复数级数及收敛的概念

合集下载

ch4_05复变函数的级数(1)

ch4_05复变函数的级数(1)

n0
zn
1 2
n0
1 2n
z n
(1
n0
1 )zn. 2n1
y 1
x O1
解: 首先将f(z)分解成部分分式: f (z) 1 1 .
z2 z1
(2) 在圆环1<|z|<2内, |1/z|<1, |z/2|<1, 故
f (z) 1 1 1 1 2 1 z / 2 z 11/ z
| z z0|<R时,
f (z)
n0
f
(n) (z0 n!
)
(z
z0
)n
,
且展开式是唯一的.
(2) 解析函数的泰勒展开式
上述定理中的
f (z)
n0
f
(n) (z0 n!
)
(z
z0
)n
称为f(z)在
点z0处的泰勒展式.
n0
f
(n) (z0 n!
)
(z
z0
)n
称为f(z)在
点z0处的泰勒级数.
(2) | zn | 收敛 zn收敛,此时称 zn为绝对收敛。
n1
n1
n1
二. 复函数项级数的基本概念
1. 设u1(z), u2(z), …, un(z), …是定义在区域D 上的复变函数序列, 则称
un (z) = u1(z) + u2(z) + …+ un(z) + …
n 1
为定义在区域D上的复函数项级数.
(1)n1(n 3n1
1)
(z
1)n
| z 1| 3
展开式的系数都是实数,为什么?
六 Laurent级数
1. 双边无穷级数

复数项级数

复数项级数

n(en
2
en )
当 n 时, zn , 所以数列发散.
2、复数项级数的概念
1)定义 设{zn} {xn iyn} (n 1, 2,L )为一复数列,
表达式
zn z1 z2 zn
n1
称为复数项无穷级数.
2)部分和 其最前面 n 项的和 sn z1 z2 zn
记作
lim
n
zn
z0
或 zn z0 (n ) .
若数列{zn }不收敛,则称{zn }发散.
2)复数列收敛的条件
定理 复数列{zn} (n 1,2, )收敛于z0 的充要条件是
lim
n
xn
x0 ,
lim
n
yn
y0 .
该定理说明: 可将复数列的敛散性转化为判别两 个实数列的敛散性.
例1 下列数列是否收敛, 如果收敛, 求出其极限.
(1)
zn
(1
1
)e
i
n
n
;
(2) zn ncos in .

(1) 因为
zn
(1
1
)e
i
s n
n
i sin
), n
所以
xn
(1
1 )cos n
π n
,
yn
(1
1 )sin
nn
.

lim
n
xn
1
,
lim
n
yn
0.
数列收敛,

lim
n
zn
1
.
(2)
由于
zn
n cos in
lim 8 0 n n 1

复数项级数

复数项级数

利用极限
lim
n
sn
s.
7
例如, 级数 zn :
n0
sn
1 z z2 zn-1
1 zn 1 z
(z 1),
由于当 z 1时,
lim
n
sn
lim 1 zn n 1 z
1 1
, z
所以当 z 1时级数收敛.
8
2.复数项级数收敛的条件
定理二 级数 n (an ibn ) 收敛的充要条件
1.
n
所以 R 1 1.
42
方法2: 根值法(定理三)
如果 lim n n
cn
0,
那末收敛半径
R 1.
说明:
如果
0
R R0
(与比值法相同)
43
三、幂级数的运算和性质
1.幂级数的有理运算
设 f (z) anzn , R r1, g(z) bnzn , R r2.
n0
n0
f (z) g(z) anzn bnzn (an bn )zn ,
说明 由
an2 bn2 an bn ,
n
n
n

ak2 bk2 ak bk ,
k 1
k 1
k 1
17
所以 an与bn绝对收敛时,
n1
n1
n也绝对收敛 .
n1
综上:
n绝对收敛 an与 bn绝对收敛.
n1
n1
n1
18
三、典型例题
例1 下列数列是否收敛, 如果收敛, 求出其极限.
n0
由收敛的必要条件,

lim
n
cn
z0n
0
因而存在正数M, 使对所有的n, 有 cnz0n M ,

复数项级数与幂级数

复数项级数与幂级数

那末级数 � 发散.
=1
说明: 与实数项级数相同, 判别复数项级数敛散
性的基本方法是: 利用极限 lim sn = s .
n→ ∞
8
3.复数项级数收敛的条件


(1)※定理2 级数 � = � ( + ) 收敛的


=
=

充要条件 � 和 � 都收敛.
n =1
19
级数最前面n项的和
sn ( z ) = f 1 ( z ) + f 2 ( z ) + + f n ( z )
称为这级数的部分和.
和函数
如果对于 D 内的某一点 z0 , 极限 lim sn ( z0 ) = s( z0 )
n→∞

存在, 那末称级数 ∑ f n ( z ) 在 z0 收敛 , s( z0 )称为
=
称为复数项无穷级数.
部分和 其最前面 n 项的和
= + + ⋯ + 称为级数的部分和.
7
2. 收敛与发散

如果部分和数列 { sn } 收敛 , 那末级数 � 收敛,
并且极限 lim sn = s 称为级数的和 .
n→ ∞
=1
如果部分和数列 { sn } 不收敛 ,
规定 ∞ = +∞
5
※例2 证明:
已知
lim =
→∞
, <
,
<
∞ , >

lim

∞,
> →∞ =
, =
,
=
不存在, = −

第四章复变函数级数

第四章复变函数级数

第四章复变函数级数第四章复变函数级数(42)⼀、内容摘要1.复数列的极限:设有复数列{}n z ,若存在复数z ,对于任意的0>ε,总有数N >0,使数列序数N n >时总有ε<-z z n ,则称复数z 为数列{}n z 的极限,或者说数列{}n z 收敛于z ,记作:lim n n z z →∞= 由于n n n iv u z +=, iv u z +=, 当lim n n z z →∞=式成⽴时, 等价于lim ,n n u u →∞=lim n n v v→∞=1nn z ∞=∑收敛的充要条件是1nn u ∞=∑和1nn v ∞=∑都收敛。

2.复数级数(定义):设有复数项级数 +++=∑∞=k k n z z z z 211若其前n 项和n n z z z S ++=21构成的数列{}n S 收敛,则称级数1n k z ∞=∑收敛,⽽数列{}n S 的极限S 叫做级数1n k z ∞=∑的和.否则称级数1n k z ∞=∑发散。

由于∑∑==+=n k kn v i uS 11,所以11lim lim limnk n k n n n k n k u u S S u iv v v →∞=→∞→∞=?=??==+=??∑∑;绝对收敛:若⼀个级数的模级数∑∞=1k k z 收敛,则称级数∑∞=1k k z 是绝对收敛;若收敛级数的模级数不收敛,则称条件收敛。

3.设复变函数)(z f k ( ,2,1,0=k )区域G 内都有定义, 则定义复变函数项级数:∑∞=++++=010)()()()(k k k z f z f z f z f ,其中前n 项和:∑==nk k n z f S 0)(。

若对于G 内某点0z ,极限lim n n s S →∞=存在,则称复变函数项级数在点0z 收敛,s 叫做级数的和.若级数在区域G 内处处收敛,其和必是⼀个复函数:∑∞==)()(k k z f z s .则()s z )称为级数0()k k f z ∞当n N >时,1|()|n pk k n f z ε+=+<∑(p 为任意正整数)则称级数0()n n f z ∞=∑在B 内(或曲线L 上)⼀致收敛。

复数列的极限 级数的概念

复数列的极限 级数的概念
n
bn
b.
“”

知 lim n
an
a
,
lim
n
bn
b
即,
0, N
0,
n
N ,恒有an
a
2
,bn
b
2
又n (an a) i(bn b)
an a bn b

lim
n
n
.
2. 级数的概念
定义 ▪设复数列:{n } {an ibn }(n 1,2, , n),
j1 2 j
3i(1
1 2n
),

lim
n
sn
3i
级数收敛,且和为 3i.
定理2
级数
收敛
n
an和
bn都收敛。
n1
n1
n1
证明 sn
n
k
n
(ak ibk )
n
n
ak i
bk n i n
k 1
k 1
k 1
k 1
由定理1,lim n
sn
a
ib
lim
n
n
a,
lim
n
n
b
an和 bn都收敛。
1 n
(1
i )发散. n
(2)
8i n
8n 收敛,
(8i)n 绝对收敛。
n0 n! n0 n!
n0 n!
(3)
n1
(
1)
n
收敛

n
n1
1 2n
收敛,
n1
(
(1)n n
i 2n
)收敛.
又 (1)n 条件收敛,原级数非绝对收敛.

复变函数 复数项级数和序列


幂级数的形式
∑ c (z − z )
n =0 n 0

n
= c0 + c1 ( z − z0 ) + c2 ( z − z0 ) +
2
作变量替换 w=z-z0,只需讨论幂级数
∑c z
n =0 n

n
= c0 + c1 z + c2 z +
2
Abel定理: 若幂级数
∑c z
n =0 ∞ n

n
在点 z0≠0 收敛,则它在
∑a z
n
n
=
n
f 在|z|<R可积, f ( z ) dz =
C

∑∫
n =0
C
an z dz
习题:
P 87-88
T 2(1,2) T 4(1,3) T 7(1,3,6)
n →∞
性质2 Cauchy收敛准则 znöz0ñ任意ε
> 0,存在N,使得m,n>N时,
| zm − zn |< ε
对于复数列{zn}={z1,z2,…,zn,…},称
∑z
n =1

n
= z1 + z2 +
+ zn +
为复数项级数。 部分和记为 S n =
∑z
k =1
n
k
= z1 + z2 +
+ zn
复数列即有序的复数集 {zn}={z1,z2,…,zn,…} 称{zn}收敛于z0,若
lim | zn − z0 |= 0
n →∞
记作
lim zn = z0
n →∞

【工程数学】复变函数复习重点

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+” 5)指数表示:i z z e θ=,其中arg z θ=. (二) 复数的运算1。

加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+± 2。

乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3。

乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=. 2)若(cos sin )i z z i z e θθθ=+=,则122cos sin (0,1,21)nk k z i k n n n θπθπ++⎛⎫=+=- ⎪⎝⎭(有n 个相异的值)(三)复变函数1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G 的映射.2.复初等函数指数函数:()cos sin z x e e y i y =+,在z 平面处处可导,处处解析;且()z z e e '=.注:z e 是以2i π为周期的周期函数.(注意与实函数不同)对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±±(多值函数);主值:ln ln arg z z i z =+。

复变函数与积分变换第4章4.1收敛数列与收敛级数

n
3
§4.1 复数项级数 第 一、收敛序列 四 章 2. 复数序列极限存在的充要条件 定理 设 zn xn i yn , a i , 则 lim z n a 的充要条件是 解 n P76 析 定理 lim x , lim y . n n n 函 4.1 n 数 zn 证明 必要性 “ ” 的 | zn - a | | yn - | 级 若 lim z n a , 则 e 0 , N , n 数 a | xn - | 表 当 n N 时,| zn - a | e , 示
即得级数 z n 收敛的充要条件是 x n 和 yn 都收敛。
9
§4.1 复数项级数 第 二、复数项级数 四 章 3. 复数项级数收敛的必要条件 定理 设 zn xn i yn , 则 z n 收敛的必要条件是 lim zn 0 . n 解 析 P79 函 证明 由于级数 z 收敛的充要条件是 x 和 y 都收敛, n n n 数 的 而实数项级数 x n 和 yn 收敛的必要条件是: 级 数 lim xn 0 , lim yn 0 等价于 lim zn 0 , 表 n n n 示 因此 z n 收敛的必要条件是 lim zn 0 .
1 n 1 zn 2 i 2 e n n
i
π n 2
§4.1 复数项级数 第 二、复数项级数 四 章 4. 复数项级数的绝对收敛与条件收敛 定义 (1) 若 | z n | 收敛,则称 z n 绝对收敛。 解 析 P79 (2) 若 | z n | 发散, z n 收敛,则称 z n 条件收敛。 函 数 的 定理 若 | z n | 收敛,则 z n 必收敛。 P80 定理4.4 级 2 2 | z | x y 证明 由 收敛, n n 收敛, n 数 表 2 2 2 2 | x | x y , | y | x y 又 示 n n n n n n,

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档