⒕两个相似三角形面积比是9∶25,其中一个三角形的周长为
36cm, 则另一个三角形的周长是 .
⒖把一个矩形的各边都扩大4倍,则对角线扩大到 倍,其
面积扩大到 倍.

二、 选择题:(相信你的选择!)
⒈已知0432cba,则cba的值为( )
A、54 B、45 C、 D.21
⒉下列说法正确的是( )
A、所有的矩形都是相似形 B、 有一个角等于1000的两个等腰三角形相似
C、对应角相等的两个多边形相似 D、对应边成比例的两个多边形相似

⒊在直角三角形ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则
CD=( )A、2 B、4 C、2 D、3

⒋. 过三角形一边上一点画直线,使直线与另一边相交,且截得的三角形与原三

角形相似,那么最多可画这样的直线的条数是( )
A 、1条 B、2条 C 、3条 D 、4条
⒌如图,若P为△ABC的边AB上一点(AB>AC),则下列条件
不一定能保证△ACP∽△ABC的有( )
A、∠ACP=∠B B、∠ACP=∠A C、ACAPABAC D、ABACBCPC
⒍如图,在矩形ABCD中,AE⊥BD,则图中相似的三角形共有
( )
A、7对B、6对 C、5对 D、4对

A
B
C

P

A
B
C
D

E
⒎.如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( ) A、②③④ B、③④⑤ C、④⑤⑥ D、②③⑥ ⒏用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在( ) A、原图形的外部 B、原图形的内部 ⒐雨后初晴,一学生在运动场上玩耍,从他前面2米远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40米,该生的眼部高度是1.5米,那么旗杆的高度是(___________)米。 A、 30米 B 、40米 C 、25米 D、35米 ⒑如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′是( ) A、12 B、22 C、1 D、21 三、解答题: ⒈已知aba=32,求baba34的值。 ⒉.如右图,ΔABC中,AB = AC ,∠A=36 °,BD平分∠ABC,DE∥BC。找出图中与ΔABC相似的所有三角形,并说明理由。 ⒊如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明⊿ABD≌⊿BCE。 (2)⊿AEF与⊿ABE相似吗?
说说你的理由。
(3)BD2=AD·DF吗?请说明理由。

⒋如图,ΔABC与ΔADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,如果图中的两
个直角三角形相似,求AD的长。

⒌.如图,AD是直角三角形ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、
AC于E、F.则BDBEADAF吗?说说你的理由。

⒍.在正方形ABCD中,AB = 2, P是BC 边上与 B、C 不重合的任意点,DQ
⊥AP于Q。
(1)试说明ΔDQA∽ΔABP。
(2)当P 点在BC上变化时,线段 DQ 也随之变化。 设PA= x,,DQ= y,求 y 与
x 之间的函数关系式?

P
P'
Q

R
R'

Q'

相关文档
最新文档