第二章 实数全章教案-

合集下载

北师大版数学八年级上册2.6《实数》教案

北师大版数学八年级上册2.6《实数》教案
5.培养学生的数据分析观念:让学生在实际问题中运用实数知识,学会分析数据,培养数据分析观念和解决实际问题的能力。
三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。

八年级数学第二章实数教案

八年级数学第二章实数教案

第二章实数1. 认识无理数(第1课时)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.说明:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.说明:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知22a=,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1.满足22a=的a为什么不是整数?释2.满足22a=的a为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣说明:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上说明:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.说明:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思认识无理数(第2课时)本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力. 教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.说明:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a面积s1<a<21<s<41.4<a<1.5 1.96<s<2.251.41<a<1.42 1.9881<s<2.01641.414<a<1.415 1.999396<s<2.0022251.4142<a<1.4143 1.99996164<s<2.00024449归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.说明:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.说明:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.说明:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力. 第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数.例1填空:0.351, 4.96••-,32-, 3.14159, 6, -5.2323332…,3π,…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( )(2)无限小数都是无理数; ( )(3)无理数都是无限小数; ( )(4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( )(A )面积为25的正方形; (B ) 面积为254的正方形; 有理数:有限小数或无限循环小数无理数:无限不循环小数 数整数分数 无理数集合 (5)(C ) 面积为8的正方形; (D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数. 强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp 形式(q ≠0, p ,q 为整数且互质),而无理数则不能. 练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42••-,π,3.1416,32,0,24,2n (1)- , -1.424224222…中,(1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.说明:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?第六个环节:布置作业习题2.2 .教学反思2. 平方根(第1课时)本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的问题情境 初步探究 反馈练习 学习小结 作业布置深入探究必要性.说明:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.说明:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.说明:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.说明:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=; (2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.说明:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.说明:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.说明:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思2. 平方根(第2课时)本节课的教学目标是①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业.第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________.展厅的地面为正方形,其面积49平方米,则边长_ 7_米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画说明.说明 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.说明 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11 解 (1)()2648=±,648∴±的平方根是,8±=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25=±即;(5)11±的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.说明 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,_____,49的平方根是_____;2.2= ,= ,= ,=_______;3.= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.说明 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5+的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b +=①若a,b为ABC∆的两边,求第三边c的取值范围;②若a,b为ABC∆的两边,第三边c等于5,求ABC∆的面积.目的安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节作业布置习题2.4四、教学设计反思3.立方根本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8。

八年级数学上学期第二章实数复习课教案

八年级数学上学期第二章实数复习课教案

八年级数学上学期第二章实数复习课教案教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点教学重难点重点:系统的掌握第二章的知识(掌握实数的意义、分类、混和运算以及比较大小、估算、在数轴上表示无理数)。

难点:1.实数的混和运算;2.在数轴上表示无理数。

教学过程一、出示教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点二、概述本章内容引导学生系统地回顾本章所学的所有内容:本章我们分别学习了6节内容:第一节,数怎么又不够用了。

在这一节中我们引入了无理数,并学习了无理数的概念(问:无理数的概念世什么?)。

第二节,平方根。

在这一节中我们学习了无理数的表示方法、平方根的意义(问:平方根的意义世什么?怎样求一个正数和0的平方根?负数有平方根吗?)。

第三节,立方根。

在这一节中我们学习了一个任意数的立方根(问:立方根与平方根有什么区别?)。

第四节,公园有多宽。

在这一节中我们学习了平方根和立方根的实际运用(问:怎样对一个无理数进行估值?比较大小的方法?)。

第五节,用计算器开方。

在这一节中我们进一步学习了计算器的用法。

第六节,实数。

在这一节中我们学习了实数的意义和分类,以及实数的混合运算(实数怎样分类?)。

三、分类完成目标(一)问题导学一1、理解无理数的意义;2、会区分无理数和有理数练一练1.在实数0.3 ,,0 ,,0.123456 … 中,其中无理数的个数是()A.2B.3C.4D.52.边长为1的正方形的对角线长是()A. 整数B. 分数C. 有理数D. 不是有理数3、下列说法中正确的是( )A.和数轴上的点一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都是无理数4、下列说法正确的是( )A.两个无理数的和是无理数B.有理数与无理数的差都是有理数C.带分数线的数一定是有理数D.开方开不尽 的数是无理数(二) 问题导学二1、理解平方根和立方根的意义 ;2、会运用平方根和立方根的意义解题。

北师大版八年级数学上册第二章《实数》教案

北师大版八年级数学上册第二章《实数》教案

八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。

2.无理数是_________的小数,如_________,_________,_________等都是无理数。

3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。

二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。

师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。

即有理数和无理数统称为实数。

生:也就是说实数可分为有理数和无理数。

师:对!你说的太对啦!实数从定义可分为有理数和无理数。

无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。

师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。

师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。

互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。

师:同学们回答的非常好,-2的倒数是什么?生:是-。

师:的倒数是什么?生:思考回答。

师:实数a的倒数是什么?生:是。

师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。

是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计

北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。

本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。

教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。

二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。

但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。

同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。

三. 教学目标1.理解实数的概念,掌握实数的分类。

2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。

2.实数的运算:加法、减法、乘法、除法、乘方等。

五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。

2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。

3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

4.练习法:布置适量作业,巩固所学知识。

六. 教学准备1.教材:北师大版八年级数学上册。

2.教案:实数教学设计。

3.PPT:实数相关知识点和案例分析。

4.作业:适量实数运算练习题。

七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。

2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。

3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。

4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。

5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。

北师大初中八年级数学上册《第二章实数》教案

北师大初中八年级数学上册《第二章实数》教案

第二章实数第一课时认识无理数教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.3.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.4.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数. [师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数. 我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。

新版北师大八年级上册第二章 《实数》教案

新版北师大八年级上册第二章 《实数》教案

第二章实数2.1.1 认识无理数(第1课时)一、教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a ,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22【释一释】:释1.满足22a =的a 为什么不是整数? 释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.2.1.2 认识无理数(第2课时)三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?1-,0,2,3,…) 有理数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( )有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数无理数集合…(3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形;(D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?51.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.第六个环节:布置作业习题2.2 1.2.3.2.2.1 平方根(第1课时)一、教学目标:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3、2.2.2 平方根(第2课时)一、教学目标①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.二、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25±=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,=_______;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b =①若a ,b 为ABC ∆的两边,求第三边c 的取值范围;②若a ,b 为ABC ∆的两边,第三边c 等于5,求ABC ∆的面积.目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节 作业布置 习题2.42.3.立方根一 、教学目标①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;二、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(.。

北师大版八年级上册第二章实数第二章:2.6实数课时一教学设计

北师大版八年级上册第二章实数第二章:2.6实数课时一教学设计

北师大版八年级上册第二章实数第二章:2.6实数课时一教学设计一、教学目标•知道实数的概念;•理解实数的分类以及它们之间的关系;•能够简单地利用数轴表示实数;•能够将一些常见数用数轴表示,并在此基础上对实数进行初步探讨。

二、教学重点•实数的概念;•实数的分类以及它们之间的关系;•利用数轴表示实数的方法。

三、教学难点•实数的分类和探讨。

四、教学过程1. 更新与导入(5分钟)利用一些易懂的例子,了解学生生活中的实数,比如温度、时间等,引导学生进入本节课的主题。

2. 学习实数(10分钟)1.定义实数;2.实数的分类:有理数、无理数。

3. 探讨实数(25分钟)较多数学知识点需要运用实数,学生需要掌握实数在数轴上的表示方法。

首先进行简单概念介绍,然后让学生探究如下问题:1.怎样表示有理数 -3,-1,0,1,2,3,4;2.有理数与无理数有什么不同;3.无理数用数轴表示。

4. 实践操练(25分钟)需要学生设计一些应用实数的问题,并进行回答和解答。

5. 总结与归纳(5分钟)利用这一时间段,对刚才学生的问题出答案,并让学生了解实数的概念以及实数在数学中的应用。

五、板书设计1. 实数实数的概念、分类、大小关系2. 有理数整数、分数3. 无理数无理数的性质和表示方法4. 数轴表示法有理数与无理数的区别六、课后作业1.完成课堂上的问题;2.完成一些练习题;3.思考生活中还有哪些实数,以及它们应用在哪些方面。

七、教学反思本次课程利用一些生活中常见的例子,将实数的概念介绍给学生,学习了实数分类和探究实数的一些问题,帮助学生更好地理解实数,并在实践中掌握实数的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数1.数怎么又不够用了第一课时 数怎么又不够用了(1)教学目标1.通过拼图活动,让学生感觉无理数产生的实际背景和学习它的必要性。

2.进一步丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数产生感性认识。

重点:对无理数的感识难点:对无理数的认识教学过程一、复习1.什么叫有理数,举出例子。

2.勾股定理的内容?若Rt △ABC 的两个直角边分别是5、12,求它的斜边。

二、创设问题情境,引导学生思考,引入课题出示投影(一)P25页首图文1教师指出:随着人类的认识不断发展,人们发现,现实生活中确实存在不同于有理数的数,本章我们将学习元理数、实数、平方根、立方根的概念,学习利用估算或借助计算器求出一个无理数的近似值,并解决有关的实际问题。

出示课题:数怎么不够用了.三、师生共同参与教学活动,获得生活中大量存在的不是有理数的认识1.拼图活动(1)让学生把准备好的两块边长相同的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(2)鼓励学生充分思考,交流并给予引导。

(3)教师把学生的几种做法在全班展示。

2.对拼图的结果作进一步分析(1)设大正方形的边长为a ,a 满足什么条件?(2)a 可能是整数吗?说说你的理由。

(3)a 可能是以2为分母的分数吗?可能是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,并与同伴交流。

教师鼓励学生充分进行思考、交流,给予适时引导。

学生的回答可能是。

“l 2=1,22=4,32=9……越来越大,所以a 不可能是整数。

”“(21)2=41,(32)2=94……结果都是分数,所以a 不可能是分数。

”“两个相同的最简分数的乘积仍然是分数,所以a 不可能是分数”等。

这里只要学生能进行简单的说理即可。

教师归纳:事实上,在等式a 2=2中,a 既不是整数也不是分数,所以a 不是有理数。

说明在生活中存在着不是有理数的数。

3.做一做出示投影(三):P25页“做一做”内容(1)让学生用勾股定理算出以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?(4)让学生分组交流以上问题后回答。

教师总结:在b 2=5中,b 也不是有理数。

从上面的两个问题中,数a 、b 上确实存在,但都不是有理数。

你们能举出类似的例子吗?四、随堂练习 出示投影(四)P26页随堂练习部分内容。

五、小结在现实生活中大量存在着不是有理数的数。

例如等式a 2=2中,A 既不是整数,也不是分数,它不是我们前面所学过的有理数。

六、作业1.P26页习题1.1;2.试一试;3.阅读P29“读一读”4.选用课时作业设计:如图在Rt △ABC 中,∠B =90°,∠C =30°,AB =2,那么BC 是整数吗?是分数吗?B C第二课时 数怎么又不够用了(2)教学目标1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想。

2.会判断一个数是有理数还是无理数。

重点:理解无理数是无限不循环小数,会判断一个数是有理数还是无理数。

难点:在探索过程中体会无限逼进的思想;有理数与无理数的区别。

教学过程一、创设问题情境.引导学生思考,引入课题1.提出问题:(1)面积为2的正方形的边长满足什么条件,它是有理数吗?(2)面积为2的正方形的边长为多少。

2.让学生说说面积为2的正方形的边长的大至范围。

二、师生共同参与活动,认识无理数是无限不循环小数,体会无限逼近的思想出示投影(l ):P26页图2—2(1)让学生讨论3个正方形的边长之间有怎样的大小关系?让学生回答后教师归纳:从3个正方形来看,我们可以很直观地看出3个正方形的大小关系:1<a <2,那么a 是1点几呢?(2)鼓励学生借助计算器探索边长a 的整数部分是几?十分位是几?百分位部分是几呢?千分位呢?……(3)引导学生整理自己前面探索的思维过程,对于记号“1<a <2”“1<S <4”教师讲清意义和写法。

(4)出示投影(2):小明整理出的表格。

让学生把自己整理的结果与此对比。

(5)教师提出:还能往下算吗?a 可能是有限小数吗?边长a 会不会算到某一位时,它的平方恰好等于2呢?教师让学生交流,回答后归纳:事实上,a =1.41421356…,它是一个无限不循环小数。

如果a 是有限小数,而不是2,所以a 不可能是有限小数。

三、动手做一做,让学生进一步认识无理数是无限不循环小数以会无限逼近的思想1.估计面积为5的正方形的边长b 的值(结果精确到十分位),并用计算器检验。

2.b 的结果精确到百分位呢?结果精确到千分位呢?教师归纳:同样,对于体积为2的正方体,借助计算器,可以得到它的棱长C =1.25992105…,它也是一个无限不循环小数。

(1)议一议把下列各数表示成小数,你发现了什么?3,54,95,458,112。

学生交流后达到共识:有理数总可以用无限小数或无限循环小数表示,反过来,任何有限小数或无限循环小数也都是有理数。

教师给出无理数的概念:无限不循环小数叫做无理数(irrationalnumber )。

除了像上面的数a 、b 、c 是无理数外,我们十分熟悉的圆周率π=3.14159265…也是一个无限不循环小数,因此它也是一个无理数。

再如0.585855888588885…(相邻两个5之间8的个数逐次加1),也是无理数。

(2)想一想①你能找到其他的无理数吗?鼓励学生举出其他无理数的例子,教师给出正确的判断。

②范例例题1:让学生独立完成,教师给出正确的判断。

四、随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,7.3 ,一π,一71,18五、小结(学生回答)1.什么叫无理数?2.有理数与无理数的区别?六、作业1.习题2.2。

2.选用课时作业设计。

第二课时作业设计1.在一2,13.0 ,2 ,717,0.80108中无理数的个数有几个?2.(1)面积为5的正方形的边长a 是有理数吗?(2)估计a 的值(保留4个有效数字)并用计算器验证。

2.平方根第一课时算术平方根教学目标1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根。

2.了解开方运算与乘方运算是逆运算,会利用这个互逆运算关系求某些非负数的算术平方根。

重点:了解数的算术平方根的概念,用根号表示一个数的算术平方根,能求某些非负数的算术平方根。

难点:a是非负数;a是非负数。

教学过程一、创造问题悄景.引出课题l.什么是无理数?举例说明。

2.出示投影(1):P31页图2—3;根据图2一3填空:x2=y2=z2=ω2=3.x,y,z,ω中哪些数是有理数?哪些数是无理数?教师指出:x,y,ω这些数都是无理数,你能表示它们吗?今天我们要学习一个数的算术平方根。

二、师生共同参与活动,了解数的算术平方根的概念及进行相关的计算1.教师给出算术平方根的概念:一般地,如果一个正数的平方根等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为“a”,读作“根号a”。

例如2表示2的算术平方根,特别地,我们规定0的算术平方根是0,即0=0。

问:(1)有了这个规定后a是什么数?人是什么数?学生交流,回答后教师归纳:a是非负数;a是非负数。

就是说,当式子而有意义时,它一定表示一个非负数,即a>0时它有意义。

例a有意义吗?2.讲解范例例1求下列各数的算术平方根:(1)900(2)1(3)49/64(4)14让学生明确开方运算与乘方运算是逆运算,能够利用这个互逆运算关系求某些非负数的算术平方根。

出示投影:P3页例1解答部分例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2。

有一个铁球从19.6米高的建筑物上自由下落,到达地面需要多少时间?解:将h=19.6代人公式h=4.9t2,得t2=4,所以t=4=2(秒),即铁球到达地面的时间需要2秒。

三、随堂练习出示投影:P32页随堂练习内容。

学生交流,回答后教师做出正确回答。

四、小结1.什么叫算术平方根?2.式子人中a 应该满足什么条件?五、作业1.P33页习题2.32.试一试。

3.选用课时作业设计。

第一课时作业设计1²求下列各数的算术平方根。

144,4964,1.69,1082.当x = 时,x 21-有意义。

3.若一个正方形的面积增加25m 2,就与一个边长为13m 的正方形面积相等,求原正方形的边长。

4.Y =2-x 十x -2+2,求2x +3y 的值。

第二课时 平方根教学目标1.了解数的平方根的概念,会用根号表示一个数的平方根。

2.会利用开方运算求某些非负数的平方根。

重点:了解平方根的概念及性质;求某些非负数的平方根。

难点:算术平方根与平方根的区别与联系。

教学过程一、创设情景,引出课题1.复习提问:什么是算术平方根?9的算术平方根是多少?2.组织学生讨论以下问题:(1)9的算术平方根是3,也就是说,3的平方根是9;还有其他的数,它的平方也是9的?(2)平方等于254的数有几个?平方等于0.64的数呢?(3)学生交流后,达成共识,3和一3的平方都等于9,所以9的平方根是±3。

3.议一议:通过举出具体数字的平方根来讨论以下问题(1)一个数有几个平方根;(2)0有几个平方根;(3)负数呢?让学生回答以上问题,教师作出正确判断。

教师根据学生回答归纳:一个正数有两个平方根;0只有一个平方根,它就是0本身;负数没有平方根。

例如16的平方根有两个,分别是4和一4;一9就没有平方根。

4.由“议一议”引出平方根的表示和开平方的定义(1)正数有两个平方根,一个是a 的算术平方根a ,另一个是一a ,它们互为相反数,这两个平方根合起来可以记作±a ,读作“正、负根号a ”。

(2)求一个数a 的平方的运算,叫做开平方(extracticnofsquareroot ),其中a 叫做被开方数。

开方运算与平方运算互为道运算。

5.范例:与求算术平方根类似,非负数的平方根可利用它的逆运算开方运算来求。

例3求下列各数的平方根:(l )64 (2)13149(3)0.0004 (4)(一25)2 (5)11以第(1)题为例,按书写格式书写,并提醒学生士8表示的是8和一8两个数。

让学生独立完成以上剩下的4题,并投影个别学生的答案。

出示投影:P34例3解答过程让学生作比较。

教师小结:(1)一个正数的平方根会有两个结果,它们互为相反数。

这与算术平方根不同。

(2)算术平方根是平方根中正的那个平方根。

6.想一想(1)让学生思考以下问题: ①(64)2等于多少?(12149)2等于多少? ②(2.7)2等于多少? ③对于正数a ,(a )2等于多少?(3)教师板书:(a )2=a (a >0),即一个正数a 的平方根的平方等于它的本身。

相关文档
最新文档