三相异步电动机的启动特性

合集下载

三相异步电动机的起动方法与特性ppt(共103页)

三相异步电动机的起动方法与特性ppt(共103页)

6、三相笼型转子异步电动机的起动
• 直接起动:电流大、起动转矩不大。不能在转 子绕组中串电阻或电抗。

I'rs
Us RsR'r 2XsX'r 2
Scr
R'r Rs2 XS X'r 2
T ma x4 3p fRs
U s2 Rs 2X sX 'r 2
电机的电磁转矩和其转速的关系。
• 物理表达式:
TemCTmI2' co2 s'
• •
参实数用表表达达式式::Tem2m fp(R1Rr' )U 2s 2 R (SX r' 1Xr' )2
Tem
2Tmax S S cr
S cr
S
2、固有的机械特性:
当 U 1U 1 N ;f15H 0;z 且电机定子 和转子电路中不外接电阻(电抗、电容)时
二、鼠笼式三相异步电动机的 起动方法
1、关于电动机起动
• 电机起动:电机从不工作状态到正常工作状态的过程。 • 问题
– 起动电流 – 起动转矩 – 起动时间
• 起动限制条件
– 起动转矩Tst≥1.1TN – 电机容许最大电流 – 电源容量 – 每小时最大起动次数
2、电动机的直接起动
• 直接起动:电机在静止状态下直接施加额定电压实施 的起动过程。
5、电动机的起动方法
• 直流他励电机
– 降低电枢电压起动 – 电枢回路串电阻起动
• 三相感应电机
– 降低电源电压起动 – 绕线式感应电机转子串电阻起动 – 特殊起动方式
• 绕线式转子串频敏电阻起动(属转子串电阻起动) • 深槽和双鼠笼电机的起动(属转子串电阻起动) • Y-Δ起动(属降低电压起动) • 定子串电抗器起动(属降低电压起动)

三相异步电动机的起动与调速实验报告

三相异步电动机的起动与调速实验报告

三相异步电动机的起动与调速实验报告实验报告:三相异步电动机的起动与调速一、实验目的1.学会使用三相异步电动机进行起动和调速实验;2.理解三相异步电动机的工作原理和特性;3.掌握控制电源频率和电压对电动机起动和调速的影响。

二、实验原理1.三相异步电动机的起动三相异步电动机的起动可以分为直接起动、通过降压启动器起动和通过自耦变压器起动等几种方式。

实验中我们采用的是直接起动方式。

直接起动是将三相电源直接接到电动机的定子绕组上,通过电源的三相电流激励定子绕组产生磁场,使得电动机启动转矩产生,从而实现电机的起动。

2.三相异步电动机的调速三、实验装置和仪器1.三相异步电动机:用于实现起动和调速实验。

2.控制电源:用于提供三相交流电源,调整电源频率和电压。

3.电压表和电流表:用于测量电源电压和电流。

4.转速计:用于测量电动机转速。

5.手动控制开关。

四、实验步骤1.连接实验电路:将三相异步电动机与控制电源、电压表和转速计连接起来,根据电路图正确接线。

2.起动实验:将控制电源调至合适的频率和电压,打开电源开关,记录电动机的起动时间,并观察电动机的起动转矩和转速情况。

3.调速实验:保持电动机运行状态,通过改变控制电源的频率和电压,逐渐增大或减小转速,同时记录相应的电源频率和电压。

五、实验结果与分析1.起动实验结果:记录电动机的起动时间,并观察电动机的起动转矩和转速情况。

2.调速实验结果:通过改变控制电源的频率和电压,记录相应的转速和电源频率和电压,并绘制转速和电源频率、电压的关系图。

六、实验结论通过实验我们可以得到以下结论:1.三相异步电动机可以通过改变电源频率和电压来实现起动和调速;2.电源频率和电压对电动机起动和调速有直接的影响;3.控制电源的频率和电压可以调整电动机的转速;七、实验总结通过本次实验,我深入了解了三相异步电动机的起动和调速原理和特性。

在实验中,我掌握了使用三相异步电动机进行起动和调速的操作方法,并学会了通过改变电源频率和电压来调整电动机的转速。

三相异步电动机的基本工作原理和结构

三相异步电动机的基本工作原理和结构

三相异步电动机的基本工作原理和结构三相异步电动机是一种常见的电动机类型,广泛应用于各个领域。

它的基本工作原理和结构对于了解电动机的工作原理和性能具有重要意义。

一、基本工作原理三相异步电动机的基本工作原理是利用电磁感应和电磁力相互作用的原理。

它由定子和转子两部分组成。

1. 定子:定子由三个相位相隔120度的绕组组成,每个绕组被连接到一个相位的交流电源上。

当交流电源通电时,定子的绕组中会产生交变电磁场。

2. 转子:转子由导体材料制成,通常是铜或铝。

转子内部的导体形成了一组绕组,称为转子绕组。

转子绕组与定子绕组之间存在磁场的相互作用。

当交流电源通电后,定子绕组中的交变电磁场会感应出转子绕组中的电流。

由于定子绕组和转子绕组之间存在磁场的相互作用,转子绕组中的电流会产生电磁力,使转子开始旋转。

由于定子绕组中的电流是交变的,所以转子会不断地受到电磁力的作用,从而保持旋转。

二、结构特点三相异步电动机的结构特点主要包括定子、转子和机壳三部分。

1. 定子:定子通常由一组三相绕组和铁芯组成。

绕组通过固定在定子槽中的方法固定在铁芯上。

绕组的数量和连接方式与电机的功率和转速有关。

2. 转子:转子一般由铁芯和绕组组成。

转子绕组通常是通过槽和导条的形式固定在铁芯上。

转子绕组的数量和连接方式也与电机的功率和转速有关。

3. 机壳:机壳是电机的外壳,通常由铸铁或铝合金制成。

机壳的作用是保护电机内部的部件,同时起到散热和隔离的作用。

三、工作特性三相异步电动机具有一些特殊的工作特性。

1. 转速:三相异步电动机的转速与电源的频率和极数有关。

当电源频率恒定时,电动机的转速与极数成反比。

这意味着可以通过改变电源频率或改变电动机的极数来实现不同的转速要求。

2. 启动特性:三相异步电动机的启动通常需要较大的起动电流。

为了降低启动时的电流冲击,通常采用起动装置,如星角启动器或自耦变压器。

3. 转矩特性:三相异步电动机的转矩与电动机的电流成正比,并且与电动机的功率因数有关。

三相异步电机的启动方法

三相异步电机的启动方法

三相异步电机的启动方法
三相异步电机的启动方法有直接启动方法、自动起动方法和星角转子启动方法。

直接启动方法是最简单、最常用的启动方法。

它是将三相异步电动机的三个定子绕组直接接在电网上,通过接通电网电源,给电动机施加合适的电压和频率,使其转动起来。

直接启动方法的特点是启动简单、成本低,并且启动时间短,但启动电流大,会对电网产生较大的冲击。

自动起动方法是通过使用电动机保护器、起动器和其他起动装置来实现的。

这种方法是将电动机与电源通过起动器相连,通过起动器的操作,可以使电动机按照设定的启动方式进行启动。

自动起动方法可以实现电动机的远程控制和自动化操作,适用于对电动机的启动过程有要求的场合。

星角转子启动方法是通过改变电动机的定子绕组综合电阻和综合电感,使得电动机在启动过程中产生适当的起动转矩,使其能够正常启动。

星角转子起动方法主要通过在电动机的转子综合电阻电路中并联一个星角转子,通过改变星角转子的接线方式,可以改变电动机的启动转矩和电流特性。

星角转子启动方法适用于电动机启动转矩较大的场合,可以实现平稳启动和减小启动时的冲击。

总结起来,直接启动方法是最简单、常用的启动方法,但启动电流大;自动起动方法可以远程控制和实现自动化操作;星角转子启动方法适用于启动转矩较大的
场合。

在实际应用中,应根据具体情况选择合适的启动方法,以满足电动机的启动要求,提高电动机的效率和使用寿命。

电机学 chap10三相异步电动机的起动和调速

电机学 chap10三相异步电动机的起动和调速

斜槽
对谐波磁场,相 当于分布绕组的 作用
槽配合
定转子一阶齿谐波
Z1 1 Z2 1
p
p
即:Z1 Z2 , Z1 Z2 2 p
为要消除齿谐波同步转矩,定子齿数与
转子齿数不应相等,它们之间的差数也 不应等于极数。
异步电动机的调速与制动
一、异步电动机调速方法
异步电动机的转速
n 60 f 1 s
第10章 异步电动机的起动、 调速和制动
异步电动机的起动性能
1. 起动电流倍数 2. 起动转矩倍数 3. 起动时间 4. 起动时能量消耗与发热 5. 起动设备的简单性和可靠性 6. 起动中的过渡过程
一、起动电流和起动转矩
起动:从禁止不动到加速到工作转速的过程
要求:在起动时有较大的起动转矩(倍数),较小 的起动电流(倍数)
内层鼠笼有较大的漏抗,电流较小,功率因数较 低,所产生的电磁转矩也较小。
外层鼠笼仅有非常小的漏抗,电流较大,且电阻 较大,起动时所产生的电磁转矩也较大。层鼠笼 又称起动鼠笼。
2.起动过程结束后
转子电流的频率很小,内层鼠笼的漏抗很小, 两个鼠笼转子的电流分配决定于电阻。
内层鼠笼电阻较小,电流较大,运行时在产生 电磁转矩方面起主要的作用,内层鼠笼称为运 行鼠笼。
•由于电流的分布不均匀,等效槽导体的 有效面积减小——集肤效应使槽导体电阻 增加;
•集肤效应作用使槽漏磁通有所减少,转 子漏抗也有所减少,二者均促使起动转矩 增大,改善了起动特性。
•启动瞬间,由于磁路饱和,转子漏抗将 明显减小。
等效截面
深槽式异步电动机
2.正常运行时 在正常运行时,由于转子电流的频率很低,槽导体的 漏抗比电阻小得多,槽中电流将依电阻而均匀分布, 转子电阻恢复到固有的直流电阻。

三相异步电动机连续控制电路

三相异步电动机连续控制电路

三相异步电动机连续控制电路一、引言三相异步电动机是工业生产中最常用的电动机之一。

它具有结构简单、使用可靠、运行平稳等特点,被广泛应用于各种机械设备中。

在实际应用中,为了满足不同的工艺要求和实现自动化控制,需要对三相异步电动机进行连续控制。

本文将介绍三相异步电动机连续控制电路的相关知识。

二、三相异步电动机基础知识1. 三相异步电动机的结构和工作原理三相异步电动机由定子和转子两部分组成。

定子上布置着三个对称排列的同心圆形线圈,称为定子绕组。

转子上也布置着类似的线圈,称为转子绕组。

当通过定子绕组通以交流电时,在定子内形成旋转磁场,磁场旋转速度等于供电频率除以极对数。

由于转子中也存在磁场,因此在磁场作用下,转子会受到一个旋转力矩,并随着旋转磁场而旋转。

2. 三相异步电动机的运行特性三相异步电动机具有以下运行特性:(1)起动特性:三相异步电动机的起动需要通过一定的方法来实现,常用的方法有直接启动、降压启动和星-三角启动等。

(2)空载特性:当三相异步电动机处于空载状态时,其转速会略高于额定转速。

(3)负载特性:当三相异步电动机处于负载状态时,其转速会下降,但不会低于额定转速。

三、三相异步电动机连续控制电路1. 三相异步电动机连续控制原理三相异步电动机连续控制是指通过改变电源对电机的供电方式和供电参数,来实现对电机的运行状态进行调节。

常用的控制方式有调速、正反转和制动等。

其中调速是最常见的一种控制方式。

2. 三相异步电动机调速控制原理调速是通过改变供电频率或改变供电电压来实现对三相异步电动机转速进行调节。

常用的调速方法有变频调速和降压调速两种。

(1)变频调速变频调速是指通过将交流供电源经过整流、滤波、逆变等处理后,得到一个可变频率、可变幅值的交流输出,从而实现对电机转速的调节。

变频调速的优点是调速范围大,控制精度高,但成本较高。

(2)降压调速降压调速是指通过改变电源对电机的供电电压来实现对电机转速的调节。

常用的降压调速方法有自耦降压启动、稳压变压器降压启动和可控硅降压启动等。

第14章 三相异步电动机的启动及速度调节PPT课件

第14章  三相异步电动机的启动及速度调节PPT课件
14.1 异步电动机的启动性能
启动过程: 指电动机从静止到达正常工作转速的过程。
启动过程特点: 电流一般较大,转矩并不大
原因:开始时候n=0 ,U1
R1
R2' s
2
X 1
X
' 2
2
第1页/共73页
T CT1I2 cos2
功率因数cos2 很低
最初起动瞬间很大的启动电流引起定子 漏阻抗压降增大,主磁通约减少到额定值的一半。 一般情况:
一、转子回路串电阻启动 串入多级电阻,启动过程中采用逐级切除启动电
阻的方法。
第16页/共73页
特点和适用场合
1.起动开始时,使全部电阻均串入转子回路,随着转速 的上升,电磁转矩将减小。
2.为了缩短起动时间,通常随转速上升分级切除部分电 阻,使在整个起动过程中电动机保持有较大的电磁转矩。
3.待起动完毕后,转子绕组便被短路,转入正常运行。
第25页/共73页
2.双鼠笼式异步电动机( Double-squirrel-cage rotor ) 上笼Top bar: 截面小,电阻大 下笼Bottom bar: 截面大,电阻小 下笼交链的漏磁 通比上笼多,漏 抗大
第26页/共73页
(1)起动时 • 转子电流的频率f2=f1,转子漏抗大于转子电阻,
第18页/共73页
工作原理:
• BP实质上是一台只有初级绕组而且铁心损耗较大 的三相变压器。BP的铁耗大就相当于Rm大。而 铁耗与磁通的频率(等于转子频率f2=sf1)的1.3 次方成正比。开始启动时,s较大,故f2较大,Rm 也较大,相当于转子电阻自动增加,则Ist减小、 Tst增大;随着启动过程的进行,n逐渐变大、s逐 渐变小,则f2变小,也就是铁耗减小,所以Rm变 小,相当于转子电阻自动变小。

三相笼型异步电动机启动特性的研究

三相笼型异步电动机启动特性的研究
的影响 。调查 发现 , 步电机参数并 不是常数 , 指 异 并 出了这些参数的变化趋势和大致范围 。 利用异步 电机转子槽 的分 块处 理方法 , 以推 导 可
1 转矩 实用表 达式 绘制 法
三相异步 电动机 的机械 特性 表达形 式有 : 理表 物
达式 、 参数表达 式和实 用表达 式 性 的研 究
谢丽蓉 , 等
三 相 笼 型 异 步 电动 机 启 动特 性 的研 究
Re e r ho h t ru aa t r t f P a e S ure g y c r o s M o os s ac n t e S at p Ch rc e i i o h s q i l s c 3一 r Ca e As n hon u t r

互 留 勇2 关 裸
805 ) 30 1
( 新疆 大 学电 气工程 学院 新 疆 乌鲁木 齐 804 ; 放 军 600部 队 新 疆 乌 鲁木 齐 , 307 解 91 ,

要 :三 相笼 型异 步电动 机 因集肤效 应导 致参 数随 转差率 的改 变而 变化 , 用机 械特 性实用 表 达式 建立 鼠笼式 异 步 电动机 启 动特 采
fo tee p rme tlrs . F rti a e,wih tr u rcia or cine p eso rm h x e i na e uh o sc s h t oq e pa t l re t x rsin,te sat pc a a trsi L v a ial o fr o te c c o h tru h rce t ct eb sc l c nomst h i c r y c r e o tie o te e p rme t. T o e t e sa d s p ro t fte me o r e f d. u v b an d f m h x e r i ns hec r cn s n u e r y o h t d a ev ri i i h i e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机的启动特性
启动转矩:
常见的启动方式:
直接启动(全压启动)
电阻或电抗器将压启动
Y-△将压启动
自耦变压器将压启动
延边三角形启动
1.直接启动
所谓直接启动,就是将电动机的定子绕组通过闸刀开关或接触器直接接入电源,再额定下启动,如图示。

由于直接启动的启动电流很大,因此,在什么
状况下才允许采纳直接启动,主要取决于电动机的果农功率与供电变压器的容量之比值。

直接启动因无需附加设备,且操作和掌握简洁、牢靠、所以,在条件允许的状况下应尽量采纳,考虑到目前在大中型厂矿企业中,变压器的容量已经足够大,因此,绝大数中,小型鼠笼式异步电动机都采纳直接启动。

2.电阻或电抗器降压启动
异步电动机采纳定子串电阻或电抗器的降压启动原理接线图如
图示。

启动时,接触器1KM断开,KM闭合,将启动电阻RST串入定子电路,时启动电流减
小;待转速上升到肯定程度后再将1KM闭合,RST被短接,电动机接上全部电压而趋于稳定运行。

这种启动方法的缺点是:
启动转距随定子电压的平方关系下降,其机械特性见图示,故它只适用于空载或轻载启动的场合。

不经济,在启动过程中,电阻器上消耗能量大,不适用于常常启动的电动机,若采纳电抗器代替电阻器所需设备较贵,且体积大。

3.星型--三角型降压启动
这种启动方法的优点是设备简洁、经济、启动电流小;缺点是启动转距小,且启动电压不能按实际需要调整,故只适用于空载或轻载启动的场合,并只适用于正常运行时定子绕组按三角形接线的异步电动机。

由于这种方法应用广泛,我国规定4KW及以上的三相异步电动机,其定子额定电压为380V,连接方法为三角形。

当电源线电压为380V,它们就能采纳星型—三角形换接启动。

4.延边三角型降压启动
延边三角形启动方法就是在启动时使定子绕组的一部分作三角形连接,另一部分作星型连接,如图示。

从启动时定子绕组连接的图形来看,就似乎将一个三角形延长了一样,因此,称为延边三角形。

这种启动法时启动时将定子绕组接成延边三角形,启动完了绕组换接成图示的三角形。

由于这种启动方法对电动机定子绕组的出线有特别要求,所以用得比较少。

相关文档
最新文档