解释原子吸收光谱和原子发射光谱的异同

合集下载

原子发射光谱法_原子吸收光谱法_原子荧光光谱法的比较

原子发射光谱法_原子吸收光谱法_原子荧光光谱法的比较

TECHNOLOGY WIND [摘要]通过三种方法的比较,可以得知不同的分析方法所适用的元素。

本文主要从基本原理,研究对象及温度三个方面进行比较。

[关键词原子发射光谱法;原子吸收光谱法;原子荧光光谱法原子发射光谱法、原子吸收光谱法、原子荧光光谱法的比较赫健(辽宁省有色地质局一0四队测试中心,辽宁营口115007)1基本原理三者从基本原理来看其相同点是:相应能级间的跃迁所得的3种光谱,波长或频率完全相同,而且发射强度、吸收强度、荧光强度与元素性质、谱线特征及外界条件间的依赖有关系基本类似。

因此,原子发射光谱法中的问题,在原子吸收和原子荧光法中也大多同样存在。

2研究对象三者之间也存在根本区别:从3种方法的研究对象来看是有区别的:原子发射光谱法是研究待测元素激发的辐射强度;原子吸收光谱法是研究待测原子蒸气对光源共振线的吸收强度,是属吸收光谱;原子荧光光谱法是研究待测元素受激发跃迁所发射的荧光强度,虽然激发主式与发射光谱法不同,但仍然是属发射光谱。

而原子荧光光谱法既具有发射光谱分析的特点,以与原子吸收法有许多相似之处,因此,介于两者之间,在某些方面兼具两者的优点。

谱线数目不同,复杂程度不同,光谱干扰程度也有很大差别:发射光谱谱线多,由谱线重叠引起的光谱干扰较严重。

由于基态原子密度较其他能级原子密度大,受激吸收机会占优势,因此原子吸收线多限于一些以基态为低能级的共振吸收线,其谱线数目远比发射线少,谱线重叠引起光谱干扰也较少。

由于只有产生受激吸收之后才能产生荧光,因此荧光谱线大多是强度较大的共振线,其谱线数目更少,相对光谱干扰也少。

3温度温度变化对原子发射强度、吸收强度、原子荧光强度的影响不同:激发态原子随温度变化是以指数形式变化,而基态原子数因温度变化引起的变化是很小的,实际上接近于恒定值。

这是由于参加跃迁的低能级的激发能一般很小(基态激发能等于零),玻尔慈曼因子近似等于1,因此原子吸收强度受原子化温度变化的影响,比发射光谱受激发温度影响小。

原子发射、吸收、荧光法之间的比较

原子发射、吸收、荧光法之间的比较

原子发射、吸收、荧光法之间的比较
14级硕5班陈梅锋201421021517
原子发射、吸收、荧光法三者之间既有相同点也有不同点。

下面分别述之:
相同点:三种方法都是利用原子在气体状态下发射或吸收特种辐射所产生的光谱进行元素定性、定量的分析。

基本原理都是由相应能级间的跃迁得到波长或频率完全相同光谱,而且发射强度、吸收强度、荧光强度与元素性质、谱线特征及外界条件间的依赖关系基本类似。

不同点:三种方法的研究对象有所区别:原子发射光谱法是研究待测元素激发的辐射强度,是目前进行元素定性检出的最好方法[1,2];原子吸收光谱法是研究待测原子蒸汽对光源共振线的吸收强度,是属于吸收光谱,这种方法对测量条件的选择要求比较严格[3];原子荧光光谱法是研究待测元素受激发跃迁所发射的荧光强度,虽然激发方式与发射光谱法不同,但仍然是属发射光谱,这种方法检出限低,可同时进行多元素分析[4,5]。

[1]孙友宝,马晓玲,李剑等,电感耦合等离子体原子发射光谱( ICP-AES) 法测定垃圾渗滤液中的多种金属元素[J],环境化学,2014,33(9),1623-1624.
[2]孙友宝,宋晓红,孙媛媛等,电感耦合等离子体原子发射光谱法测定海洋沉积物中的多种金属元素[J],中国无机分析化学,2014,4(3),35-38
[3]曹珺,赵丽娇,钟儒刚,原子吸收光谱法测定食品中重金属含量的研究进展[J],2012,33(7),304-309.
[4]高帅,原子荧光光谱法测定新疆雪菊中微量硒[J],福建分析测试,2014,23(5),56-58.
[5]李刚,胡斯宪,陈琳玲,原子荧光光谱分析技术的创新与发展[J],岩矿测试,2013,32(3),358-376.。

原子发射光谱和原子吸收光谱的区别

原子发射光谱和原子吸收光谱的区别

原子发射光谱和原子吸收光谱的区别
原子发射光谱和原子吸收光谱是研究原子的光谱现象常用的两种方法。

它们的区别主要体现在以下几个方面:
1. 测量对象不同:原子发射光谱是测量原子在受激发后由高能级向低能级跃迁时所发射的光线的现象,而原子吸收光谱则是测量原子从低能级吸收光子跃迁到高能级的过程。

2. 光谱形态不同:原子吸收光谱通常呈现为黑线或者缺失线的形式,称为吸收线,而原子发射光谱则是一系列明亮可见光线的集合,称为发射线,有时也称为亮线谱。

3. 测量方法不同:原子发射光谱常采用光谱仪测量,它通过分离和检测样品发射的不同波长的光线来得到光谱图谱。

而原子吸收光谱则通过测量样品中某个特定波长的光线的吸收强度来得到光谱图谱。

4. 应用方向不同:原子发射光谱常用于分析和确定不同样品中化学元素的存在和浓度,例如在冶金、环境、地球科学等领域。

原子吸收光谱则通常用于测量和分析样品中特定元素的含量,特别是对于微量元素的分析具有重要意义。

总的来说,原子发射光谱和原子吸收光谱分别从不同的角度研究了原子的光谱现象,提供了研究原子量子结构和元素分析的有力工具。

原子吸收光谱和原子发射光谱的区别

原子吸收光谱和原子发射光谱的区别

原子吸收光谱和原子发射光谱的区别根据有关资料,比较完整的解释:原子吸收光谱原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

原子吸收光谱法该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。

在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。

即A=KC 式中,K为常数。

据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。

该法主要适用样品中微量及痕量组分分析。

原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。

其优点与不足:<1> 检出限低,灵敏度高。

火焰原子吸收法的检出限可达到ppb 级,石墨炉原子吸收法的检出限可达到10-10-10-14g。

<2> 分析精度好。

火焰原子吸收法测定中等和高含量元素的相对标准差可<1%,其准确度已接近于经典化学方法。

石墨炉原子吸收法的分析精度一般约为3-5%。

<3> 分析速度快。

原子吸收光谱仪在35分钟内,能连续测定50个试样中的6种元素。

<4> 应用范围广。

可测定的元素达70多个,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。

<5> 仪器比较简单,操作方便。

<6> 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

-原子发射和吸收光谱

-原子发射和吸收光谱

4、光谱定性分析
各种元素原子结构不同, 各种元素原子结构不同,每种元素都发 射自己的特征光谱。 射自己的特征光谱。 试样中所含元素只要达到一定的含量, 试样中所含元素只要达到一定的含量, 都可以有谱线摄谱在感光板上。它是目前进行 都可以有谱线摄谱在感光板上。 元素定性检出的最好方法。 元素定性检出的最好方法。
(Atomic Emission Spectrometry,AES) )
1. 概述
原子发射光谱分析( ),是根据 原子发射光谱分析(AES),是根据 ), 处于激发态的待测元素原子回到基态时发射 的特征谱线对待测元素进行分析的方法。 的特征谱线对待测元素进行分析的方法。
热激发 基态元素M 基态元素 ∆E 特征辐射
发射观 测区
ICP 工作原理
高频电流通过线圈 高频点火装置产生火花形 成载流子(离子与电子) 在电磁场作用下,与 在电磁场作用下, 成载流子(离子与电子) 原子碰撞并使之电离形成更多载流子 感生出 流经闭合圆形路径的涡流 瞬间气体形成最高 温度可达10000K 10000K的稳定的等离子炬 温度可达10000K的稳定的等离子炬 感应线圈 维持等离子炬 载气携带试样气溶胶通过等离 被加热( 6000~7000K)原子化和激发产 子体 被加热(至6000~7000K)原子化和激发产 生发射光谱。 生发射光谱。
原子光谱分析法
•原子发射光谱分析 原子发射光谱分析 •原子吸收光谱分析 原子吸收光谱分析
光谱分析法: 光谱分析法:根据测定物质发射或吸收的 电磁辐射的波长和强度为基础而建立的一 类分析方法。 类分析方法。 • 根据光谱的基本粒子的不同分为: 根据光谱的基本粒子的不同分为: 原子光谱 分子光谱 • 根据获得方式的不同分为: 根据获得方式的不同分为: 发射光谱 吸收光谱

原子发射光谱和原子吸收光谱的区别

原子发射光谱和原子吸收光谱的区别

原子发射光谱和原子吸收光谱的区别
原子发射光谱和原子吸收光谱是光谱学中两种不同的分析技术,它们主要通过原子在光的作用下产生的能级跃迁来获取信息,但它们的原理和应用有所不同。

下面是它们的主要区别:
1.原理:
-原子发射光谱(Atomic Emission Spectroscopy,简称AES):在原子发射光谱中,样品原子首先被激发到高能级状态,然后从高能级跃迁回到低能级,释放出特定波长的光。

这些发射的光经过分光仪的分析,可以得到特定元素的光谱线,从而确定样品中含有的元素种类和浓度。

-原子吸收光谱(Atomic Absorption Spectroscopy,简称AAS):在原子吸收光谱中,样品中的原子通过吸收入射光的能量而跃迁到高能级状态。

入射光的波长通常是特定元素的吸收波长。

吸收光强度与样品中特定元素的浓度成正比,通过测量吸收光强度的变化,可以得到样品中特定元素的浓度信息。

2.应用:
-原子发射光谱广泛用于分析样品中特定元素的存在和浓度,特别适用于多元素分析。

-原子吸收光谱主要用于分析样品中特定元素的浓度,它通常对特定元素的测量更为灵敏和准确。

3.灵敏度:
-原子发射光谱的灵敏度通常较低,对于样品中低浓度的元素可能需要高灵敏度的仪器。

-原子吸收光谱的灵敏度相对较高,可以测量样品中较低浓度的元素。

综上所述,原子发射光谱和原子吸收光谱是两种不同的光谱学分析技术,它们分别通过原子的发射和吸收光来获取样品中特定元素的信息。

原子发射光谱主要用于多元素分析,而原子吸收光谱则更适用于特定元素浓度的准确测量。

原子发射光谱与原子吸收光谱的异同

原子发射光谱与原子吸收光谱的异同

原子发射光谱与原子吸收光谱的异同原子发射光谱与原子吸收光谱是物理学中经常涉及的两个概念。

虽然它们都涉及到了原子的能级结构,但却有着明显的不同。

一、概述原子的能级结构是由原子核的电荷引力和电子电场的相互作用所决定的。

当电子的能量发生改变的时候,能级也会随之发生改变。

这种变化可以通过光的能量来实现。

原子发射光谱和原子吸收光谱就是由此产生的。

二、原子发射光谱原子发射光谱是指在热力学平衡下,通过热激发等方式,让原子从一个能级过渡到另一个能级,产生能量差所对应的频率的光学现象。

因此,当原子从一个能级向更低能级跃迁时,会释放出电磁波,因此它又叫做发射光谱。

三、原子吸收光谱原子吸收光谱是指在原子对特定波长的光敏感的情况下,在这种光的作用下,原子价电子吸收了外界能量,从低能量的基态跃迁到较高能量的激发态,导致谱线减弱或消失的现象。

因此,当原子吸收一个波长符合其跃迁条件的光子时,其价电子可能从一个低能级向更高能级跃迁,因此它又叫做吸收光谱。

四、相同之处这两种光谱都与原子的能级结构有关。

它们都是由外部能量从外界传递到原子内部时引起的。

不同的是,原子发射光谱是当原子由一个高能级转移到一个低能级时,导致的能量释放;而原子吸收光谱则是当原子从低能级吸收足够的能量时以跃迁到高能级的方式来处理的。

五、不同之处从机理上来说,原子发射光谱和原子吸收光谱是截然不同的。

原子发射光谱是能级结构的特殊形式,因为原子从一个高能级向低能级跃迁释放出的光的频率就是原子的能级差。

而原子吸收光谱是光与原子相互作用的结果:能带结构下的电子在吸收光辐射后,光子是被吸收的能量并不会导致光谱中的能级出现变化。

六、结论原子发射光谱和原子吸收光谱都是经典物理学中的关键技术,它们为科学家研究和理解物质和光之间的相互作用过程提供了有用的工具。

这两种光谱的不同之处,反映出原子的能级结构演化的差异,通过它们的比较,我们可以更好地理解原子光谱学的基本原理和内部机制。

原子吸收、原子发射、原子荧光的异同

原子吸收、原子发射、原子荧光的异同
I=acb或lgI=lga+ blgc
If=KC
光源
锐线光源(空心阴极灯)
激发光源(直流电弧、交流电弧、高压火花、ICP)
高强度空心阴极灯和无极放电灯
激发方式
原子化系统
激发光源
原子化系统
组成部件
光源-原子化器-单色器-检测器
光源-分光系统-检测系统
光源-单色器-原子化器-单色器-检测器
排列顺序
所有部件排成直线
班级:13级食检班姓名:王建
原子吸收、原子发射、原子荧光的比较
方法
原子吸收光谱法
原子发射光谱法
原子荧光光谱法



原理
吸收光谱
基态原子吸收特征谱线,产生吸收光谱
发射光谱
基态原子在一定条件下受激发后,发射特征谱线
发射光谱
基态原子吸收光能被激发,再跃迁到基态,同时发射特征谱线(荧光)
定量依据
A = KC
散射光影响较严重,在一定程度上限制了该法的普及和发展测定元素不多(14种)



光谱类型
都是原子光谱 (线光谱)
应用
都是进行元素分析
所有部件排成直线
光源与检测器垂直
应用
微量元素定量(化工、水土、生物、环境)
元素定性、定量、半定量(冶金、采矿)
元素定性,微量、痕量元素,不能给出物质分子结构、价态、和状态等信息②不能用于分析有机物和一些非金属元素
测每一种元素要用专用的灯②难熔元素、非金属元素测定困难③不能同时多元素
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解释原子吸收光谱和原子发射光谱的异同原子吸收光谱是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法。

原子发射光谱是基于原子的发射现象,而原子吸收光谱则是基于原子的吸收现象。

二者同属于光学分析方法。

原子吸收法的选择性高,干扰较少且易于克服。

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。

此法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。

该法主要适用样品中微量及痕量组分分析。

原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。

原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。

在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范围约2个数量级。

这种方法可有效地用于测量高、中、低含量的元素。

1。

相关文档
最新文档