河北省保定市竞秀区2019-2020学年八年级上学期期末数学试题(word无答案)
河北省2019-2020学年八年级第一学期期末考试数学试卷

河北省2019-2020学年八年级第一学期期末考试数学试卷 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是( )A. B. C. D.2.如图1,边长为2的正方形ABCD 与正方形A B C D ''''关于x 轴对称,若点A 的坐标为(1,1),则点D '的坐标为( )A.(-1,-3)B.(1,-3)C.(-1,3)D.(1,3)3.一个多边形的内角和等于它的外角和,则该多边形是( )A.三角形B.四边形C.五边形D.六边形4.下列计算结果不正确的是( )A.()3233()ab ab b ÷-=-B.2(2)2x x y x xy -+=-+C.40.0002085 2.08510-=⨯D.219300111444n ⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭5.若等腰三角形的周长为16,一边长为4,则它的另两边长为( )A.6,6B.6,4C.4,8D.6,6或4,8 6.若关于x 的方程223ax a x =-的解为1x =,则a 的值为( ) A.12 B.12- C.2 D.-27.下列各式因式分解不正确的是( )A.2(1)a b ab ab a -=-B.22244(2)x xy y x y -+=-C.222()x a x a -=-D.23()2()()(322)x y y x x y x y ---=--+8.如图2,已知射线OM ,以点O 为圆心,任意长为半径画弧,交射线OM 于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么AOB ∠的度数是( )A.30°B.45°C.60°D.90°9.下列各式计算结果相同的是( )①2(21)a --;②(21)(21)a a ---+;③(21)(21)a a +-;④24(21)a -A.①②B.③④C.①④D.②③10.积极推行节能减排,倡导绿色出行,“共享单车”、“共享助力车”先后上市,为人们出行提供了方便王老师骑“共享助力车”去距离家8千米的单位上班时,比骑“共享单车”少用10分钟,已知他骑共享助力车”的速度是骑“共享单车”的15倍.若设王老师骑“共享助力车”上班需x 分钟,根据题意可列方程为( ) A.881.510x x ⨯=- B.88 1.510x x =⨯- C.88 1.510x x =⨯+ D.881.510x x⨯=+ 11.如图3,已知50ACB AC BC ∠=︒=,,则1∠的度数为( )A.105°B.115°C.120°D.130°12.老师在黑板上写了一个分式的正确计算结果,随后用手遮住了原分式的一部分,如图4所示则被遮住的部分是( )A.11a a -+B.11a a -+C.311a a ++D.311a a -++ 13.如图5,若x 为正整数,则表示22(21)144121x x x x +-++++的值的点落在( )A.段①B.段②C.段③D.段④414.如图6,在ABC 中,9015B C DE ∠=︒∠=︒,,垂直平分AC ,若4AB =,则CD 的长为( )A.3B.4C.6D.815.点A 在∠MON 的一边上,,P Q 分别是,OM ON 上的动点,当点,P Q 处于如图7所示的位置时,AP PQ +的值最小,此时点,A A 关于OM 对称,若PB PQ =,则下列结论中不正确的是( )A.AP A P '=B.A Q ON '⊥C.AOB AA Q '≅D.40A '∠=︒16.如图8,ABC 与ADE 都是等腰直角三角形,若,BC BD BE BD ==平分CBE ∠,则下列结论中正确的有( )①BA 垂直平分DE ;②ABD ACE ≌;③BCE 是等边三角形;④150CDE ∠=︒A.1个B.2个C.3个D.4个二、解答题17.按要求完成下列各小题.(1)因式分解:2123b -;(2)先化简,再求值:22951442m m m m -⎛⎫÷- ⎪+++⎝⎭,其中2m =.18.如图11,点,,,B C E F 在同一条直线上,,,B E ACDF AB DE ∠=∠=.(1)求证:AC DF =; (2)若,AM DN 分别是ABC 和DEF 的角平分线,求证:AM DN =.19.数学课上老师出了一题:用简便方法计算972的值,喜欢数学的王涵做出了这道题他的解题过程如图12所示,老师表扬王涵积极发言的同时,也指出了解题中的错误.(1)你认为王涵的解题过程中,从第___________步开始出错;(2)请你写出正确的解题过程;(3)用简便方法计算:222019201940402020-⨯+.20.如图13-1,已知BD 是ABC 的角平分线,AE BD ⊥,交BD 的延长线于点E.(1)若722:3ABC C ADB ∠=︒∠∠=,:.①求C ∠和DAE ∠的度数②求证:BD AD =;(2)如图13-2,AO 平分BAC ∠,请直接写出OAE ∠与C ∠之间的数量关系.21.某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元,现有以下三种施工方案.A :由甲队单独完成这项工程,恰好如期完工;B :由乙队单独完成这项工程,比规定工期多6天;C :由甲、乙两队,剩下的由乙队单独做,恰好如期完工小聪同学设规定工期为x 天,依题意列出方程:1155166x x x x -⎛⎫⨯++= ⎪++⎝⎭(1)请将C 中被墨水污染的部分补充出来;(2)求甲、乙两队单独完成这项工程各需多少天?(3)在不耽误工期的情况下,你认为哪种施工方案较节省工程款,说明你的理由.22.如图14,在四边形ABCD 中,90ABC C ∠=∠=︒,点E 在边BC 上,且BD 垂直平分AE ,交AE 于点O.(1)求证:ABO EBO ≌;(2)求证:CD AB CE =+;(3)若28,7ABED S CD ==四边形,求线段CE 的长度.23.在ABC 中,120AB AC BAC AD BC =∠=︒⊥,,,点,E F 分别在,AB AC 上(1)如图15-1,若90AED AFD ∠=∠=︒,则EDF ∠=____度,DEF 是_____三角形;(2)如图15-2,若180AED AFD ∠+∠=︒,试判断DEF 的形状,并证明你的结论;(3)如图15-3,已知120MON OP ∠=︒,平分MON ∠,且1OP =,若点G,H 分别在射线,OM ON 上,且PHG 为等边三角形,则满足上述条件的PHG 有__________个.三、填空题24.如果分式22x x +-有意义,那么x 的取值范围是__________. 25.如图9,在等边三角形ABC 中,6,AC AEB ADC =∠=∠.(1)若2AD =,则CE 的长度为_________.(2)CPE ∠的度数为___________.26.如图10,点,,D E F 在ABC 的边BC 上,且22ADC AEB B C ∠=∠=∠=∠.(1)图中有_________个等腰三角形;(2)若AF 是ABC 的高线,且6DF BC =,则BAE ∠的度数为__________.参考答案1.答案:C解析:2.答案:B解析:3.答案:B解析:4.答案:B解析:5.答案:A解析:6.答案:B解析:7.答案:C解析:8.答案:C解析:9.答案:D解析:10.答案:D解析:11.答案:B解析:12.答案:A解析:13.答案:C解析:14.答案:D解析:15.答案:D解析:16.答案:D解析:17.答案:(1)()()32121b b +-(2)32m m ++;54解析:18.答案:(1)AC DFACB DFE ∴∠=∠在ABC 和DEF 中,B E ACB DFE AB DE ∠=∠∠=∠=⎧⎪⎨⎪⎩,,,ABC DEF ∴≌AC DF ∴=(2)由(1)可知ABC DEF ≌CAB FDE ∴∠=∠又AM DN ,分别是ABC 和DEF 的角平分线,1122.CAM CAB FDE FDN ∴∠=∠=∠=∠又ACB DFE AC DF ∠=∠=,AMC DNF ∴≌AM DN ∴=解析:19.答案:(1)二;(2)22229710031002100339409=-=-⨯⨯+=()(3)1解析:20.答案:(1)①C ∠的度数为72°,DAE ∠的度数为18°; ②7236ABC C BAD ∠=∠=︒∴∠=︒,由①可知36ABD ∠=︒BAD ABD BD AD ∴∠=∠∴=,;(2)2OAE C ∠=∠解析:21.答案:(1)合作5天;(2)甲、乙两队单独完成这项工程分别需30天和36天;(3)方案23060A ⨯=:(万元);方案25 1.53055C ⨯+⨯=:(万元),施工方案C 较节省工程款. 解析:22.答案:(1)∵BD 垂直平分AE ,AO EO ∴=90BOA BOE ∠=∠=︒ AB BE =Rt Rt ABO EBO ∴≌(2)由(1)可得AB BE ABO EBO =∠=∠, 90ABC ∠=︒45EBO ∴∠=︒又90C ∠=︒45BDC EBO ∴∠=∠=︒ BC CD ∴=CD BE CE AB CE ∴=+=+(3)线段CE 的长度为3 解析:23.答案:(1)60;等边;(2)DEF 是等边三角形; 过点D 分别作DM AB ⊥于点M DN AC ⊥,于点N . ∵在四边形AEDF 中, 120BAC ∠=︒180AED AFD ∠+∠=︒ 60EDF ∴∠=︒AB AC AD BC =⊥, ∴AD 平分BAC ∠DM AB DN AC ⊥⊥, DM DN ∴=180AED AFD ∠+∠=︒ 180AED MED ∠+∠=︒ MED AFD ∴∠=∠ 又90DME DNF ∠=∠=︒ DME DNF ∴≌ DE DF ∴=60EDF ∠=︒∴DEF 是等边三角形;(3)无数.解析:24.答案:2x ≠. 解析:25.答案:(1)4;(2)60°解析:26.答案:(1)4;(2)90°解析:。
河北省保定市2019届数学八上期末试卷

河北省保定市2019届数学八上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.已知关于x 的方程22x mx +-=3的解是正数,那么m 的取值范围为( ) A .m >-6且m≠-2B .m <6C .m >-6且m≠-4D .m <6且m≠-22.若关于x 的分式方程6155x kx x-+=--有增根,则k 的值是( ) A .1-B .2-C .2D .13.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .2019 4.在下列各式中,运算结果为x 2的是( )A .x 4-x 2B .x 6÷x 3C .x 4⋅x -2D .(x -1)25.下列因式分解正确的是( ) A .a 2+8ab+16b 2=(a+4b )2 B .a 4﹣16=(a 2+4)(a 2﹣4) C .4a 2+2ab+b 2=(2a+b )2D .a 2+2ab ﹣b 2=(a ﹣b )26.38181-不能被( )整除. A .80B .81C .82D .837.等腰三角形是轴对称图形,它的对称轴是( ) A .底边上的垂直平分线 B .底边上的高 C .腰上的高所在的直线 D .过顶点的直线8.已知的坐标为,直线轴,且,则点的坐标为( )A. B.或C.D.或9.如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A.15B.12.5C.14.5D.1710.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,D 、E 分别为AB 、AC 边上的中点,则DE 的长为( )A.2B.3D.411.如图,已知∠CAB=∠DBA ,添加下列某条件,未必..能判定△ABC ≌BAD 的是( )A .AC=BDB .AD=BC C .∠l=∠2D .∠C=∠D12.如图1,已知AB=AC ,D 为∠BAC 的角平分线上面一点,连接BD ,CD ;如图2,已知AB=AC ,D 、E 为∠BAC 的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB=AC ,D 、E 、F 为∠BAC 的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第12个图形中有全等三角形的对数是( )A .80对B .78对C .76对D .以上都不对 13.△ABC 的三条边分别为5、x 、7,则x 的取值范围为( ) A .5<x <7B .2<x <12C .5≤x≤7D .2≤x≤1214.如图,直线l 1//l 2,∠1=55°,∠2=65°,则∠3为( )A .60°B .65°C .55°D .50°15.下列选项中,有稳定件的图形是( )A .B .C .D .二、填空题16.某校为了准备“迎新活动”,用700元购买了甲、乙两种小礼品260个,其中购买甲种礼品比乙种礼品少用了100元.(1)购买乙种礼品花了______元;(2)如果甲种礼品的单价比乙种礼品的单价高20%,求乙种礼品的单价.(列分式方程解应用题) 17.因式分解24100x -=________________. 【答案】()()455x x -+.18.如图,在3×3的正方形网格中,∠1+∠2+∠3+∠4+∠5=_____.19.一个多边形的内角和是它的外角和的4倍,这个多边形是______边形.20.如图,在ABC △中,AB AC =,108BAC ︒∠=,AB 的垂直平分线DE 分别交AB 、BC 于点D ,E ,则BAE ∠=________.三、解答题21.先化简22x 8x 16121x 2x 2x x 2x 4-+⎛⎫÷--- ⎪+++⎝⎭,然后从-2≤x≤2范围内选取一个合适的整数作为x 的值代入求值. 22.因式分解: (1)(x+3)2-16; (2)x 4-18x 2+81.23.在如图所示的方格纸中,(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1.(2)说明△A 2B 2C 2可以由△A 1B 1C 1经过怎样的平移变换得到?(3)以MN 所在直线为x 轴,AA 1的中点为坐标原点,建立直角坐标系xOy ,试在x 轴上找一点P ,使得PA 1+PB 2最小,直接写出点P 的坐标.24.如图,已知点D ,E 分别是△ABC 的边BA 和BC 延长线上的点,作∠DAC 的平分线AF ,若AF ∥BC .(1)求证:△ABC 是等腰三角形;(2)作∠ACE 的平分线交AF 于点G ,若∠B =40°,求∠AGC 的度数. 25.在中,,点,分别是边,上的点,点是一动点.记为,为,为.(1)若点在线段上,且,如图1,则_____________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.【参考答案】一、选择题二、填空题16.(1)400;(2)2.5元/个.17.无18.225°19.十20.36°三、解答题21.4(4)x x-+;当x=1时,原式=-45.22.(1)(x+7)(x-1)(2)(x-3)2(x+3)223.(1)见解析;(2)△A2B2C2可以由△A1B1C1向右平移6个单位,向下平移2个单位得到;(3)作图见解析,点P的坐标为(1,0).【解析】【分析】(1)依据轴对称的性质,即可得到△ABC关于MN对称的图形△A1B1C1;(2)依据△A2B2C2与△A1B1C1的位置,即可得到平移的方向和距离;(3)连接AB2,交x轴于P,连接A1P,依据两点之间,线段最短,即可得到PA1+PB2最小,进而得到点P 的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)△A2B2C2可以由△A1B1C1向右平移6个单位,向下平移2个单位得到;(3)如图,连接AB2,交x轴于P,连接A1P,则PA1+PB2最小,此时,点P的坐标为(1,0).【点睛】本题考查了轴对称﹣最短距离问题以及利用轴对称变换作图,熟练运用两点之间线段最短的性质定理和轴对称的性质作出图形是解题的关键.24.(1)证明见解析;(2)70°【解析】【分析】(1)根据AF平分∠DAC得出∠DAF=∠CAF,再根据AF∥BC求得∠DAF=∠B,∠CAF=∠ACB则可证明△ABC是等腰三角形;(2)根据AB=AC,∠B=40°,可求出∠ACE的角度,再根据CG平分∠ACE求出,则利用AF∥BC求出∠AGC的度数.【详解】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=70°.【点睛】本题主要考查了角平分线及平行线的性质,熟练掌握角平分线、平行线的性质及等腰三角形的判定定理是解题的关键.25.(1);(2);(3)。
完整word版,2019-2020年八年级数学上册期期末质量检查数学试卷及答案

10 .若 x + 2 + 寸y —3 = 0,贝U xy =A .B .C .如图, AOC 也CBOD ,/ C 与/ D 是对应角,AD=10cm, OD=OC=m ,那么 OB 的长是( )A . 8 cmB . 10 cmC . 2 cmD .无法确定5 .矩形具有而一般平行四边形不一定具有的性质是()A .对角线相等B .对角相等C .对角线互相平分D .对边相等6 .如图,「QAB 绕点O 逆时针旋转80得到 OCD ,若/ A= 110 , / D= 40 •,则/ AOD 的度数是( )A . 30B . 40C . 50D . 60二、填空题(每题 3分,共36分)在答题卡上相应题目的答题区域内作答7. ______________________________ 用计算器比较大小:3 11 5。
(填“ >”,“<”或 “=”号)38. __________________________________________________ —个正方体木块的体积是 64 cm ,则它的棱长是 ________________________________________ c m 。
mnm n9. 右 x =3 , x =2,贝U x 二 ___________________ 。
2019-2020年八年级数学上册期期末质量检查数学试卷及答 温馨提示:请在答题卡上相应题目的答题区域内作答,否则不得分1. 、选择题(每题 4分, 9的算术平方根是( 共24分):在答题卡上相应题目的答题区域内作答)2. 3. B .3D . .3F 列运算正确的是( 3,2 5 A . a a a 2 3B . a aC . (a 2b 3)3 二 a 5b 6,2、36D . (a ) aF 列图形中不是 中心对称图形的是(D .AC 与BD 是对应边,AC= 8 cm,4. B第6题21在菱形ABCD 中, AC=4cm BD=3cm 则菱形的面积是 ____________ cm 。
最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

八年级(上)期末数学模拟试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C.D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= .17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= °.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A ,B 所对应的实数分别是1和,∴AB=﹣1,∵点B 与点C 关于点A 对称,∴AC=AB ,∴点C 所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B .12.如图,在6×6的正方形网格中,点A ,B 均在正方形格点上,若在网格中的格点上找一点C ,使△ABC 为等腰三角形,这样的点C 一共有( )A .7个B .8个C .10个D .12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB 的长,然后分别从BA=BC ,AB=AC ,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC ,则符合要求的有:C 1,C 2共2个点;②若AB=AC ,则符合要求的有:C 3,C 4共2个点;③若CA=CB ,则符合要求的有:C 5,C 6,C 7,C 8,C 9,C 10共6个点. ∴这样的C 点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2 .【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6 km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= 2 .【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为 5 .【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= 30 °.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠D CB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= 65 °.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE ﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得:+30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= 60 °,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。
冀教版2019-2020学年八年级上册数学期末考试试卷I卷

冀教版2019-2020学年八年级上册数学期末考试试卷I卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形是中心对称图形的是()A .B .C .D .2. (2分)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2-8x+15=0的一个实数根,则该三角形的面积是()A . 12或B . 6C . 6或2D .3. (2分)如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A . (C,5)B . (C,4)C . (4,C)D . (5,C)4. (2分)如图,D、E、F分别为Rt△ABC中AB、AC、BC的中点,AB=2,则DC 和EF的大小关系是()A . DC>EFB . DC<EFC . DC=EFD . 无法比较5. (2分)如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形()对.A . 4对B . 5对C . 6对D . 7对6. (2分)如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C 在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B 和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为()A . y=﹣ xB . y=﹣C . y=﹣D . y=﹣x7. (2分)以直角三角形的三边为边长分别向外作正方形,已知其中两个正方形的面积分别为20和16,则第三个正方形的边长为()A .B . 4或6C . 或4D . 2或68. (2分)在平面直角坐标系中,一次函数y=-3x+1的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共8题;共9分)9. (1分)如图,在平面直角坐标系中,直线y=﹣ x+2分别交x轴、y轴于A、B 两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是________.(填一个即可)10. (1分)如图∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4=________.11. (2分)函数y=kx(k≠0)的图象过P(﹣3,3),则k=________ ,图象过________ 象限.12. (1分)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= ,则图中阴影部分的面积为________.13. (1分)如图,在△ABC中,AB=4,BC=6,∠B=60°.将△ABC沿射线BC的方向向右平移2个单位后得到△A′B′C′,连接A′C,则△A′B′C′的面积为________14. (1分)如图,在△ABC中,BC=1,点P1 , M1分别是AB,AC边的中点,点P2 ,M2分别是AP1 , AM1的中点,点P3 , M3分别是AP2 , AM2的中点,按这样的规律下去,PnMn的长为________(n为正整数).15. (1分)如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则 =________.16. (1分)如图,在平面直角坐标系中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D ,两边分别交函数y1=(x>0)与y2=(x>0)的图像于B、F和E、C ,若四边形ABCD是矩形,则A点的坐标为________.三、解答题 (共8题;共70分)17. (8分)画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)①将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′②利用网格在图中画出△ABC的中线CD,高线AE;(2)△A′B′C′的面积为________.(3)在平移过程中线段BC所扫过的面积为________.(4)在右图中能使的格点P的个数有________个(点P异于A).18. (5分)如图,OE平分∠AOB,且EC⊥OA,ED⊥OB,垂足分别是C、D.(1)求证∠1=∠2;(2)求证:OE是线段CD的垂直平分线.19. (10分)某物流公司承接A,B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?20. (5分)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
2019-2020冀教版八年级数学上册期末考试测试卷附答案

(2) 求出铺设水管最少的总费用是多少?
参考答案
一、选择题:(每小题2分,共24分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
D
C
B
D
B
C
C
A
D
C
二、填空题:(每小题3分,共18分)
13
14
15
16
17
18
(1,-2)
7
( +1)
三、解答题:(本大题共58分)
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
得分
评卷人
26.(本小题满分10分)【根据八年级数学学习点津上册第64页能力测评第1题改编】
如图13,两个村庄在河的同侧,两村到河的的距离分别是AB=1千米,BD=3千米,CD=3千米。现要在河边CD建一水厂,向A,B两村输送自来水,铺设水管的工程费为每千米2万元。请你CD在上选择水厂的位置,使铺设水管的总费用最省。
A.30°B.30°或150°C.60°或120°D.150°
8.已知直角三角形的两边长为3、4则第三边长为()【根据八年级数学学习点津上册第63页选择题第4题改编】
A.5B. C.5或 D.
9.如图1,已知AB=AC,AB的垂直平分线MN交AC于点D,并且△BCD的周长为5,BC=2。则AB=()【根据八年级数学上册第74页第7题改编】
(x,y)
(2x,y)
A()
A′()
B(0,0)
B′()
河北省保定市2020版八年级上学期数学期末考试试卷(I)卷

河北省保定市2020版八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·点军期中) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2019九上·西城期中) 如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是()A . △DEF是△ABC绕点O顺时针旋转90°得到的B . △DEF是△ABC绕点O逆时针旋转90°得到的C . △DEF是△ABC绕点O顺时针旋转60°得到的D . △DEF是△ABC绕点O顺时针旋转120°得到的3. (2分) (2020八下·舞钢期末) 若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A . 4B . 6C . 8D . 104. (2分)下列计算正确的是()A .B .C .D .5. (2分) (2019八上·眉山期中) 下列因式分解正确的是()A .B .C .D .6. (2分)下列作图语言规范的是()A . 过点P作线段AB的中垂线B . 过点P作∠AOB的平分线C . 在直线AB的延长线上取一点C,使AB=ACD . 过点P作直线AB的垂线7. (2分) (2020七下·衢州期末) 抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产万个口罩,则由题意可列出方程A .B .C .D .8. (2分)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A . 50°B . 60°C . 70°D . 80°9. (2分) (2017八下·吉安期末) 若解分式方程 = 产生增根,则m=()A . 1B . 0C . ﹣4D . ﹣510. (2分) (2019七上·象山期末) 定义一种新运算:,则的值A . 5B . 8C . 7D . 6二、填空题 (共5题;共5分)11. (1分) (2020八下·金山月考) 方程的根是________12. (1分) (2016八上·海门期末) 数0.000001用科学记数法可表示为________.13. (1分)(2010·希望杯竞赛) 如果a,b,c都是质数,且b+c=13,c2-a2=72,则a+b+c=________。
保定市八年级上学期期末数学试卷

保定市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选一选,比比谁细心 (共8题;共16分)1. (2分) (2019八上·白云期末) 下列各图形中,是轴对称图形的是()A .B .C .D .2. (2分)下列调查适合抽样调查的是()A . 审核书稿中的错别字B . 对某社区的卫生死角进行调查C . 对八名同学的身高情况进行调查D . 对中学生目前的睡眠情况进行调查3. (2分)下列数中是无理数的是()A .B .C . π﹣3.14D .4. (2分)已知等腰三角形两边长是8cm和4cm,那么它的周长是()A . 12cmB . 16cmC . 16cm或20cmD . 20cm5. (2分)不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A . y=2x2B . y=-xC . y=-2xD . y=x6. (2分)(2018·河北模拟) 如图,已知∠O=30°,点B是OM边上的一个点光源,在边ON上放一平面镜.光线BC经过平面镜反射后,反射光线与边OM的交点记为E,则△OCE是等腰三角形的个数有()A . 1个B . 2个C . 3个D . 3个以上7. (2分) (2017八下·福清期末) 如图,点A,D分别在两条直线y=3x和y=x上,AD//x轴,已知B,C都在x轴上,且四边形ABCD是矩形,则的值是()A .B .C .D .8. (2分)如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A . (-2,0)B . (4,0)C . (2,0)D . (0,0)二、填一填,看看谁仔细 (共10题;共14分)9. (2分) (2016八上·无锡期末) 25的平方根是________;64的立方根是________.10. (4分)将下列各数填入相应的集合中.﹣7,0,,﹣22 ,﹣2.55555…,3.01,+9,﹣2π.+10%,4.020020002…(每两个2之间依次增加1个0),无理数集合:{________…};负有理数集合:{________…};正分数集合:{________…};非负整数集合:{________…}.11. (1分)为了创建文化校园,某初中l1个班级举行班级文化建设比赛,学校设置了5个获奖名额,得分均不相同.若知道某班的得分,要判断该班能否获奖,只需知道这11个班级得分的________ .12. (1分)如图,已知AD=BC,则再添加一个条件________ (只填一种),可证出△ABC≌△BAD.13. (1分)如图,已知函数y=ax+b和y=kx的图象交于点P ,则根据图象可得,关于x , y的二元一次方程组的解是________.14. (1分)(2017·浦东模拟) 如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE=________.15. (1分)(2017·微山模拟) 如图,点D是等边△ABC内一点,DA=8,BD=10,CD=6,则∠ADC的度数是________.16. (1分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中________的可能性较小.17. (1分)如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:________18. (1分)一次函数y=(m+2)x+3﹣m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是________.三、解答题 (共7题;共86分)19. (10分)观察下列各等式及验证过程.= ,验证 = = = ;= ,验证: = = = ;= ,验证: = = = .(1)按照上述三个等式及其验证过程的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为正整数)表示的等式,并证明.20. (21分) (2017八下·启东期中) 为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数合格率优秀率男生28795%40%女生7.92 1.99896%36%根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?21. (8分) (2016八上·南开期中) 在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2________;B2________;C2________.22. (10分) (2020九下·盐城月考) 如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.23. (10分) (2016八上·蓬江期末) 已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.24. (15分)(2017·都匀模拟) 在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.25. (12分) (2019八上·黄陂期末) 在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2-2ab+b2+(b-4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=________,b=________;(2)如图1,P为OC上一点,连接PA,PB.若PA=B0,∠BPC=30°.求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示).参考答案一、选一选,比比谁细心 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填一填,看看谁仔细 (共10题;共14分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共86分)19-1、19-2、20-1、20-2、20-3、20-4、20-5、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共12 页第12 页共12 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省保定市竞秀区2019-2020学年八年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 下列各数中,属于无理数的是()
A.B.1.414C.D.
(★) 2 . 下列几组数,不能作为直角三角形的三边长的是()
A.8,15,17B.4,6,8C.3,4,5D.6,8,10
(★★) 3 . 如图,直线 l 1∥ l 2,被直线 l 3、 l 4所截,并且 l 3⊥ l 4,∠1=44°,则∠2等于()
A.56°B.36°C.44°D.46°
(★) 4 . 下列式子,表示4的平方根的是()
A.B.42C.﹣D.±
(★) 5 . 如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣3
(★) 6 . 解方程组时,①-②,得( )
A.-3t=3B.-3t=-1C.9t=3D.9t=1
(★) 7 . 下列四个命题中,真命题有()
①两条直线被第三条直线所截,内错角相等;②三角形的一个外角大于任何一个内角;③如果
和是对顶角,那么;④若,则.
A.1个B.2个C.3个D.4个
(★) 8 . 点 E( m, n)在平面直角坐标系中的位置如图所示,则坐标( m+1, n﹣1)对应的点可能是()
A.A点B.B点C.C点D.D点
(★★) 9 . 下列计算,正确的是()
A.B.C.D.
(★★) 10 . 把△ABC各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的()
A.B.
C.D.
(★★) 11 . 如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )
A.B.C.D.
(★★) 12 . 已知是整数,当取最小值时,的值是( )
A.5B.6C.7D.8
(★) 13 . 某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()
①若这5次成绩的平均数是8,则;
②若这5次成绩的中位数为8,则;
③若这5次成绩的众数为8,则;
④若这5次成绩的方差为8,则
A.1个B.2个C.3个D.4个
(★★★★) 14 . 在平面直角坐标系中,点 A(﹣3,2), B(3,5), C( x, y),若AC∥ x轴,则线段 BC的最小值及此时点 C的坐标分别为()
A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)
(★★) 15 . 某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津
乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种
出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()
A.B.
C.D.
(★) 16 . 将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:)所示.则桌子的高度
图1图2
A.B.C.D.
二、填空题
(★★) 17 . 64的立方根是 _______ .
(★) 18 . 小华将升旗的绳子从旗杆的顶端拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆的处,发现此时绳子末端距离地面,则旗杆的高度为______
.
(★★) 19 . 如图,在平面直角坐标系中,点在直线上,过点作
轴于点,作等腰直角三角形(与原点重合),再以为腰作等腰直角三角形,以为腰作等腰直角三角形;按照这样的规律进行下去,那么的
坐标为______.的坐标为______.
三、解答题
(★) 20 . (1)计算:
(2)解方程组:
(★) 21 . 如图,已知∠ ABC+∠ ECB=180°,∠ P=∠ Q.求证:∠1=
∠2.
(★★) 22 . 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;
(2)请作出△ABC关于y轴对称的△A'B'C';
(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A 1B 1C 1;则点A 1的坐标为 _____;点B 1的坐标为 ______,
(★★) 23 . 车间有20名工人,某一天他们生产的零件个数统计如下表:
生产零件
91011121314151617
的个数
(个)
工人人数
116422211
(人)
(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
(★)24 . “低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:______;______;______.
(2)求线段所在直线的解析式.
(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(★★) 25 . 亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
(★★) 26 . 定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点,例如:,,当点
满足,时,则点是点,的融合点.
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式;
②在给定的坐标系中,画出①中的函数图象;
③若直线交轴于点.当为直角三角形时,直接写出点的坐标.。