平面直角坐标系测试题及答案
初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.在平面直角坐标系中,点P(x ﹣3,x+3)是x 轴上一点,则点P 的坐标是( )A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)【答案】D【解析】【分析】 首先由正方形ABCD ,顶点A (1,1)、B (3,1)、C (3,3),然后根据题意求得第1次、2次、3次变换后的点C 的对应点的坐标,即可得规律:第n 次变换后的点C 的对应点的为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3),继而求得把正方形ABCD 连续经过2019次这样的变换得到正方形ABCD 的点C 的坐标.【详解】∵正方形ABCD ,顶点A (1,1)、B (3,1),∴C (3,3).根据题意得:第1次变换后的点C 的对应点的坐标为(3﹣1,﹣3),即(2,﹣3), 第2次变换后的点C 的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C 的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n 次变换后的点C 的对应点的为:当n 为奇数时为(3﹣n ,﹣3),当n 为偶数时为(3﹣n ,3),∴连续经过2019次变换后,正方形ABCD 的点C 的坐标变为(﹣2016,﹣3). 故选D .【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点C 的对应点的坐标为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3)是解此题的关键.10.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.12.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(-a ,b ),如f (1,2)=(-1,2);②g (a ,b )=(b ,a ),如g (1,2)=(2,1);③h (a ,b )=(-a ,-b ),如h (1,2)=(-1,-2);按照以上变换有:g (h (f (1,2)))=g (h (-1,2))=g (1,-2)=(-2,1),那么h (f (g (3,-4)))等于A .(4,-3)B .(-4,3)C .(-4,-3)D .(4,3)【答案】C【解析】【分析】根据f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b ),可得答案.【详解】由已知条件可得h (f (g (3,-4)))= h (f (-4,3))= h (4,3)=(-4,-3) 故选:C【点睛】本题考查了点的坐标,利用f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b )是解题关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.。
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(包含答案解析)

一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 4.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 8.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 12.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .16二、填空题13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.15.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.17.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.已知P (a,b ),且ab <0,则点P 在第_________象限.20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题21.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △.22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.正方形的边长为22,0),并写出另外三个顶点的坐标.24.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC 经过一次平移后得到A B C ''', 图中标出了点B 的对应点B '.请利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 及高线CE ;(3)在上述平移中,边AB 所扫过的面积为 .25.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.26.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点” P '的坐标为____________;②若点P 的“k 之雅礼点” P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】解://AB x 轴,5b ∴=,1a ≠-.故答案为C .【点睛】本题主要考查了坐标与图形,即平行于x 轴的直线上的点纵坐标相同,平行于y 轴的直线上的点横坐标相同.2.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.3.C解析:C【分析】直接利用各象限内点的坐标符号得出答案.【详解】解:∵点A (a ,-b )在第三象限,∴a <0,-b <0,∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C .【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.6.B解析:B【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】解:∵−1<0,230,∴点P 在第二象限.故选:B .本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.8.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】-,∵点()3,4-在第二象限,∴点()3,4故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).9.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.10.A解析:A【分析】根据轴对称的性质分别求出P1, P2,P3,P4,P5,P6的坐标,找出规律即可得出结论.【详解】解:∵P(-3,1),∴点P关于直线y=x的对称点P1(1,-3),P1关于x轴的对称点P2(1,3),P2关于y轴的对称点P3(-1,3),P3关于直线y=x的对称点P4(3,-1),P4关于x轴的对称点P5(3,1),P5关于y轴的对称点P6(-3,1),∴6个点后循环一次,∵当n=2019时,2019÷6=336…3,P的坐标与P3(-1,3)的坐标相同,∴2019故选:A.【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.11.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.二、填空题13.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.14.(0﹣1)【分析】设M(xy)根据题意列出方程组然后求解即可解答【详解】解:设M(xy)∵M到ABC的实际距离相等∴∣2﹣x∣+∣2﹣y∣=∣4﹣x∣+∣﹣2﹣y∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M(x,y),根据题意列出方程组,然后求解即可解答.【详解】解:设M(x,y),∵M到A,B,C的“实际距离”相等,∴∣2﹣x∣+∣2﹣y∣=∣4﹣x∣+∣﹣2﹣y∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M(0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键. 15.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 16.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.17.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202 解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.18.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.19.二四【分析】先根据ab <0确定ab 的正负情况然后根据各象限点的坐标特点即可解答【详解】解:∵ab <0∴a >0b <0或b >0a <0∴点P 在第二四象限故答案为二四【点睛】本题主要考查了各象限点的坐标特点解析:二,四【分析】先根据ab <0确定a 、b 的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab <0∴a >0,b <0或b >0,a <0∴点P 在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.20.或【分析】由AB ∥y 轴可得AB 两点的横坐标相同结合AB=3A (32)分B 点在A 点之上和之下两种情况可求解B 点的纵坐标进而可求解【详解】解:∵AB ∥y 轴∴AB 两点的横坐标相同∵A (32)∴B 点横坐标为解析:()3,1-或()3,5【分析】由AB ∥y 轴可得A ,B 两点的横坐标相同,结合AB=3,A (3,2),分B 点在A 点之上和之下两种情况可求解B 点的纵坐标,进而可求解.【详解】解:∵AB ∥y 轴,∴A ,B 两点的横坐标相同,∵A (3,2),∴B 点横坐标为3,∵AB=3,∴当B 点在A 点之上时,B 点纵坐标为2+3=5,∴B (3,5);∴当B 点在A 点之下时,B 点纵坐标为2-3=-1,∴B (3,-1).综上B 点坐标为(3,-1)或(3,5).故答案为(3,-1)或(3,5).【点睛】本题主要考查坐标与图形,运用平行于坐标轴的直线上点的特征解决问题是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)先在坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即可得到△ABC ; (2)先算出A 、B 、C 三点经过平移得到的点坐标,再用(1)的方法即可得到需画三角形.【详解】解:(1)如图,在平面直角坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即得到△ABC ;(2)如上图,由题意可得点的坐标平移公式为: 1123x x y y =+⎧⎨=+⎩, ∴A 、B 、C 经过平移得到的点分别为: ()()()1111,2,0,1,3,0A B C --,∴分别描出111,,A B C 三点再首尾相接即可得到需画三角形.【点睛】本题考查平移作图及三角形定义的综合应用,熟练掌握根据平移方式确定点坐标的方法及三角形的概念是解题关键.22.(1)(2,2)A ,(1,1)B -,(2,2)C --;(2)4.【分析】(1)直接利用已知平面直角坐标系得出各点坐标即可;(2)利用割补法求解即可.【详解】解:(1)如图所示:(2,2)A ,(1,1)B -,(2,2)C --;(2)ABC ∆的面积为:11144131344114222⨯-⨯⨯-⨯⨯-⨯⨯-⨯=. 【点睛】此题主要考查了坐标与图形的性质以及三角形的面积,正确结合图形利用割补法计算三角形的面积是解题关键.23.作图见解析;()2,0-;(2;(0,2-【分析】先找到()2,0A ,根据正方形的对称性,可知A 点的对称点C 的坐标,同样可得出B 和D 的坐标;【详解】 建立坐标轴,使正方形的对称中心为原点,则()2,0A ,()2,0C -, 那么B 的坐标是()0,2,其对称点D 的坐标为()0,2-.【点睛】本题主要考查了正方形的性质和坐标与图形性质,准确判断是解题的关键.24.(1)见解析;(2)见解析;(3)34【分析】(1)首先确定A 、C 两点平移后的位置,再连接即可;(2)利用三角形中线和高的定义画图即可;(3)利用矩形面积减去多余三角形面积即可.【详解】解:(1)如下图所示;(2)如下图所示;连接AA′,BB′,边AB 所扫过的面积为:()()1111787121661172342222⨯-⨯+⨯-⨯⨯-⨯⨯-⨯+⨯=. 故答案为:34.【点睛】此题主要考查了平移变换,关键是正确确定组成图形的关键点平移后的位置. 25.(1)14m n ==-,;(2)4m =-或104n -=,【分析】(1)根据平面直角坐标系中角平分线上点的特征,x 和y 的值相等,可列等式即可求出答案;(2)由PQ ∥x 轴,即点P 和Q 纵坐标有相等,列出等式即可求解即可计算出n 的值,又P 与Q 的距离为3.直线上到一点距离等于定长的点又2个,根据绝对值的意义可列等式,化简即可计算出m 的值.【详解】解:(1)∵P 、Q 两点在第一、三象限角平分线上,∴m+2=3,n -1=-5,解得m=1,n=-4;(2)∵PQ ∥x 轴,∴n -1=3,∴n=4,又∵PQ=3,∴|m+2-(-5)|=3,解得m=-4或m=-10.∴m=-4或-10,n=4.【点睛】本题主要考查平面直角坐标系中点的特征,利用点的特征列出相应的等量关系是解决本题的关键.26.(1)①(-2,-6);②(1,1)(答案不唯一);(2)±1;(3)m=1,n=-2或m=-1,n=2【分析】(1)①根据“k 之雅礼点”的定义即可求出结论;②设点P (a ,b ),由题意可得,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2),利用赋值法令k=1,a=1,求出b 的值即可写出一个符合题意的坐标;(2)由题意可设点P (a ,0),a >0,则点P 的“k 之雅礼点” P '的坐标为(),a ka ,根据等腰直角三角形的定义可得ka = a ,从而求出k 的值;(3)根据k 的值分类讨论,根据一元一次方程解的情况即可得出结论.【详解】解:(1)①由题意可得点P (-1,-3)的“3之雅礼点” P '的坐标为31,1333-⎛⎫-+-⨯- ⎪⎝⎭即P '(-2,-6)故答案为:(-2,-6);②设点P (a ,b ),由题意可得点P 的“k 之雅礼点” P '的坐标,b a ka b k ⎛⎫++ ⎪⎝⎭=(2,2) 即22b a k ka b ⎧+=⎪⎨⎪+=⎩ 可令k=1则a +b=2当a=1时,b=1∴点P 的坐标可以为(1,1)故答案为:(1,1)(答案不唯一);(2)由题意可设点P (a ,0),a >0则点P 的“k 之雅礼点” P '的坐标为(),a ka ∴OP=a ,P P '=ka由P '与P 的横坐标相同,OPP '△为等腰直角三角形 ∴∠OP P '=90°,且OP=P P ' ∴ka = a解得k=±1故答案为±1;(3)当k=-1时,2x mx mn -+=+则()12m x mn -+=+∵该方程有无数个解∴1020m mn -+=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩; 当k=1时,2x mx mn +=+则()12m x mn +=+∵该方程有无数个解∴1020m mn +=⎧⎨+=⎩解得:12m n =-=⎧⎨⎩; 综上:m=1,n=-2或m=-1,n=2【点睛】此题考查的是新定义类问题,掌握新定义、等腰直角三角形的性质和根据一元一次方程解的情况求参数是解决此题的关键.。
【数学】人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)

人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)一、选择题(每小题3分,共30分)1. 若有序数对(3a-1,2b+5)与(8,9)表示的位置相同,则a+b的值为( )A. 2B. 3C. 4D. 52. 如图,小手盖住的点的坐标可能为( )A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)第2题第3题3. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为B(4,150°).用这种方法表示目标C的位置,正确的是( )A. (-3,300°)B. (3,60°)C. (3,300°)D. (-3,60°)4. 把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B 的坐标是( )A. (-5,3)B. (1,3)C. (1,-3)D. (-5,-1)5. 在平面直角坐标系中,点P(2,x2)在( )A. 第一象限B. 第四象限C. 第一或者第四象限D. 以上说法都不对6. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A. 炎陵位于株洲市区南偏东约35°的方向上B. 醴陵位于攸县的北偏东约16°的方向上C. 株洲县位于茶陵的南偏东约40°的方向上D. 株洲市区位于攸县的北偏西约21°的方向上第6题第7题7. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A. (-2,1)B. (2,-2)C. (-2,2)D. (2,2)8. 点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)9. 已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A. 3B. 4C. 5D. 610. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是( )A. (2019,0)B. (2019,1)C. (2019,2)D.(2018,0)二、填空题(每小题3分,共24分)11. 若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.12. 平面直角坐标系内有一点P(x,y),若点P在横轴上,则y ;若点P在纵轴上,则x ;若点P为坐标原点,则x 且y .13. 已知A(-1,4),B(-4,4),则线段AB的长为.14. 若点(m-4,1-2m)在第三象限内,则m的取值范围是.15. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.第15题第16题16. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN.若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是.17. 已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是,点B坐标是,点C坐标是.第17题第18题18. 如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.三、解答题(共66分)19. (8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?20. (8分)如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.21. (9分)某次海战中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?22. (9分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?23. (10分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.24. (10分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.25. (10分)如图,A (-1,0),C (1,4),点B 在x 轴上,且AB =3.(1)求点B 的坐标;(2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)2. 如图,、、这三个点中,在第二象限内的有( )A .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与小华小军小刚1P 2P 3P 1P 2P 3P 1P 2P 1P 3P 1P原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.()6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图 中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据 这个规律,则第 2016 个x y x y 3,23,2--2,3-2,3-点的横坐标为( )A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.14.把面积为10cm 2的三角形向右平移5cm 后其面积为 .15.如图所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.(3)ABCD A AB x C三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19.(10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0).(1)请根据题意在图中建立平面直角坐标系;(2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20.(10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→A(-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5)19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2).(3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,则C(0,3),D(3,3),E(3,0).又因为O(0,0),A(1,3),B(3,1),所以OC=3,AC=1,OE=3,BE=1.AD=DC-AC=3-1=2,BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为4×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 2. 如图,、、这三个点中,在第二象限内的有( )12321232小华小军小刚1P 2P 3PA .、、B .、C .、D .3.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)4.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.() 6.点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上7.如图所示,三架飞机P ,Q ,R 保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P 飞到P'(4,3)位置,则飞机Q ,R 的位置Q',R'分别为( )A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)1P 2P 3P 1P 2P 1P 3P 1P x y x y 3,23,2--2,3-2,3-8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.如图,在方格纸中每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,点C也在小方格的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则点C 的个数为()A.3个B.4个C.5个D.6个10. 如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A. 44B. 45C. 46D. 47二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.12.在平面直角坐标系中,点(3,-5)在第___象限.13.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为___.14.把面积为10cm2的三角形向右平移5cm后其面积为.15.如图所示,如果点A的位置为(-1,0),那么点B的位置为___,点C 的位置为___,点D和点E的位置分别为___、___.(3)16.如图,象棋盘中的小方格均为1个长度单位的正方形,如果“炮”的坐标为(-2,1)(x 轴与边AB 平行,y 轴与边BC 平行),则“卒”的坐标为 .17.如图,矩形ABCD 的边AB=6,BC=8,则图中五个小矩形的周长之和为 .18. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点 的坐标为 __________.三、认真答一答:(本大题共6小题,共66分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19. (10分)如图是某校的平面示意图,已知图书馆、校门口的坐标分别为(-2,2),(2,0). (1)请根据题意在图中建立平面直角坐标系; (2)写出图中其他地点的坐标;(3)在图中标出体育馆(-5,4)的位置.20. (10分)如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4).请根据图中所给信息解决下列问题: (1)A →C ( +3 , +4 );B →C ( +2 , 0 );C → A (-3,-4); (2)如果贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程;(3)如果贝贝从A 处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E 点.ABCD A AB xC21. (10分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到家里,写出路上他经过的地方.22.(10分)某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?23. (12分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.24.(14分)在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个?(3)探究点(-4,3)在第几个正方形的边上?(-2n,2n)在第几个正方形边上(n 为正整数).参考答案1.D;2.D;3.D;4.D;5.C;6.A;7.A;8.B;9.D;10.B;11.(0,0);12.四;13.(-3,2);14.10cm215.(-2,3)、(0,2)、(2,1)、(-2,1).16.(3,2)17. 2818.(3,5) 19.(1)略.(2)行政楼(3,3),实验楼(-3,0),综合楼(-4,-3),信息楼(2,-2). (3)略.20.(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m . (3)略.21.(1)汽车站(1,1),消防站(2,-2)(2)家→游乐场→公园→姥姥家→宠物店→邮局→家22.(1)北偏东40°的方向上有两个目标:敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道敌方战舰B 距我方潜艇的距离. (2)敌方战舰A 和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.23.解:如答图所示,过A ,B 分别作y 轴,x 轴的垂线,垂足为C ,E ,两线交于点D , 则C (0,3),D (3,3),E (3,0).又因为O (0,0),A (1,3),B (3,1), 所以OC=3,AC=1,OE=3,BE=1. AD=DC-AC=3-1=2, BD=DE-BE=3-1=2.则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为×3×1=, △ABD 的面积为×2×2=2, 所以△ABO 的面积为9-2×-2=4. 24.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个. (2)第n 个正方形边上的整点个数为4n 个,所以第20•个正方形的边上整点个数为123212324×20=80(个).(3)第7个正方形边上,第4n 个正方形边上.(│-2n│+│2n│=4n ).人教版初中数学七年级下册第八章《二元一次方程组》检测卷一、选择题(每小题3分,共30分)1. 若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则m 的取值范围是( ) A. m ≠0 B. m ≠3 C. m ≠-3 D. m ≠22. 方程5x +2y =-9与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是( )A. x +2y =1B. 5x +4y =-3C. 3x -4y =-8D. 3x +2y =-83. 用代入法解方程组238,355x y x y ì+=ïïíï-=ïî①②有以下过程,其中错误的一步是( ) (1)由①,得x =8-3y2③;(2)把③代入②,得3×832y--5y =5; (3)去分母,得24-9y -10y =5; (4)解得y =1,再由③,得x =2.5.A. (1)B. (2)C. (3)D. (4)4. 方程组⎪⎩⎪⎨⎧=++=+=+71342z y x z x y x 的解是( )A. 2,2,1x y z ì=ïïï=íïï=ïïî B.2,1,1x y z ì=ïïï=íïï=ïïî C. 2,8,1x y z ì=-ïïï=íïï=ïïî D. 2,2,2x y z ì=ïïï=íïï=ïïî 5. 已知a ,b 满足方程组512,34,a b a b ì+=ïïíï-=ïî则a +b 的值为( )A. -4B. 4C.-2D. 26. 若|m -n -3|+(m +n +1)2=0,则m +2n 的值为( )A. -1B. -3C. 0D. 37. 关于x ,y 的方程组0,3x py x y ì+=ïïíï+=ïî的解是1,,x y ì=ïïíï=ïîV 其中y 的值被“△”盖住了,不过仍能求出p ,则p 的值是( )A. -12B. 12C. -14D. 148. A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A. 6,336x y x y ì+=ïïíï+=ïîB. 6,36x y x y ì+=ïïíï-=ïîC. 6,336x y x y ì-=ïïíï+=ïîD. 6,336x y x y ì+=ïïíï-=ïî9. 某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10. 已知方程组53,54x y ax y ì+=ïïíï+=ïî和25,51x y x by ì-=ïïíï+=ïî有相同的解,则a ,b 的值为( ) A. 14,2a b ì=ïïíï=ïî B. 4,6a b ì=ïïíï=-ïî C. 6,2a b ì=-ïïíï=ïîD. 1,2a b ì=ïïíï=ïî二、填空题(每小题3分,共24分)11. 解二元一次方程组的基本思想方法是“消元”,那么解方程组422,325x y x y ì-=ïïíï+=ïî宜用法;解方程组2,23x yx yì=ïïíï-=ïî宜用法.12. 已知-a x+y-z b5c x+z-y与a11b y+z-x c是同类项,则x=,y=,z=.13. 已知1,2xyì=ïïíï=-ïî是方程2x-ay=3的一个解,则a的值是.14. 如图是一正方体的展开图,若正方体相对面所表示的数相等,则x=,y =.15. 小刚解出了方程组33,2,x yx yì-=ïïíï+=ïîV解为4,,xyì=ïïíï=ïîW因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则V=,W=.16. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.17. 一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为.18. 某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩.请你帮他计算一下,需准备元钱买门票.三、解答题(共66分)19. (8分)解方程组:(1)325, 257;x yx yì+=ïïíï+=ïî①②(2)()() 41312,2.23x y yx yìï--=--ïïíï+=ïïïî20. (8分)3月24日上午8时,2019徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.21. (9分)已知关于x,y的二元一次方程组1,2 4. x yx yì+=ïïíï+=ïî(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b-4a的值.22. (9分)已知方程组4,6ax byax byì-=ïïíï+=ïî与方程组35,471x yx yì-=ïïíï-=ïî的解相同,求a,b的值.23. (10分)甲、乙两人共同解方程组515,42,ax yx byì+=ïïíï-=-ïî①②由于甲看错了方程①中的a,得到方程组的解为3,1;xyì=-ïïíï=-ïî乙看错了方程②中的b,得到方程组的解为5,4.xyì=ïïíï=ïî试计算a2 019+(-110b)2 018的值.24. (10分)某景点的门票价格如下表:。
七年级数学第七章《平面直角坐标系》测试三(附解析)

七年级数学第七章《平面直角坐标系》测试三(附解析)一、单选题1.如图,直角坐标系中,过点A(0,2)的直线a 垂直于y 轴,M(9,2)为直线a 上一点,若P 点从M 出发,以2cm/s 的速度沿着直线a 向左移动;点Q 从原点同时出发,以1cm/s 的速度沿x 轴向右移动,当PQ∥y 轴时,点P 的运动时间为()A.3s B.2s C.1s D.4s2.要将抛物线223y x x =++平移后得到抛物线2y x =,下列平移方法正确的是()A.向左平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位3.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是()A.()7,1-B.()3,1--C.()1,5D.()2,54.点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)6.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)7.在平面坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2018个正方形的面积为()A.5·201732⎛⎫⎪⎝⎭B.5·201832⎛⎫⎪⎝⎭C.5·403632⎛⎫⎪⎝⎭D.5·403432⎛⎫⎪⎝⎭8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时点P 的坐标是()A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)9.如图所示,在平面直角坐标系中,锐角三角形ABC 的三个顶点坐标分别是(,)A a b 、(,)B c d 、(,)C e d ,在直线BC 上有四个点坐标分别是(1,)D a d -、(1,)E a d +、(,)F a d 、(1,)G e d +,则点A 到直线BC 上的最短距离的点是()A.点D B.点E C.点F D.点G10.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(-2,-2)C.(-2,2)D.(2,-2)11.已知点(3,24)A x x +-在第四象限,则x 的取值范围是()A.32x -<<B.3x >-C.2x <D.2x >12.如图,在平面直角坐标系中,已知点B,C 在x 轴上,AB⊥x 轴于点B,DA ⊥AB.若AD=5,点A 的坐标为(-2,7),则点D 的坐标为()A.(-2,2)B.(-2,12)C.(3,7)D.(-7,7)13.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是()A.B.C.D.14.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(0,2)B.(﹣4,0)C.(0,﹣2)D.(4,0)15.在平面直角坐标系内,点()3,5P m m --在第三象限,则m 的取值范围是()A.5m <B.35m <<C.3m <D.3m <-二、填空题16.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______17.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________.18.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足2|2|(2)a b b -+++=C 点坐标为______;BC 与y 轴的交点坐标为_______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根据这个规律,第2025个点的坐标为________.20.已知在平面直角坐标系中,P 点的坐标为(1,4),则在坐标轴上到P 点的距离是21.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是___.22.在平面直角坐标系中,若点M(2,3)与点N(2,y)之间的距离是4,则y 的值是___________.23.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 在第_____象限.26.已知点A (1,0)、B (0,2),点P 在y 轴上,且△PAB 的面积是3,则点P 的坐标是_______.27.如图,已知长方形OABC,动点P 从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P 1(3,0),当点P 第2016次碰到长方形的边时,点P 2016的坐标是_____.28.如果点P(a-1,a+2)向右平移2个单位长度正好落在y 轴上,那么点P 的坐标为__________.29.点A(a 2+1,﹣2﹣b 2)在第_____象限.30.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 20A 21B 21的顶点A 21的坐标是_____.参考答案1.A【分析】可设当PQ∥y 轴时,点P 的运动时间为xs,根据等量关系:AP=OQ,列出方程求解即可.【详解】设当PQ∥y 轴时,点P 的运动时间为xs,依题意有9-2x=x,解得x=3.故当PQ∥y 轴时,点P 的运动时间为3s,故选A.2.D【分析】先将解析式化为顶点式2223(1)2y x x x =++=++,由平移的性质可得2y x =从而得出正确选项.【详解】2223(1)2y x x x =++=++,由平移的性质向右平移1个单位,再向下平移2个单位可得2y x =,故选:D 3.D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案。
函数之平面直角坐标系经典测试题附答案解析

函数之平面直角坐标系经典测试题附答案解析一、选择题1.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.2.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A .(3,1)B .(-1,1)C .(3,5)D .(-1,5)【答案】C【解析】 解:∵正方形ABCD 的边长为4,点A 的坐标为(﹣1,1),AB 平行于x 轴,∴点B 的横坐标为:﹣1+4=3,纵坐标为:1,∴点B 的坐标为(3,1),∴点C 的横坐标为:3,纵坐标为:1+4=5,∴点C 的坐标为(3,5).故选C .点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.3.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A .5B .6C .7D .8【答案】B【解析】【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B .【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.4.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.5.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.6.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是( )A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )【答案】A【解析】【分析】【详解】试题分析:∵平行四边形ABCD 是中心对称图形,对称中心是对角线的交点,而A 、C 关于原点对称,故B 、D 也关于原点对称∴D (-2 ,l ).故选A .考点:平行四边形的性质;坐标与图形性质.7.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.8.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度【答案】A【解析】【分析】先根据A ,B 两点的坐标确定AB 平行于x 轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.13.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L,∴甲乙相遇时的地点是每三个点为一个循环,÷=L,∵202036733∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键. 16.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a,0),B(0,b) ,则顶点C的坐标为()A.(-b,a + b) B.(-b,b - a) C.(-a,b - a) D.(b,b -a)【答案】B【解析】【分析】根据题意首先过点C作CE⊥y轴于点E,易得△AOB≌△BEC,然后由全等三角形的性质,证得CE=OB=b,BE=OA=a,继而分析求得答案.【详解】解:如图,过点C作CE⊥y轴于点E,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBEAB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .【点睛】本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.17.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.18.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.19.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.20.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。
第七章 平面直角坐标系单元测试卷(含答案)
第七章平面直角坐标系单元测试卷一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-42.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为任意实数;B.m=0,n<0C.m为任意实数,n=0;D.m<0,n=03.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,-2)4.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位长度得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()8.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a -10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 015,2)B.(-2 015,-2)C.(-2 016,-2)D.(-2 016,2)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为_________.12.在平面直角坐标系中,将点A(4,1)向左平移_________个单位长度得到点B(-1,1).13.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为_________.14.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足+(y+3)2=0,则点A的坐标是________.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内坐标为________.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l'与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,长阳公园有四棵古树A,B,C,D(单位:米).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来,划为保护区,请你计算保护区的面积.参考答案一、1.【答案】C2.【答案】D解:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.因为点A位于原点的左侧,所以横坐标小于0,即m<0.所以m<0,n=0,故选D.3.【答案】C解:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.【答案】D解:点P(-2,3)沿x轴方向向右平移3个单位长度,即横坐标加上3,纵坐标不变,则Q点的坐标为(1,3),选D.5.【答案】C解:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C.6.【答案】D解:由长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即坐标为(3,3).故选D.7.【答案】D解:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,高为3,所以三角形ABO的面积=×2×3=3.8.【答案】D解:由P,Q在图中的位置可知a<7,b<5,所以6-b>0,a-10<0,故点(6-b,a-10)在第四象限.9.【答案】D解:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4,当a=-1时,P点坐标为(3,3),当a=-4时,P点坐标为(6,-6).10.【答案】B二、11.【答案】(5,2)12.【答案】513.【答案】(-1,3)14.【答案】(2,-2)解:将点A(-1,2)向右平移3个单位长度得到点B的坐标为(-1+3,2),即(2,2),则点B关于x轴15.【答案】二16.【答案】(2,-3)17.【答案】4或-4解:由三角形的面积=底×高×得,5|a|·=10,解得|a|=4,所以a=4或a=-4.此处学生容易只考虑一种情况.18.【答案】3;(1,-1)(答案不唯一)19.【答案】(2,1)解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).20.【答案】(2n,1)解:由图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),…,所以点A4n+1(2n,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)如图.22.解:(1)如图.(2)体育场、市场、超市的坐标分别为(-2,4),(6,4),(4,-2).23.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点横坐标为-1.又点C在l上,∴C(-1,-4).24.解:(1)C1(4,-2).(2)△A1B1C1如图所示.(3)如图,△AOA1的面积=6×3-×3×3-×3×1-×6×2=18---6=6.25.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)如图,E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则S=S-S△OEH-S△FMG-S△HGN=50×60-×10×60-×20×50-×10×50=1 950(平方米),所以保护OMNH区的面积为1 950平方米.。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)一、选择题(本大题共6小题,每小题3分,共18分)1.下列坐标中,在第三象限的是( )A .(4,5)--B .(4,5)-C .(4,5)D .(4,5)- 2.已知点(3,2)P a a +在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(6,0)-D .(6,2) 3.在平面直角坐标系中,将点(,)A x y 向左平移5个单位长度,再向上平移3个单位长度后与点(3,2)B -重合,则点A 的坐标是( )A .(2,5)B .(8,5)-C .(2,1)-D .(8,1)--4.如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( )A .北偏东55°,2kmB .东北方向C .东偏北35°,2kmD .北偏东35°,2km5.若点P (m ,n )在第三象限,则点Q (﹣m ,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为( )A .(1011,0)B .(1011,1)C .(2022,0)D .(2022,1) 二、填空题(本大题共6小题,每小题3分,共18分)7.点A (1,﹣2)到x 轴的距离是 .8.在平面直角坐标系中,若对于平面内任一点(,)a b 有如下变换:(f a ,)(b a =-,)b ,如 (1f ,3)(1=-,3),则(5,3)f -= .9.在平面直角坐标系中,点(a 2+1,﹣1)一定在第 象限.10.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应 点D 的坐标为 .11.已知点P (a ,b )在第三象限,且点P 到x 轴的距离为3,到y 轴的距为5,到点P 的坐标为 .12.在平面直角坐标系中,已知点(2,3)P -,//PA y 轴,3PA =,则点A 的坐标为 .三、(本大题共4小题,每小题6分,共24分)13.建立平面直角坐标系,使点C 的坐标为(4,0),写出点A 、B 、D 、E 、F 、G 的坐标.14.点(2,36)P a a -+到两条坐标轴的距离相等,求点P 的坐标.15.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点”.(1)在点A (﹣2,2),B (,﹣),C (﹣1,5)中,“垂距点”是 ;(2)若D (m ,m )是“垂距点”,求m 的值.16.如图,△ABC 的顶点A (﹣1,4),B (﹣4,﹣1),C (1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A 'B 'C ',且点C的对应点坐标是C '.(1)画出△A 'B 'C ',并直接写出点C '的坐标;(2)若△ABC 内有一点P (a ,b )经过以上平移后的对应点为P ',直接写出点P '的坐标;(3)求△ABC 的面积.四、(本大题共2小题,每小题9分,共18分)17.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.18.三角形ABC与三角形A B C'''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)三角形ABC由三角形A B C'''经过怎样的平移得到?答:.(3)若点(,)P x y是三角形ABC内部一点,则三角形A B C'''内部的对应点P'的坐标为;(4)求三角形ABC的面积.五、(本大题2小题,第19题10分,第20题12分,共22分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O →C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标20.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当三角形P AB的面积为3.2时,求此时P点的坐标;④P点在运动过程中,三角形P AB面积的最大值是.参考答案一、选择题1-6.ACCDAB二、填空题7.28.(﹣5,﹣3)9.四10.(0,3)11.(﹣5,﹣3)12.(﹣2,6)或(﹣2,0)三.解答题13.解:如图所示,以B为坐标原点,BC所在直线为x轴,过点B且垂直于x轴的直线为y 轴建立平面直角坐标系,则A(﹣2,3),B(0,0),D(6,1),E(5,3),F(3,2),G(1,5).14.解:∵点P(a﹣2,3a+6)到两条坐标轴的距离相等,∴a﹣2=3a+6或a﹣2+3a+6=0得a=﹣4或a=﹣1∴(﹣6,﹣6)或(﹣3,3).15.解:(1)根据题意,对于点A而言,|﹣2|+|2|=4,所以A是“垂距点”,对于点B而言,||+|﹣|=3,所以B不是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为:A.(2)由题意可知:,①当m>0时,则4m=4,解得m=1;②当m<0时,则﹣4m=4,解得m=﹣1;∴m=±1.16.解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5﹣×3×5﹣×2×3﹣×5×2=25﹣7.5﹣3﹣5=9.5.17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).18.解:(1)A(1,3),B(2,0),C(3,1),故答案为:(1,3),(2,0),(3,1).(2)三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.故答案为:三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.(3)P′(x﹣4,y﹣2),故答案为:(x﹣4,y﹣2),(4)S三角形ABC=2×3﹣×1×3﹣×1×1﹣×2×2=2.19.解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).20解:(1)∵C(﹣3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE﹣AO=2,∴E(﹣2,0),故答案为:(﹣2,0).(2)①由题意当P(﹣2,2)时,满足条件,此时t=2.故答案为:2.②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t).③当点P在线段BC上时,三角形P AB的面积最大为×BC×OB=×3×2=3,所以三角形P AB的面积为3.2时,P点只能在线段CD上.如图,设此时PD的长为m.∵△P AB的面积=四边形ABCD的面积﹣△PBC的面积﹣△P AD的面积=(3+4)×2﹣×(2﹣m)×3﹣m×4=7﹣3+m﹣2m=4﹣m,∴4﹣m=3.2,m=1.6此时P点的坐标是(﹣3,1.6).④当点P与D重合时,△P AB的面积最大,最大值为×4×2=4,故答案为:4。
七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)
七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学测验卷
《平面直角坐标系》
班级: 姓名: 座号: 评分:
一. 选择题。
(每题3分,共30分)
1. 下列各点中,在第二象限的点是( )
A. (2,3)
B. (2,-3)
C. (-2,-3)
D. (-2,3)
2. 将点A (-4,2)向上平移3个单位长度得到的点B 的坐标是( )
A. (-1,2)
B. (-1,5)
C. (-4,-1)
D. (-4,5)
3. 如果点M (a-1,a+1)在x 轴上,则a 的值为( )
A. a=1
B. a=-1
C. a>0
D. a 的值不能确定
4. 点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )
A. (5,-3)或(-5,-3)
B. (-3,5)或(-3,-5)
C. (-3,5)
D. (-3,-5)
5. 若点P (a ,b )在第四象限,则点M (b-a ,a-b )在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
6. 已知正方形ABCD 的三个顶点坐标为A (2,1),B (5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C ’点的坐标为( )
A. (5,4)
B. (5,1)
C. (1,1)
D. (-1,-1)
7. 三角形ABC 中,A (-1,0),B (5,0),C (2,5),则三角形ABC 的面积为( )
A. 30
B. 15
C. 20
D. 10
8. 点M (a ,a-1)不可能在( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
9. 在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比( )
A. 向右平移了3个单位长度
B. 向左平移了3个单位长度
C. 向上平移了3个单位长度
D. 向下平移了3个单位长度
10. 到x 轴的距离等于2的点组成的图形是( )
A. 过点(0,2)且与x 轴平行的直线
B. 过点(2,0)且与y 轴平行的直线
C. 过点(0,-2)且与x 轴平行的直线
D. 分别过(0,2)和(0,-2)且与x 轴平行的两条直线
二. 填空题。
(每题5分,共30分)
11. 直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y= 。
12. 若点M (a-2,2a+3)是x 轴上的点,则a 的值是 。
13. 已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐
标是 。
14. 已知点Q (-8,6),它到x 轴的距离是 ,它到y 轴的距离是 。
15. 将点P (-3,2)沿x 轴的负方向平移3个单位长度,得到点Q 的坐标是 ,在将Q 沿y 轴正方向平移5个单位长度,得到点R 的坐标是 。
16. 若P (x ,y )是第四象限内的点,且2,3x y ==,则点P 的坐标是 。
三. 解答题。
(每题10分,共40分)
17. 在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求
a的值及点的坐标?
18. 如图,线段AB的端点坐标为A(2,-1),B(3,1)。
试画出AB向左平移4
个单位长度的图形,写出A、B对应点C、D的坐标,并判断A、B、C、D四点组成的四边形的形状。
(不必说明理由)
19. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2),(0,0),并用线段顺次连接各点。
⑴. 看图案像什么?
⑵. 作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原
来相比有什么变化?
20. 在直角坐标系中,画出三角形AOB,使A、B两点的坐标分别为A(-2,-4),
B(-6,-2)。
试求出三角形AOB的面积。
答案:
一. DDBBBCBBDD
二. 11. 3、 12.
3
2
、 13. (3,3)或(6,-6)、 14. 6,8、 15. (-6,2)
(-6,7)、16. (2,-3)
三. 17. a=1、(-1,-1)
18. C(-2,-1)、D(-1,1)、平行四边形
19. 图略(1). 像“鱼”、 (2). 三角形AOB的面积为10。