2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)
2008年高考全国卷2理科数学(含解析)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。
数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且0b ≠,所以2232303a b b b a =⇒=-【高考考点】复数的基本概念、基本运算,立方和公式(基本运算)【评注】很多学生没有学习过立方和公式,不会用立方和公式一步到位地展开,有人按32()()()a bi a bi a bi +=++进行展开,也有人按3()()()()a bi a bi a bi a bi +=+++进行展开,还有人用二项式定理进行展开,这都是可行的思路。
2008年(全国卷II)(含答案)高考理科数学

2008年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1)(1)x x -+的展开式中x 的系数是( ) A .4- B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1B .2C .3D .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A .(22),B .(25),C .(25),D .(25),10.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B .23C .33D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = .15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值; (Ⅱ)设ABC △的面积332ABC S =△,求BC 的长.18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-. (Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.EA 1B 1C 1D 120.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.2008年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析:一、选择题1.答案:B解析:依题M={-2,-1,0,1},N={-1,0,1,2,3},从而M∩N={-1,0,1},故选B. 2.答案:A解析: (a+bi)3=a3+3a2·bi+3a(bi)2+(bi)3=a3+3a2bi-3ab2-b3i=(a3-3ab2)+(3a2b-b3)i为实数3a2b-b3=0,又∵b≠0,∴3a2-b2=0.∴b2=3a2.选A.3.答案:C解析:∵f(x)=f(-x),∴f(x)= -x是奇函数.∴f(x)的图象关于坐标原点对称.4.答案:C解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x∈(e-1,1),∴x>x2.故a>b,排除A、B.∵e-1<x<1,∴-1<lnx<ln1=0.∴lnx<ln3x.∴a<c.故b<a<c,选C.5.答案:D解析:作出可行域.令z=0,则l0:x-3y=0,平移l在点M(-2,2)处z取到最小,最小值为-8.6.答案:D解析:排除法即可.P=1-=1-. 7.答案:B解析:化简原式=[(1-)4(1+)4]·(1-)2 =[(1-)(1+)]4·(1-)2=(1-x)4·(1-)2=(1-4x+6x2-4x3+x4)(1-2+x).故系数为1-4=-3,选B.8.答案:B解析:依题可知|MN|=|sina-cosa|=|sin(a-)|,故|MN|max=.9.答案:B解析:依题可知离心率e===,∵a>1,∴0<<1.∴(+1)2∈(1,4).∴e∈(2,5).10.答案:C解析:作图.连结EO,则所求角为∠AEO或其补角.(∵EO∥SD)设侧棱长为a,则OE=SD=a,AO=a,AE= a.由余弦定理得cos∠AEO==. 11.答案:A解析:依题设底边所在直线斜率为k,则底边方程为l:y=kx,l 1:x+y-2=0,k1=-1,l 2:x-7y-4=0,k2=.由等腰三角形特征有:直线l到l1所成角的正切与直线l2到l所成角的正切相等,从而,得k=3,故选A.12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.2答案:C解析:依题意有示意图截面示意图为其中AH为公共弦长的一半,OA为球半径,∴OH=.故选C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.答案:2解析:λa+b=λ(1,2)+(2,3)=(λ+2,2λ+3),∵λa+b与c共线,∴(λ+2)·(-7)-(2λ+3)·(-4)=0.解出λ=2.14.答案:2解析:y=e ax,y′=e ax·a,y′|x=0=e a·0·a=a.又x+2y+1=0的斜率为-,∴由题意a·(-)=-1.∴a=2.15.答案:解析:lAB:y-0=x-1,即y=x-1,联立x a =3+2,xb=3-2,∴=3+2.16.解析:两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由5cos13B=-,得12sin13B=,由4cos5C=,得3sin5C=.所以33sin sin()sin cos cos sin65A B C B C B C=+=+=. ······························ 5分(Ⅱ)由332ABCS=△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故 65AB AC ⨯=, ································································· 8分又 s i n 20s i n 13A B BA C AB C⨯==, 故 2206513AB =,132AB =. 所以 s i n 11s i n 2A B A BC C ⨯==. ······················································ 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··········································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--, 又410()10.999P A =-,故0.001p =. ················································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 100005000ξ+, 盈利 10000(1000050a ηξ=-+,盈利的期望为 100001000050E aE ηξ=--, ································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元. ·········································· 12分 19.解法一:依题设知2AB =,1CE =. (Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ··························································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于122AA ACFC CE==, 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ····································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥, 故1A HG ∠是二面角1A DE B --的平面角. ············································ 8分223EF CF CE =+=, 23CE CF CG EF ⨯==,2233EG CE CG =-=. 13EG EF =,12315EF FD GH DE ⨯=⨯=. 又221126AC AA AC =+=,11563AG AC CG =-=. AB CDEA 1B 1C 1D 1 FH G11tan 55A GA HG HG∠==. 所以二面角1A DE B --的大小为arctan55. ······································ 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ··························································· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DBDE D =,所以1AC ⊥平面DBE . ····································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n . 故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n .············································ 9分 1AC ,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC ==,n n n . 所以二面角1A DE B --的大小为14arccos42. ······································ 12分 20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ···························································· 4分ABC DEA 1B 1C 1D 1 yxz因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ···················································· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,.12分21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ···························· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=, 故212214x x k =-=+.①由6ED DF =知01206()x x x x -=-,得021221510(6)77714x x x x k=+==+;DF B yxAOE由D 在AB 上知0022x kx +=,得0212x k=+. 所以221012714k k=++, 化简得2242560k k -+=, 解得23k =或38k =. ········································································· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为21112222(1214)55(14)x kx k k h k +-+++==+,22222222(1214)55(14)x kx k k h k +-+-+==+. ··············································· 9分又2215AB =+=,所以四边形AEBF 的面积为121()2S AB h h =+ 214(12)525(14)k k +=+22(12)14k k+=+22144214k kk ++=+ 22≤,当21k =,即当12k =时,上式取等号.所以S 的最大值为22. ············ 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ······················································································· 9分 222(2)x y =+22222244x y x y =++ 22222(4)x y +≤22=,当222x y =时,上式取等号.所以S 的最大值为22. 12分 22.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. ············ 2分 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ··················· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ················ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin3x ax>.于是,当(0arccos3)x a∈,时,sin sin()2cos3x xf x axx=>>+.当0a≤时,有π1π222f a⎛⎫=>∙⎪⎝⎭≥.因此,a的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.12分。
2008年全国统一考试数学卷(全国新课标.文)

2008年全国统一考试数学卷(全国新课标.文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|(2)(1)0M x x x =+-<,{}|10N x x =+<,则M N =A .(1,1)-B .(2,1)-C .(2,1)--D .(1,2)2.双曲线221102xy-=的焦距为A.B. C.D .3.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .4.设()ln f x x x =,若0()2f x '=,则0x =A .2eB .eC .ln 22D .5.已知平面向量(1,3)a =- ,(4,2)b =-,a b λ+ 与a 垂直,则λ=A .1-B .1C .2-D .26.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >7.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a8.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1729.平面向量,a b共线的充要条件是A .,a b方向相同 B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=10.点(,)P x y 在直线430x y +=上,且x ,y 满足147x y ≤-≤,则点P 到坐标原点距离的取值范围A .[]0,5B .[]0,10C .[]5,10D .[]5,1511.函数()cos 22sin f x x x =+的最小值和最大值分别为A .1-,1B .2-,2C .3-,32D .2-,3212.已知平面α⊥平面β,l αβ= ,点A α∈,A l ∉,直线A B ∥l ,直线A C ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是 A .A B ∥mB .AC ⊥mC .A B ∥βD .A C ⊥β第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知{}n a 为等差数列,1322a a +=,67a =,则5a = .14.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 .15.过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△O A B 的面积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲品种271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种284292295304306307312313315315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,△A C D 是等边三角形,△ABC 是等腰三角形,90ACB ∠=B D 交AC 于E ,2A B =. (1)求cos C A E ∠的值; (2)求A E .18.(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的正视图和俯视图在下面画出(单位:cm )(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结1BC ,证明1BC ∥面EFG .27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙A BCC 1DB 1D 1EGF19.(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10. 把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 20.(本小题满分12分)已知m R ∈,直线2:(1)4l m x m y m -+=和圆:C 2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?21.(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠=23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.文)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.15.16.三、解答题 17.一、选择题: 1.C 2.D 3.A 4.B 5.A 6.A 7.B8.C9.D10.B11.C12.D二、填空题: 13.1514.43π15.5316.(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀. 注:上面给出了四个结论.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)因为9060150BCD =+= ∠,C B A C C D ==, 所以15CBE = ∠.所以cos cos(4530)4C BE =-= ∠. ··························································· 6分(Ⅱ)在A B E △中,2A B =, 由正弦定理2sin (4515)sin(9015)AE =-+.故2sin 30cos15AE =124⨯==. ·······························································12分18.解:(Ⅰ)如图···················································································· 3分 (Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭(俯视图)(正视图)(侧视图)2284(cm )3=. ·································································· 7分 (Ⅲ)证明:在长方体A B C D A B C D ''''-中, 连结A D ',则A D B C ''∥. 因为E G ,分别为A A ',A D ''中点,所以A D E G '∥,从而E G B C '∥.又B C '⊄平面EFG , 所以B C '∥面EFG . ·································································································12分 19.解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. ·················································································· 4分 (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果. 事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =. ··············································································································12分20.解:(Ⅰ)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21m k m =+, ···························································································· 2分因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.········································································· 5分 (Ⅱ)不能.················································································································ 6分 由(Ⅰ)知l 的方程为(4)y k x =-,其中12k ≤.圆C 的圆心为(42)C -,,半径2r =.ACDE FGA 'B 'C 'D '圆心C 到直线l 的距离d =············································································································· 9分由12k ≤,得1d >≥,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. ···················································12分21.解:(Ⅰ)方程74120x y --=可化为734y x =-.当2x =时,12y =. ··································································································· 2分又2()b f x a x'=+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13.a b =⎧⎨=⎩,故3()f x x x=-. ········································································································ 6分(Ⅱ)设00()P x y ,为曲线上任一点,由231y x'=+知曲线在点00()P x y ,处的切线方程为002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭. 令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,.···············10分所以点00()P x y ,处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=.故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6. ·························································································································12分 22.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥. 又因为A P O M ⊥,在R t O A M △中,由射影定理知,2OA OM OP = . ········································································································ 5分 (Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥. 同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN == ∠∠. ············································10分 23.解:(Ⅰ)1C 是圆,2C 是直线. ························································································ 2分1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -+=.因为圆心1C到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. ···················································································· 4分 (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数) 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)························· 8分化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同. ················································································································10分008年普通高等学校统一考试(海南、宁夏卷)数学(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( )A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<- M N x x 【高考考点】一元二次不等式的解法及集合的交集及补集运算 【易错提醒】混淆集合运算的含义或运算不仔细出错【全品备考提示】一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.2、双曲线221102xy-=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c 【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高 3、已知复数1z i =-,则21zz =-( )A. 2B. -2C. 2iD. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i zi z i i,选A【高考考点】复数的加减、乘除及乘方运算 【易错提醒】运算出错【全品备考提示】简单的复数运算仍然是需要掌握的内容,但要求不高,属于必须得分的内容. 4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 2【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+fx x x x x∴由()'02=fx 得00ln 12 +=∴=x x e ,选B【高考考点】两个函数积的导数及简单应用 【易错提醒】不能熟练掌握导数的运算法则而出错【全品备考提示】导数及应用是高考中的常考内容,要认真掌握,并确保得分.5、已知平面向量a =(1,-3),b=(4,-2),a b λ+ 与a垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 【标准答案】A【试题解析】由于()()4,32,1,3,a b a a b λ+=λ+-λ-=-λ+ ∴()()43320λ+--λ-=,即101001λ+=∴λ=-,选A【高考考点】简单的向量运算及向量垂直【易错点】:运算出错 【全品备考提示】:6、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断 框中,应该填入下面四个选项中的( )权 A. c > x B. x > c C. c > bD. b > c【标准答案】:A【试题解析】:有流程图可知第一个选择框作用是比较x 与b 故第二个选择框的作用应该是比较x 与c 【高考考点】算法中的判断语句等知识.【易错点】:不能准确理解流程图的含义而导致错误. 【全品网备考提示】:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )【标准答案】:B【试题解析】:由()211i a x -<,得:22121i i a x a x -+<,即()220i i x a x a -<,解之得()200i ix a a <<>,由于1230a a a >>>,故120x a <<;选B.【高考考点】二次不等式的解法及恒成立知识 【易错点】:不能准确理解恒成立的含义而导致错误.【全品备考提示】:不等式恒成立问题是历年高考的一个重点,要予以高度重视 8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.152D.172【标准答案】:C【试题解析】:由于()4141122,1512a q S a -=∴==- ∴4121151522S a a a ==;选C;【高考考点】等比数列的通项公式及求和公式的综合应用【易错点】:不能准确掌握公式而导致错误. 【全品备考提示】:等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点, 要予以高度重视9、平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=【标准答案】:D【试题解析】:若,a b均为零向量,则显然符合题意,且存在不全为零的实数12,,λλ使得120a b λ+λ=;若0a ≠ ,则由两向量共线知,存在0λ≠,使得b a =λ , 即0a b λ-=,符合题意,故选D【高考考点】向量共线及充要条件等知识.【易错点】:考虑一般情况而忽视了特殊情况【全品备考提示】:在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立. 10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5] B. [0,10]C. [5,10]D. [5,15]【标准答案】:B【试题解析】:根据题意可知点P在线段()43063x y x +=-≤≤上,有线段过原点,故点P到原点最短距离为零,最远距离为点()6,8P -到原点距离且距离为10,故选B;【高考考点】直线方程及其几何意义【易错点】:忽视了点的范围或搞错了点的范围而至错. 【全品备考提示】:随着三大圆锥曲线的降低要求,直线与圆的地位凸现,要予以重视. 11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】:∵()221312sin 2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭∴当1sin 2x =时,()m ax 32f x =,当sin 1x =-时,()min 3f x =-;故选C;【高考考点】三角函数值域及二次函数值域【易错点】:忽视正弦函数的范围而出错.【全品备考提示】:高考对三角函数的考查一直以中档题为主,只要认真运算即可.12、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β【标准答案】:D【试题解析】:容易判断A、B、C三个答案都是正确的,对于D,虽然A C l ⊥,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;【高考考点】线面平行、线面垂直的有关知识及应用 【易错点】:对有关定理理解不到位而出错.【全品备考提示】:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握.二、填空题:本大题共4小题,每小题5分,满分20分.13、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________ 【标准答案】:15【试题解析】:由于{}n a 为等差数列,故3856a a a a +=+∴538622715a a a a =+-=-= 【高考考点】等差数列有关性质及应用 【易错点】:对有关性质掌握不到位而出错.【全品备考提示】:等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用.14、一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 _________【标准答案】:43V =π【试题解析】∵正六边形周长为3,得边长为12,故其主对角线为1,从而球的直径22R == ∴1R = ∴球的体积43V =π【高考考点】正六棱柱及球的相关知识【易错点】:空间想象能力不强,不能画出直观图而出错.【全品备考提示】:空间想象能力是立体几何中的一个重要能力之一,平时要加强培养. 15、过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为______________ 【标准答案】:53【试题解析】:将椭圆与直线方程联立:()224520021x y y x ⎧+-=⎪⎨=-⎪⎩,得交点()540,2,,33A B ⎛⎫- ⎪⎝⎭;故121145122233O AB S O F y y =⋅⋅-=⨯⨯+=;【高考考点】直线与椭圆的位置关系【易错点】:不会灵活地将三角形面积分解而导致运算较繁.【全品备考提示】:对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的 位置关系只要掌握直线与椭圆的相关知识即可.16、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:① ; ② . 【试题解析】:参考答案(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度; (2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm ;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种 棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【高考考点】统计的有关知识【易错点】:不会对数据作出统计分析. 【全品备考提示】:对数据的处理是新高考的一个新要求,此类问题今后仍然会出现.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17、(本小题12分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2.(1)求cos ∠CBE 的值;(2)求AE .【试题解析】:.(1)因为BA0009060150,BC D C B AC C D ∠=+===所以015CBE ∠=,()00cos cos 45304C BE ∴∠=-=(2)在ABE ∆中,2A B =,故由正弦定理得()()2sin 4515sin 9015AE =-+,故0122sin 30cos154AE ⨯===【高考考点】正弦定理及平面几何知识的应用【易错点】:对有关公式掌握不到位而出错. 【全品备考提示】:解三角形一直是高考的重点内容之一,不能轻视.18、(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG .18. 【试题解析】(1)如图正视图E(2)所求多面体的体积()311284446222323V V V cm ⎛⎫=-=⨯⨯-⨯⨯⨯⨯= ⎪⎝⎭正长方体三棱锥 (3)证明:如图,在长方体''''ABCD A B C D -中,连接'AD ,则'AD ∥'BC因为E,G分别为''',AA A D 中点,所以'AD ∥E G ,从而E G ∥'BC ,又'BC EFG ⊄平面, 所以'BC ∥平面EFG;【高考考点】长方体的有关知识、体积计算及三视图的相关知识 【易错点】:对三视图的相关知识掌握不到位,求不出有关数据.【全品备考提示】:三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.19、(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.19. 【试题解析】 (1)总体平均数为()156789107.56+++++=(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果.事件A包含的基本结果有:(5,9), (5,10), (6,8), (6,9), (6,10), (7,8), (7,9),共有7个基本结果; 所以所求的概率为()715P A =【高考考点】统计及古典概率的求法 【易错点】:对基本事件分析不全面.【全品备考提示】:古典概率的求法是一个重点,但通常不难,要认真掌握.20、(本小题满分12分)已知m ∈R ,直线l :2(1)4m x m y m -+=和圆C :2284160x y x y +-++=. (1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?20【试题解析】(1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21m k m =+因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦; (2)不能.由(1知l 的方程为()4y k x =-,其中12k ≤;圆C的圆心为()4,2C -,半径2r =;圆心C到直线l 的距离d =由12k ≤,得1d ≥>,即2r d >,从而,若l 与圆C相交,则圆C截直线l 所得的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两端弧;【高考考点】直线与圆及不等式知识的综合应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:本题不是很难,但需要大家有扎实的功底,对相关知识都要受熟练掌握;21、(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()y f x =的解析式;(2)证明:曲线()y f x =上任一点处的 切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值. 21. 【试题解析】1)方程74120x y --=可化为734y x =-,当2x =时,12y =;又()'2b f x a x =+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩,故()3fx x x=-(2)设()00,P x y 为曲线上任一点,由'231y x=+知曲线在点()00,P x y 处的切线方程为()002031y y x x x ⎛⎫-=+- ⎪⎝⎭,即()00200331y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭令0x =,得06y x =-,从而得切线与直线0x =的交点坐标为060,x ⎛⎫- ⎪⎝⎭;令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为0016262x x -=;故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值,此定值为6;【高考考点】导数及直线方程的相关知识 【易错点】:运算不仔细而出错. 【全品备考提示】:运算能力一直是高考考查的能力之一,近年来,对运算能力的要求降低了,但对准确率的要求提高了.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22、(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP 垂直直线OM ,垂足为P . (1)证明:O M ·OP = OA 2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM = 90°.22.【试题解析】(1)证明:因为MA是圆O的切线,所以O A A M⊥,又因为A P O M⊥,在R t O A M∆中,由射影定理知2OA OM OP=⋅;(2)证明:因为BK是圆O的切线,B N O K⊥,同()1有:2OB ON OK=⋅,又O B O A=,所以O M O P⋅=O N O K⋅,即O N O MO P O K=,又N O P M O K∠=∠,所以O N P O M K∆∆,故090OKM OPN∠=∠=;【高考考点】圆的有关知识及应用【易错点】:对有关知识掌握不到位而出错【全品备考提示】:高考对平面几何的考查一直要求不高,故要重点掌握,它是我们的得分点之一.23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1:cos()sinxyθθθ=⎧⎨=⎩为参数,曲线C2:2()2xty⎧=-⎪⎪⎨⎪=⎪⎩为参数.(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;157417843.doc -第 21 页 (共 21 页) (2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C .写出1'C ,2'C 的参数方程.1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同? 说明你的理由.23. 【试题解析】(1)C1时圆,C2是直线C1的普通方程为221x y +=,圆心C1(0,0),半径1r =;C2的普通方程为0x y -+=,因为圆心C1到直线0x y -+=的距离为1, 所以C1与C2只有一个公共点;(2)压缩后的参数方程分别为()()''12cos 2::1sin 24x x C C t y y t ⎧=θ=-⎧⎪⎪⎪θ⎨⎨=θ⎪⎪⎩=⎪⎩为参数,为参数化为普通方程为'2'121::22C x C y x =+2+4y =1,联立消元得:2210x ++=,其判别式(24210∆=-⨯⨯=; 所以压缩后的直线与椭圆仍然只有一个公共点,和原来相同;【高考考点】参数方程与普通方程的互化及应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:高考对参数方程的考查要求也不高,故要重点掌握,它也是我们的得分点之一.。
2008年浙江高考数学(理科)试卷(含答案)

2008年普通高等学校招生全国统一考试浙江卷数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是春虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u (A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21) (7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan = (A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22(10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线2008年普通高等学校招生全国统一考试浙江卷数学(理科)第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
2008年高考全国数学(Ⅱ)卷

2008年高考全国数学(Ⅱ)卷试题、试卷分析及2009年高考走势试卷研究组:王春清康纯芳牛福利李海洋曲茹张传锋徐颖执笔人:徐颖一、2008年高考试题总体评价2008年是全国高考均使用新课程卷的第四个年头,自主命题的省份也延续了2006年的16个省份。
除了考试中心命制的、供部分省市使用的全国(Ⅰ、Ⅱ、Ⅲ)卷外,自主命题的省份均进行了独立命题。
在这些试卷中,除了江西、山西和广东省数学文理合用一张卷外,其余包括三套全国卷在内的数学试卷均是文理分开的。
这样,2008年全国高考数学,共命制试题35套。
说明了伴随着课程改革的不断深入,高考改革也正在全国范围内迅速推进,预示着高考制度改革的春天即将到来。
今年是我省使用新课程卷的第五个年头,选用的仍是全国统一试卷(Ⅱ)。
从整体上来看,试题背景公平,面貌平和,易于入手。
基本保持了新课程卷8年来的一些基本做法。
特别是与近几年的试卷相比,出现了“五稳”的态势和“二新”的格局。
“五稳”。
即:稳在内容要求上,稳在试卷结构上,稳在题型、题量上,稳在各部分内容以及新增内容的分值比例上,稳在难易程度上,稳在应用题的落脚点上。
基础题、中档题、难题的分数比例分配上,08年基本达到(而不是理论上达到):5:3:2的比例。
“二新”,即:新在文科与理科试卷进一步分化,相同题、姊妹题的分数减少,不同题的分数增加,预示着命题者对向不同方向发展的学生,在数学素养方面的不同要求;新在难题(或曰能力题)的考查角度上,即在考查学生演绎推理的同时,注重了合情推理的考查,即观察、判断、猜想、类比推理等推理能力的考查(如理、文的12题),并从考查学生思维品质的严谨性和周密性入手(不苛求其深刻性),着力于对学生综合能力(包括阅读理解能力(如理19题))——运算能力、分析和解决问题能力,以及创新精神和实践能力的考查。
从而使08年的全国数学(Ⅱ)卷基本保持了近几年的命题风格,即:“难易适度、结构平稳、梯度合理、知情并重、新旧交融”,突显了“能力立意”的主导思想,体现了新课程的新理念——人人学有用的数学、人人学必要的数学、不同的人在数学上获得不同的发展。
2008年北京市高考数学试卷(理科)(含解析版)

下条件:
①x1>x2;②x12>x22;③|x1|>x2.
其中能使 f(x1)>f(x2)恒成立的条件序号是
.
14.(5 分)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如
下:第 k 棵树种植在点 Pk(xk,yk)处,其中 x1=1,y1=1,当 k≥2 时,
T(a)表示非负实数 a 的整数部分,例如 T
(Ⅰ)如果数列 A0 为 5,3,2,写出数列 A1,A2; (Ⅱ)对于每项均是正整数的有穷数列 A,证明 S(T1(A))=S(A); (Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列 A0,存在正整数 K,
当 k≥K 时,S(Ak+1)=S(Ak).
第 5页(共 22页)
2008 年北京市高考数学试卷(理科)
. 的值
,其展开
式中的常数项为
.(用数字作答)
12.(5 分)如图,函数 f(x)的图象是折线段 ABC,其中 A,B,C 的坐标分
别 为 ( 0 , 4 ),( 2 , 0 ),( 6 , 4 ), 则 f ( f ( 0 )) =
;
=
.(用数字作答)
第 2页(共 22页)
13.(5 分)已知函数 f(x)=x2﹣cosx,对于[﹣ , ]上的任意 x1,x2,有如
(Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加 A 岗位服务的人数,求ξ的分布列.
18.(13 分)已知函数 间.
,求导函数 f′(x),并确定 f(x)的单调区
19.(14 分)已知菱形 ABCD 的顶点 A,C 在椭圆 x2+3y2=4 上,对角线 BD 所在 直线的斜率为 1.
2008年高考数学试卷(江苏卷)含详解

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b ==,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008年高考全国卷2文科数学(含解析)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 2 页.第Ⅱ卷 3 至 10 页.考试 结束后,将本试卷和答题卡一并交回.
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
第Ⅰ卷
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再
Pk (k) Cnk pk (1 p)nk (k 0,1 2,,,n)
一、选择题
1.设集合 M {m Z | 3 m 2}, N {n Z | 1≤≤n 3},则M N ( )
A.0,1
B.1,0 1,
C.0,1 2,
【答案】B
【解析】 M 2,1,0,1, N 1,0,1,2,3,∴ M N 1,0,1
【高考考点】集合的运算,整数集的符号识别。 【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。其实集合问题是可以出难题的, 但高考中的集合问题比较简单。需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认 为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在 知识的综合性上,学生应当先学习其他知识,再在集合中综合。建议把“数学的基本运算”作为高考 数学复习的起点,学生花 1 个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得 的。数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》
选涂其他答案标号.不能答在试题卷上.
3.本卷共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
参考公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.(5 分)(1﹣ )6(1+ )4 的展开式中 x 的系数是(
A.﹣4
B.﹣3
C.3
) D.4
【考点】DA:二项式定理.菁优网版权所有
【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键, 可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件, 并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函
2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)
一、选择题(共 12 小题,每小题 5 分,满分 60 分)
1.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )
A.{0,1}
B.{﹣1,0,1}
C.{0,1,2} D.{﹣1,0,1,2}
2.(5 分)设 a,b∈R 且 b≠0,若复数(a+bi)3 是实数,则( )
A.a<b<c
B.c<a<b
C.b<a<c
D.b<c<a
5.(5 分)设变量 x,y 满足约束条件:
,则 z=x﹣3y 的最小值( )
A.﹣2
B.﹣4
C.﹣6
D.﹣8
6.(5 分)从 20 名男同学,10 名女同学中任选 3 名参加体能测试,则选到的 3 名同学中既有男同
学又有女同学的概率为( )
A.
求每位投保人应交纳的最低保费(单位:元).
21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线 y=kx(k>0) 与 AB 相交于点 D,与椭圆相交于 E、F 两点.
(Ⅰ)若
,求 k 的值;
(Ⅱ)求四边形 AEBF 面积的最大值.
19.(12 分)如图,正四棱柱 ABCD﹣A1B1C1D1 中,AA1=2AB=4,点 E 在 CC1 上且 C1E=3EC. (Ⅰ)证明:A1C⊥平面 BED; (Ⅱ)求二面角 A1﹣DE﹣B 的大小.
A.b2=3a2
B.a2=3b2
C.b2=9a2
D.a2=9b2
3.(5 分)函数 f(x)= ﹣x 的图象关于( )
A.
B.
C.
D.
11.(5 分)等腰三角形两腰所在直线的方程分别为 x+y﹣2=0 与 x﹣7y﹣4=0,原点在等腰三角形的 底边上,则底边所在直线的斜率为( )
A.3
B.2
C.
D.
第 2页(共 11页)
2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)
参考答案与试题解析
一、选择题(共 12 小题,每小题 5 分,满分 60 分)
1.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )
A.{0,1}
B.{﹣1,0,1}
C.{0,1,2} D.{﹣1,0,1,2}
A.
B.
C.(2,5)
D.
10.(5 分)已知正四棱锥 S﹣ABCD 的侧棱长与底面边长都相等,E 是 SB 的中点,则 AE、SD 所成 的角的余弦值为( )
第 1页Байду номын сангаас共 11页)
18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费 a 元,若投保人在购买保险的 一年度内出险,则可以获得 10 000 元的赔偿金.假定在一年度内有 10 000 人购买了这种保险,且 各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金 10 000 元的概率为 1﹣ 0.999 . (Ⅰ)求一投保人在一年度内出险的概率 p; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为 50 000 元,为保证盈利的期望不小于 0,
S(0,0, ),E
,
=
,
=(﹣1,﹣1,﹣ )
【考点】KC:双曲线的性质.菁优网版权所有 【专题】11:计算题.
∴cos<
>=
故选:C.
【分析】根据题设条件可知:
,然后由实数 a 的取值范围可以求
出离心率 e 的取值范围. 【解答】解: 因为 是减函数,所以当 a>1 时
, ,
【点评】本题主要考查多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能力, 属中档题.
的离心率 e 的取值范围是( )
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.(5 分)设向量
,若向量
与向量
共线,则λ=
.
14.(5 分)设曲线 y=eax 在点(0,1)处的切线与直线 x+2y+1=0 垂直,则 a=
.
15.(5 分)已知 F 是抛物线 C:y2=4x 的焦点,过 F 且斜率为 1 的直线交 C 于 A,B 两点.设|FA|
所以 2<e2<5,即
,
8.(5 分)若动直线 x=a 与函数 f(x)=sinx 和 g(x)=cosx 的图象分别交于 M,N 两点,则|MN|
的最大值为( )
A.1
B.
C.
D.2
【考点】H2
:正弦函数的图象;H7
:余弦函数的图象. 菁优网版
权所有
【分析】可令 F(x)=|sinx﹣cosx|求其最大值即可.
【考点】LM:异面直线及其所成的角.菁优网版权所有 【专题】11:计算题;35:转化思想. 【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相
关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.
【解答】解:建立如图所示坐标系,
令正四棱锥的棱长为 2,则 A(1,﹣1,0),D(﹣1,﹣1,0),
5.(5 分)设变量 x,y 满足约束条件:
,则 z=x﹣3y 的最小值( )
A.﹣2
B.﹣4
C.﹣6
D.﹣8
第 3页(共 11页)
【考点】7C:简单线性规划.菁优网版权所有 【专题】11:计算题.
【分析】我们先画出满足约束条件:
的平面区域,求出平面区域的各角点,然后将角点
坐标代入目标函数,比较后,即可得到目标函数 z=x﹣3y 的最小值. 【解答】解:根据题意,画出可行域与目标函数线如图所示, 由图可知目标函数在点(﹣2,2)取最小值﹣8 故选:D.
【考点】1E:交集及其运算.菁优网版权所有 【分析】由题意知集合 M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算
法则进行计算. 【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3}, ∴M∩N={﹣1,0,1}, 故选:B. 【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.
B.
C.
D.
7.(5 分)(1﹣ )6(1+ )4 的展开式中 x 的系数是( )
A.﹣4
B.﹣3
C.3
D.4
8.(5 分)若动直线 x=a 与函数 f(x)=sinx 和 g(x)=cosx 的图象分别交于 M,N 两点,则|MN|
的最大值为( )
A.1
B.
C.
D.2
9.(5 分)设 a>1,则双曲线
12.(5 分)已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为 2,
则两圆的圆心距等于( )
A.1
B.
C.
D.2
A.y 轴对称
B.直线 y=﹣x 对称 C.坐标原点对称 D.直线 y=x 对称
4.(5 分)若 x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则( )
3a2b﹣b3=0⇒b2=3a2 故选:A. 【点评】本题考查复数的基本运算,是基础题.
3.(5 分)函数 f(x)= ﹣x 的图象关于( )
A.y 轴对称
B.直线 y=﹣x 对称 C.坐标原点对称 D.直线 y=x 对称
【考点】3M:奇偶函数图象的对称性.菁优网版权所有 【分析】根据函数 f(x)的奇偶性即可得到答案. 【解答】解:∵f(﹣x)=﹣ +x=﹣f(x)
【解答】解:由题意知:f(x)=sinx、g(x)=cosx
令 F(x)=|sinx﹣cosx|= |sin(x﹣ )|
当 x﹣ = +kπ,x= +kπ,即当 a= +kπ时,函数 F(x)取到最大值
故选:B. 【点评】本题主要考查三角函数的图象和函数解析式的关系.属基础题.
9.(5 分)设 a>1,则双曲线
【解答】解:由题意知本题是一个古典概型, ∵试验发生的所有事件从 30 名同学中任选 3 名参加体能测试共有 C303 种结果, 满足条件的事件是选到的 3 名同学中既有男同学又有女同学共有 C201C102+C202C101 种结果, ∴由古典概型公式得到
,
故选:D. 【点评】本题考查的是古典概型,可以从它的对立事件来考虑,概率教学的核心问题是让学生了解
>|FB|,则|FA|与|FB|的比值等于
.
16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,
写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件①
;
充要条件②
.
(写出你认为正确的两个充要条件)
三、解答题(共 6 小题,满分 70 分) 17.(10 分)在△ABC 中,cosB=﹣ ,cosC= . (1)求 sinA 的值 (2)设△ABC 的面积 S△ABC= ,求 BC 的长.
2.(5 分)设 a,b∈R 且 b≠0,若复数(a+bi)3 是实数,则( )
A.b2=3a2
B.a2=3b2