设计巴特沃斯数字带通滤波器

合集下载

二阶无限增益多路反馈巴特沃斯带通滤波器

二阶无限增益多路反馈巴特沃斯带通滤波器

二阶无限增益多路反馈巴特沃斯带通滤波器摘要:一、巴特沃斯带通滤波器简介1.滤波器原理2.应用场景二、二阶无限增益多路反馈滤波器设计1.结构特点2.设计方法三、反馈网络构建与分析1.反馈网络拓扑结构2.稳定性分析四、滤波器性能仿真与测试1.仿真软件介绍2.性能指标五、应用实例1.信号处理领域2.通信系统中的应用正文:一、巴特沃斯带通滤波器简介1.滤波器原理巴特沃斯带通滤波器是一种以巴特沃斯函数为传递函数的滤波器,具有频率响应平坦、群延迟均匀的优点。

它能在特定的频率范围内,让信号通过,而阻隔其他频率的信号。

2.应用场景巴特沃斯带通滤波器广泛应用于信号处理、通信系统、音频处理等领域,如滤波、降噪、信号分离等。

二、二阶无限增益多路反馈滤波器设计1.结构特点二阶无限增益多路反馈巴特沃斯带通滤波器,其主要特点是具有多个反馈路径,从而提高滤波器的性能。

这种滤波器的反馈网络由多个运放和电阻、电容组成,形成多路反馈结构。

2.设计方法设计二阶无限增益多路反馈滤波器时,首先需确定滤波器的通带频率、阻带频率和截止频率。

然后,根据这些参数,选取合适的巴特沃斯函数作为滤波器的传递函数,并根据反馈网络的拓扑结构设计电阻、电容的值。

最后,通过仿真软件对滤波器的性能进行仿真和测试。

三、反馈网络构建与分析1.反馈网络拓扑结构二阶无限增益多路反馈滤波器的反馈网络主要包括多个运放、电阻和电容。

根据巴特沃斯函数的特性,设计合适的反馈网络拓扑结构,使滤波器在通带内具有较好的频率响应和群延迟特性。

2.稳定性分析分析滤波器的稳定性,主要看其反馈网络是否产生自激振荡。

通过调整反馈网络的参数,避免不稳定现象的发生,确保滤波器在工作过程中稳定可靠。

四、滤波器性能仿真与测试1.仿真软件介绍使用专业的仿真软件(如Multisim、ADS等),对二阶无限增益多路反馈滤波器进行性能仿真。

这些软件能实时显示出滤波器的频率响应、群延迟等性能指标,便于设计师对滤波器进行优化。

直接法设计巴特沃斯滤波器

直接法设计巴特沃斯滤波器

直接法设计巴特沃斯滤波器
巴特沃斯滤波器是一种常用的数字滤波器,其特点是具有平坦的频率响应和较陡的截止陡度。

直接法设计巴特沃斯滤波器的步骤如下:
1. 确定滤波器的类型和截止频率。

根据要求选择巴特沃斯低通、高通、带通或带阻滤波器,同时确定截止频率。

2. 根据截止频率计算模拟滤波器参数。

使用巴特沃斯滤波器的公式计算模拟滤波器的参数,包括截止频率、通带增益、极点和零点的位置等。

3. 将模拟滤波器转换为数字滤波器。

利用双线性变换或者抽样定理等方法将模拟滤波器转换为数字滤波器,得到数字滤波器的巴特沃斯系数。

4. 实现数字滤波器。

使用巴特沃斯系数和数字滤波器的递推公式实现数字滤波器,可以使用C语言、Matlab等编程工具实现。

需要注意的是,直接法设计的巴特沃斯滤波器虽然具有平坦的频率响应和较陡的截止陡度,但会产生时域波形失真和相位偏移。

如果需要更好的时域响应和相位特性,可以考虑其它设计方法,如零相位滤波器、IIR滤波器等。

巴特沃斯数字带通滤波器

巴特沃斯数字带通滤波器

巴特沃斯数字带通滤波器《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月目录1. 课题描述2. 设计原理2.1 滤波器的分类2.2 数字滤波器的设计指标2.3 巴特沃斯数字带阻模拟滤波器2.3.1 巴特沃斯数字带通滤波器的设计原理2.3.2 巴特沃斯数字带通滤波器的设计步骤3. 设计内容3.1 用MATLAB编程实现3.2 设计结果分析4. 总结5. 参考文献课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:设计巴特沃斯数字带通滤波器,通带频率200~500hz,阻带上限频率600hz, 阻带下限频率150hz,通带衰减最大0.5dB,阻带最小衰减40dB,采样频率2000hz,画出幅频、相频响应曲线,并设计信号验证滤波器设计的正确性。

二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。

2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的MATLAB函数的说明)(3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年月日1 .课题描述数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。

数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

使用MATLAB信号处理箱和BW(巴特沃斯)设计低通数字滤波器。

2.设计原理2.1 滤波器的分类数字滤波器有低通、高通、带通、带阻和全通等类型。

它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。

如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。

带通滤波器设计实验报告

带通滤波器设计实验报告

带通滤波器设计实验报告实验目的:设计一个带通滤波器,实现对特定频率范围内信号的滤波,同时保留其他频率成分。

实验原理:实验步骤:1.确定需要滤除的频率范围以及希望保留的频率范围。

2.选择合适的滤波器类型,例如椭圆滤波器、巴特沃斯滤波器等。

3.根据所选择滤波器的传输函数,计算出所需的电路元件数值。

4.使用电路设计软件,绘制出所需的滤波器电路图。

5.将电路图转化为实际的电路连接。

6.进行滤波器的测试。

实验结果:经过设计和制作,成功实现了一个带通滤波器。

我们选择了巴特沃斯滤波器作为滤波器类型,并确定了需要滤除的频率范围为1kHz到3kHz,希望保留的频率范围为500Hz到5kHz。

根据计算得出的电路元件数值,绘制了滤波器电路图,并成功制作出实际的电路连接。

在测试过程中,我们输入了包含多个频率成分的信号,并观察输出信号的波形。

结果显示,输入信号中属于1kHz到3kHz范围的频率成分被成功滤除,而属于500Hz到5kHz范围的频率成分则被保留下来。

实验讨论:然而,在实际应用中,滤波器的设计可能会面临一些挑战。

例如,设计过程中的元件误差、频率波动等因素都可能会对滤波器的性能产生影响。

因此,在实际应用中,对滤波器进行性能测试和调整是非常重要的。

此外,滤波器的性能指标也需要考虑。

例如,通带衰减、阻带衰减等参数都对滤波器的性能起着关键作用。

在设计带通滤波器时,我们应该根据具体需求选择合适的滤波器类型,并对性能参数进行合理的折中和调整。

结论:通过本次实验,我们成功设计并制作了一个带通滤波器,实现了对特定频率范围内信号的滤波。

带通滤波器在实际应用中具有广泛的用途,因此,对滤波器的设计和性能调整进行研究具有重要的意义。

希望通过这次实验可以对带通滤波器的设计和应用有更深入的了解。

matlab巴特沃斯滤波器设计

matlab巴特沃斯滤波器设计

数字IIR带阻滤波器的设计(基于巴特沃斯法)1、数字带阻IIR滤波器设计IIR数字滤波器在很多领域中有着广阔的应用。

与FIR数字滤波器相比,它可以用较低的阶数获得高选择性,所用存储单元少,经济而效率高,在相同门级规模和相同时钟速度下可以提供更好的带外衰减特性。

下面介绍一种设计实现IIR数字滤波器的方法。

设计步骤如下:步骤1:将数字滤波器H(z)的技术指标ωp和ωs,通过Ω=tan(ω/ 2)转变为模拟滤波器G(s)的技术指标Ωp和Ωs,作归一化处理后,得到ηp=1,ηs=Ωs/Ωp;步骤2:化解为模拟原型滤波器G(s)的技术指标;步骤3:设计模拟原型滤波器G(p);步骤4:将G(p)转换为模拟滤波器的转移函数G(s);步骤5:将G(s)转换成数字滤波器的转移函数H(z),s=(z–1)(z+1)。

所谓原型滤波器是指归一化的低通滤波器。

本节主要讨论通过IIR数字滤波器的原型转换设计法和IIR数字滤波器的直接设计方法来设计数字高通、带通及带阻滤波器其转换方法主要有3种:一是直接由模拟低通滤波器转换成数字高通、带通或带阻滤波器;二是先由模拟低通滤波器转换成模拟高通、带通或带阻滤波器,然后再把它转换成相应的数字滤波器;三是将模拟低通滤波器先转换成数字低通滤波器,再通过变量代换变换成高通、带通或带阻滤波器。

数字IIR 滤波器的设计结构如图:图1、IIR 滤波器的设计步骤2、带阻滤波器的设计规范:本设计中分别用h a (t)、H a (s)、Ha(j Ω)表示模拟滤波器的单位脉冲相应、系统函数、频率响应函数,三者的关系如下:Ha(s) = LT[ha(t)] =⎰∞∞-)(t ha e st -dtHa(j Ω)=FT[ha(t)] =⎰∞∞-)(t ha e t j Ω-dt可以用h a (t)、H a (s)、Ha(j Ω)中任一个描述模拟滤波器,也可以用线性常系数微分方程描述模拟滤波器。

但是设计模拟滤波器时,设计指标一般由幅频相应函数|Ha(jΩ)|给出,而模拟滤波器设计就是根据设计指标,求系统函数H a(s)。

巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (3)3.4脉冲响应不法 (5)3.5实验所用MATLAB函数说明 (7)4.设计思路 (9)5、实验内容 (9)5.1实验程序 (9)5.2实验结果分析 (13)6.设计总结 (13)7.参考文献 (14)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,阻带截止频率120Hz,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应曲线。

并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。

用此信号验证滤波器设计的正确性。

三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。

正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。

如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。

2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。

如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--sa s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c c c c2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H pNa归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩsp a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

电子技术课程设计-巴特沃思带通滤波器的设计

电子技术课程设计-巴特沃思带通滤波器的设计

电子技术课程设计-巴特沃思带通滤波器的设计
巴特沃斯带通滤波器是模拟电路中重要的一种滤波器,有效地分离了指定范围内的频率信号,而过滤掉其他外来频率,在测量仪器或信号处理信号中有若干重要的用途。

巴特沃斯带通滤波器的设计包括滤波器类型的确定、滤波器的频率特性的建模以及元件的参数选择。

首先,在巴特沃斯带通滤波器设计时,要确定滤波器的类型,这是滤波器设计最重要的步骤。

常见的滤波器类型有低通滤波器、高通滤波器和带通滤波器等。

本实验采用的是带通滤波器,它能够对信号进行截止特性和增益特性同时进行处理,使得在一定范围内的频率信号保留,而其他外来频率均被抑制。

其次,在巴特沃斯带通滤波器的设计中,需要建立滤波器的频率特性模型,这是滤波器设计中的重要组成部分。

巴特沃斯带通滤波器在建模过程中,可以采用传统的MacCormack-Hastings指数过渡公式和高斯-拉普拉斯谐振子表达式来模拟。

最后,在巴特沃斯带通滤波器设计中,需要根据实际应用,按照设计要求,合理选择滤波器中使用的元件参数。

根据滤波器设计要求,晶振、电容等元件的参数必须精确,且与其他元件参数相协调,以达到最优的滤波性能。

以上是巴特沃思带通滤波器的设计的基本流程,即确定滤波器类型、滤波器的频率特性的建模和元件的参数选择,通过上述设计工作可以实现滤波器设计的任务,获得满意的实际应用结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, ,
, ,
(2)将数字带通滤波器的技术指标转换为模拟带通滤波器技术指标:
用双线性变换法,则 ,可得
(3)将带通滤波器的指标转换为模拟低通指标。
模拟低通归一化边界频率为:

(4)确定低通滤波器阶数N

取N=7。
(5) 可得
巴特沃兹模拟滤波器:
再由双线性变换即可得到所求。
代码实现:
>> [N,Wn]=buttord([.25 .45],[.15 .55],3,40)
设计巴特沃斯数字带通滤波器,要求通带范围为:0.25 rad ω 0.45 rad,通带最大衰减为3dB,阻带范围为0 ω 0.15 rad和0.55 rad ω rad,阻带最小衰减为40dB。利用双线性变换设计,写出设计过程,并用MATLAB绘出幅频和相频特性曲线。
设计思路及计算:
(1)确定技术指标,求得数字边缘频率:
>>[h,w]=freqz(b,a,100);
>>subplot(211)
>>h1=20*log10(abs(h));
>>plot(w/pi,h1);
>>axis([0 1 -50 10]);
>>subplot(212)
>>plot(w/
0.2482 0.4525
>> [b,a]=butter(7,[.2482 .4525])
b =
Columns 1 through 10
0.0001 0 -0.0007 0 0.0022 0 -0.00360 0.0036 0
Columns 11 through 15
-0.0022 0 0.0007 0 -0.0001
a =
Columns 1 through 10
1.0000 -5.3094 16.2918 -34.7303 56.9401 -74.5112 80.0108 -71.1129 52.6364 -32.2233
Columns 11 through 15
16.1673 -6.4607 1.9827 -0.4217 0.0523
相关文档
最新文档