防反接保护电路

合集下载

用MOS管防电源反接电路原理

用MOS管防电源反接电路原理

用MOS管防电源反接电路原理电源反接,会给电路造成损坏,不过,电源反接是不可避免的。

所以,我么就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的。

一般可以使用在电源的正极串入一个二极管解决,不过,由于二极管有压降,会给电路造成不必要的损耗,尤其是电池供电场合,本来电池电压就3.7V,你就用二极管降了0.6V,使得电池使用时间大减。

MOS管防反接,好处就是压降小,小到几乎可以忽略不计。

现在的MOS管可以做到几个毫欧的内阻,假设是6.5毫欧,通过的电流为1A(这个电流已经很大了),在他上面的压降只有6.5毫伏。

由于MOS管越来越便宜,所以人们逐渐开始使用MOS管防电源反接了。

NMOS管防止电源反接电路:正确连接时:刚上电,MOS管的寄生二极管导通,所以S的电位大概就是0.6V,而G极的电位,是VBAT,VBAT-0.6V大于UGS的阀值开启电压,MOS管的DS就会导通,由于内阻很小,所以就把寄生二极管短路了,压降几乎为0。

电源接反时:UGS=0,MOS管不会导通,和负载的回路就是断的,从而保证电路安全。

PMOS管防止电源反接电路:正确连接时:刚上电,MOS管的寄生二极管导通,电源与负载形成回路,所以S极电位就是VBAT-0.6V,而G极电位是0V,PMOS 管导通,从D流向S的电流把二极管短路。

电源接反时:G极是高电平,PMOS管不导通。

保护电路安全。

连接技巧NMOS管DS串到负极,PMOS管DS串到正极,让寄生二极管方向朝向正确连接的电流方向。

感觉DS流向是“反”的?仔细的朋友会发现,防反接电路中,DS的电流流向,和我们平时使用的电流方向是反的。

为什么要接成反的?利用寄生二极管的导通作用,在刚上电时,使得UGS满足阀值要求。

为什么可以接成反的?如果是三极管,NPN的电流方向只能是C到E,PNP的电流方向只能是E到C。

不过,MOS管的D和S是可以互换的。

这也是三极管和MOS管的区别之一。

mos管防反接保护电路讲解

mos管防反接保护电路讲解

mos管防反接保护电路讲解
1. 电路结构
mos管防反接保护电路是一种常见的电路结构,通常被使用于单片机和其他电子设备中,能够有效地保护设备免受反向电压的损坏。


电路包含多个元件,如二极管、大电容、保险丝和mos管等。

其中mos 管是该电路的核心元件。

2. 反向电压损坏
在使用电子设备时,有时会不小心把电源接反,造成设备受损,
甚至被烧坏。

这种损坏是由于反向电压超过了元件的承受范围,导致
元件损坏而发生的。

因此,在设备的设计中,反向电压保护非常重要。

3. mos管的工作原理
mos管,在正向电压下,可以将电流从源端流到漏端,从而使设备正常工作。

而在反向电压下,其栅极和源端之间的pn结将被反向偏置,此时mos管将被关断,从而防止电流从漏端回流到源端,保护装置。

4. 整个电路的工作流程
当设备的电源连接正确时,mos管导通,正常工作。

当电源反接时,mos管被关断,电流无法流通,反向电压得到保护。

如果mos管发生故障,二极管将起到保护作用,避免电流从漏端
回流到源端,造成设备损坏。

电容的作用是为电路提供额外的电流。

保险丝起着保护电源和其他元件的作用,如果电流超过设定值,将被自动切断。

5. 总结
mos管防反接保护电路是一种重要的电路结构,能够有效地保护电子设备免受反向电压的损坏。

该电路使用简单、成本低廉,也易于维护。

因此,在电子设备的设计中,mos管防反接保护电路值得设计师们深入研究和应用。

几种直流供电防反接保护电路的分析

几种直流供电防反接保护电路的分析

电力电子 • Power Electronics216 •电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】防反接 二极管 MOS 管 继电器直流供电设备的输入反接保护有很多方式可以实现,比如选择具备防插错功能的接插件可以在结构设计层面避免反接,但在很多场合中还是在电路设计中加入防反接电路的更具有可行性。

防反接电路必须具备电路简单可靠性高,成本低廉,本文对目前常用的几种防反接电路进行对比分析,对每种电路适用的场合作出了说明。

1 串联二极管防反接在电路中串联二极管是最为简单可行的方法之一,此方法利用二极管的单相导通性实现电路的防反接,当输入接反时,电路不导通。

在实际应用中,根据输入电压范围和额定电流选择合适的二极管,需要注意在电流较大的情况下二极管的功率和散热。

例如,当电路额定电流为5A 时,二极管的功耗为P=0.7*5=3.5瓦,就算选用压降为0.3V 的肖特基二极管功耗也有1.5瓦。

2 并联二极管防反接此防反接电路采用了一个保险丝和一个反向并联的二极管,电源极性正确,电路正常工作时,由于负载的存在电流较小,二极管处于反向阻断状态,保险丝不会被熔断,如图1 所示。

当电源接反时,二极管导通,此时的电流比较大,就会将保险丝熔断,从而切断电源的供给,起到保护负载的作用。

在选择二极管时需要注意选择合适的反向耐压值。

其优点是保险丝的压降很小,不存在发热问题,成本不高。

但是一旦接反需要更换保险丝,操作比较麻烦。

3 整流桥防反接在直流供电输入端加整流桥,输入的正负端接整流桥的两个AC 端,整流桥的输出端再接入电路的输入端。

在这种情况下,不论直几种直流供电防反接保护电路的分析文/王勤流输入的正负如何接,经过整流桥后输出的电压极性都是正确的,电路都可以正常工作。

但是电路中就会有两个二极管同时在工作,功耗为方案1的2倍,所以在选择整流桥时要注意电压和电流参数。

nmos防反接_原理_概述说明以及解释

nmos防反接_原理_概述说明以及解释

nmos防反接原理概述说明以及解释1. 引言1.1 概述引言部分旨在介绍本篇长文的主题,即NMOS防反接。

本文将详细说明NMOS 防反接的原理、方法和解释。

NMOS防反接是一种必要的电路设计策略,用于保护NMOS(MOSFET的一种形式)不被反向电压损坏。

1.2 文章结构为了展现逻辑性和层次清晰性,本文按照以下结构进行组织:引言部分提供了一个总体概述,紧接着是NMOS防反接原理、概述说明和解释三个主要部分。

每个部分都进一步细分为几个小节,以便更全面地探讨该主题。

1.3 目的文章的目标是向读者介绍和解释NMOS防反接的原理,并提供各种常见的防反接电路方案及其优缺点。

同时,我们还将详细解释如何保护NMOS不受到反向电压损坏,并对电流流向、开关特性以及直流偏置和交流耦合解决方法进行分析和说明。

通过这篇长文,读者将能够全面了解NMOS防反接,并且可以根据自身需求选择合适的设计方案。

以上是“1. 引言”部分的详细内容。

2. NMOS防反接原理:2.1 NMOS工作原理:NMOS(Negative-channel Metal-oxide-semiconductor)是一种常见的场效应晶体管。

它由金属电极、绝缘层和半导体材料构成。

当在栅极施加正电压时,形成电子气,使得通道内的N型半导体导电。

当源极施加正电压,漏极为负电压时,NMOS开启并允许电流通过。

2.2 反接的危害与问题:反接指的是在驱动NMOS过程中,源极与漏极之间的电压方向与NMOS设计要求相反。

如果源极为负电压且漏极为正电压,就会出现反接状况。

这样会导致两个主要问题:首先,会产生大量倒偏击穿电流损坏器件;其次,在大功率情况下可能引起温度升高,并使晶体管失效。

2.3 防止NMOS反接的方法:有几种常见的方法可以防止NMOS发生反接现象:- 使用二级保护回路:可以通过添加二级保护来控制源漏电路方向,以避免外部条件导致的误操作。

- 添加反向并联二极管:在NMOS的漏极和源极之间添加一个并联的反向二极管,这样当出现反接时,电流会通过二极管流回。

24v电源输入防反接过载电路原理

24v电源输入防反接过载电路原理

24v电源输入防反接过载电路原理24V电源输入防反接过载电路原理在电子设备中,电源输入防反接过载电路被广泛应用于保护电路免受反向电压和过载电流的损害。

本文将介绍一种基于24V电源输入的防反接过载电路原理,以及其工作原理和应用场景。

一、原理介绍防反接过载电路的主要功能是防止电源的正负极接反,以及过载电流的流入。

在24V电源输入防反接过载电路中,通常采用二极管和保险丝两种元件来实现。

二、工作原理1. 防反接功能防反接功能是通过二极管实现的。

在电源输入端的正极和负极之间串联一个二极管,使其正向导通,反向截止。

当电源正极和负极接反时,二极管处于反向偏置状态,形成一个高阻抗,阻止电流流入。

2. 过载保护功能过载保护功能是通过保险丝实现的。

在电源输入端的正极和负极之间串联一个合适的保险丝。

当电流超过保险丝额定电流时,保险丝将熔断,切断电路,防止电流过载造成设备损坏。

三、应用场景24V电源输入防反接过载电路广泛应用于需要保护电路免受反向电压和过载电流损害的场景,例如:1. 电子设备:在各种电子设备中,如控制板、开关电源等,防反接过载电路可有效保护设备免受电源接反和过载电流的损害。

2. 汽车电子:在汽车电子系统中,防反接过载电路可防止电池的正负极接反,以及过载电流对汽车电子设备的损坏。

3. 太阳能电池系统:在太阳能电池系统中,防反接过载电路可防止太阳能电池板反向电流流入电池,保护电池免受损坏。

四、总结通过24V电源输入防反接过载电路,可以有效保护电子设备免受反向电压和过载电流的损害。

该电路利用二极管实现防反接功能,通过保险丝实现过载保护功能。

在不同的应用场景下,该电路都能提供可靠的保护机制,确保设备的正常运行。

以上是关于24V电源输入防反接过载电路原理的介绍,希望对读者有所帮助。

通过合理应用防反接过载电路,我们可以提高设备的可靠性和安全性,延长其使用寿命。

mos管加二极管防反接电路

mos管加二极管防反接电路

mos管加二极管防反接电路
MOS管加上二极管可以构成防反接电路,保护电路不受电源反接的损害。

以下是一些常见的实现方式:
1. NMOS防反接电路:在电源正确连接时,电流流过NMOS的体二极管(寄生二极管),由于体二极管压降很小,可以忽略不计。

此时,通过电阻分压网络使得NMOS的栅极电压足以使其导通,从而允许电流通过。

如果电源反接,NMOS则不会导通,从而防止了电流流向负载。

2. PMOS防反接电路:与NMOS类似,PMOS管也可以用于防反接,但连接方式不同。

当电源正确连接时,PMOS的寄生二极管导通,而PMOS管本身也会导通,允许电流流通。

电源接反时,PMOS管不导通,防止了电流流向负载。

3. 二极管防反接:这是最简单的防反接方法,利用二极管的单向导通特性。

但二极管会有一定的压降,例如硅管约0.7V,锗管约0.2-0.3V,这在电压较低的应用中可能不太合适。

此外,在大电流应用中,二极管上的功耗和发热可能会较大。

4. 整流桥防反接:使用四个二极管构成整流桥,无论电源正接还是反接,电路都能正常工作。

但这种方法的缺点与单一二极管防反接相同,且压降是两个二极管的总和。

在选择防反接电路时,需要根据具体的应用场景和要求来决定使用哪种方式。

例如,对于低压或大电流的应用,可能需要考虑压降和功耗的问题。

而对于一些小功率或者对成本敏感的应用,简单的二极管防反接可能就足够了。

(图文)防反接保护电路

(图文)防反接保护电路

防反接保护电路1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。

如下图1示:这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。

以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。

2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。

这些方案的缺点是,二极管上的压降会消耗能量。

输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。

图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在 MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

极性反接保护将保护用场效应管与被保护电路串联连接。

保护用场效应管为PMOS场效应管或NMOS场效应管。

若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。

若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。

一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。

具体N沟道MOS管防反接保护电路电路如图3示图3. NMOS管型防反接保护电路N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。

正接时候,R1提供VGS电压,MOS饱和导通。

防反接,4种常用简单的电路

防反接,4种常用简单的电路

防反接,4种常用简单的电路防反接电路,在电子设计中非常重要,一个好的防反接电路,虽然只是增加了一点点元器件,却可以很好的保护我们的后级电路,下面介绍4种常用简单的电路:二极管防反接电路原理我们一看就懂,利用二极管的单向导电性,实现防反接功能,这种方法简单,安全可靠,成本也最低,但是输出端会有0.7V左右的压降,还有就是如果线路上的电流过大,比如有2A的电流,那么就会一直有1.4W的损耗,发热也非常大,而且,如果反向电压稍微偏大,并非完全截止,会有一个比较小的漏电流通过,使用时需要留足余量。

PMOS管防反接电路上图是PMOS接法的电路,这里简单的说明原理,刚上电时,MOS管的寄生二极管导通,S级电压为VCC-0.6,G级为0,PMOS 导通;当电源反接时,G级为高电平,不导通,保护后级。

实际应用中PMOS 栅极与源级之间再加一个电阻比较好,这种办法也有PMOS跟NMOS之分,都是利用MOS管的寄生二极管以及其导通性,不过NMOS的导通电阻比PMOS小,比PMOS会降低一丢丢功耗,不过还是很小很小了,如果算10毫欧的导通电阻,2A的电流才0.04W的功耗,是非常低了,电源反接后,MOS管就是断路,可以很好的保护后级电路,这种方法也是应用比较广泛的一种电路,推荐使用,实际使用中可以使用NMOS。

整流桥防反接电路上图是桥式整流电路,无论什么级性都能工作,但是导通之后会有两个二极管的压降,发热了也是第一种方式的两倍,有优点但缺点也很明显,除非是一些特殊的场合需要用到,否则不推荐使用。

保险丝+稳压二极管防反接电路上图是保险丝+稳压二极管防反接电路(第四种方法来自CSDN 博客,硬件工程师修炼之路),非常简单,既可以防止反接,又可以防止过压,这个电路设计非常巧妙,下面介绍下其原理:当电源Vin接反时,稳压二极管D1正向导通,负载的负压为二极管的导通电压Vf,Vf一般比较低,不会烧坏后级负载电路。

同时,Vin反接时,D1正向导通,电压主要落在F1上,因此开始时电流会迅速上升,直至超过F1的熔断电流,保险丝F1熔断,电源断开,不会因为电流过大而烧坏D1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。

如下图1示:
这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。

以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为,那么功耗至少也要达到:Pd=2A×=,这样效率低,发热量大,要加散热器。

2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。

这些方案的缺点是,二极管上的压降会消耗能量。

输入电流为2A时,图1中的电路功耗为,图2中电路的功耗为。

图1,一只串联二极管保护系统不受反向极性影响,二极管有的压降
图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功
耗是图1的两倍
MOS管型防反接保护电路
图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,
由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

极性反接保护将保护用场效应管与被保护电路串联连接。

保护用场效应管为PMOS 场效应管或NMOS场效应管。

若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。

若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。

一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。

具体N沟道MOS管防反接保护电路电路如图3示
图3. NMOS管型防反接保护电路
N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。

正接时候,R1提供VGS电压,MOS饱和导通。

反接的时候MOS不能导通,所以起到防反接作用。

功率MOS管的Rds(on)只有20mΩ实际损耗很小,2A的电流,
功耗为(2×2)×=根本不用外加散热片。

解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

VZ1为稳压管防止栅源电压过高击穿mos管。

NMOS管的导通电阻比PMOS的小,最好选NMOS。

NMOS管接在电源的负极,栅极高电平导通。

PMOS管接在电源的正极,栅极低电平导通。

相关文档
最新文档