地铁隧道及车站监控量测方案
隧道监控量测实施细则

隧道监控量测实施细则1. 引言隧道是现代城市交通和基础设施建设中不可或缺的一部分。
为了确保隧道的安全运营,隧道监控量测工作变得至关重要。
本文档旨在提供隧道监控量测实施的细则,以确保隧道的安全性和可靠性。
2. 监控设备选择在隧道监控量测工作中,需要选择适当的监控设备。
这些设备应具备以下特点:- 具备高清晰度图像采集功能,以便实时观察隧道内的运行情况。
- 能够实时监测隧道内的温度、湿度等环境参数。
- 具备烟雾、火灾等灾害监测功能,能及时发现并报警。
- 具备车辆行驶状态监测功能,如车速、车流量等。
- 具备智能分析功能,能根据监测数据识别异常情况并进行预警。
3. 监控布局设计在隧道监控量测实施过程中,应合理设计监控布局。
以下是一些建议:- 根据隧道长度和形状,确定安装监控设备的位置。
- 针对关键区域,如车辆进入和离开隧道口、隧道内的交叉口等,增加监控设备数量,以便全面监测。
- 注意隧道内的盲区,合理布置监控设备以消除盲点。
- 考虑到监控设备的覆盖范围和角度,确保能够全面观察隧道内的各个区域。
4. 数据采集和分析监控设备的作用不仅仅是实时观察隧道内的情况,还可以采集和分析数据,从而提供更多的管理决策支持。
以下是一些关键的数据采集和分析要点:- 对于环境参数的采集,如温度、湿度等,应进行长期的数据记录和分析,以寻找隧道内的变化趋势。
- 对于车辆行驶状态的监测,应及时记录并分析车速、车流量等数据,以评估隧道的交通流量和道路状况。
- 对于灾害监测的数据,如烟雾、火灾等,应设置相应的报警阈值,并及时发出警报。
5. 报警与处置监控量测工作的重要目标之一是及时发现并处理隧道内可能发生的异常情况。
以下是一些关于报警与处置的建议:- 设置合适的报警阈值,确保只有在真正有异常情况发生时才会触发报警。
- 确定报警信号的接收方,如相关部门或人员,以便他们能够及时采取行动。
- 建立应急处置预案,包括应急联系人、应急电话等信息,以便在异常情况发生时能够快速应对。
2024年地铁综合监控系统设计方案

2024年地铁综合监控系统设计方案一、综合监控系统的概述地铁综合监控系统是指对地铁车站、车辆以及隧道等区域进行实时监控、视频录像、报警与控制等功能的综合系统。
该系统通过高清摄像机、传感器、网络传输设备、服务器以及各类控制设备等组成,可以实时监控和管理地铁运营情况,保障地铁安全运营和乘客出行的舒适性。
二、系统设计方案1. 摄像监控系统地铁综合监控系统的核心部分是摄像监控系统,该系统由高清摄像机、图像传输设备、图像处理与存储设备等组成。
摄像监控系统将安装在车站、车辆和隧道等关键区域,通过网络传输方式将实时视频信号传输至中央监控中心,以提供远程监控和视频回放功能。
2. 传感器技术应用除了摄像监控系统外,综合监控系统还应用传感器技术进行综合监测。
例如,通过温度传感器、烟雾传感器和气体传感器等,可以实时监测车站、车辆和隧道内的环境情况,发现异常情况时可以及时报警并采取相应的措施。
3. 中央监控中心中央监控中心是综合监控系统的核心控制中心,用于接收和处理来自各个摄像监控点和传感器的数据。
中央监控中心应配备高效的数据传输和处理设备,能够实时监测和掌握地铁运营情况,并及时做出反应。
4. 视频数据存储及备份综合监控系统需要大量存储和备份视频数据,以便后期调取和分析。
为了满足持续运营的需求,应考虑采用高容量、高可靠性的存储设备,并实施定期的数据备份策略,以避免数据丢失和系统故障。
5. 车站和车辆的报警系统为了提高地铁安全运营的能力,综合监控系统应配备车站和车辆的报警系统。
该系统通过紧急按钮和语音通信设备等,使乘客可以在紧急情况下及时与中央监控中心联系,寻求帮助和指导。
6. 数据分析与决策支持综合监控系统还应具备数据分析和决策支持功能。
通过对大量的历史和实时数据进行分析和挖掘,可以帮助地铁管理部门更好地了解运营状况,优化运营调度,提高地铁运营效率和服务质量。
三、技术保障1. 网络通信技术综合监控系统需要一个快速稳定的网络通信环境,以确保实时监控和数据传输的需求。
地铁隧道盾构施工监控量测与顶管沉降变形预测

地铁隧道盾构施工监控量测与顶管沉降变形预测地铁隧道盾构施工是现代城市建设中常见的工程技术之一。
为了确保施工过程的安全可靠以及隧道的稳定性,监控量测和顶管沉降变形预测成为地铁隧道盾构施工的重要环节。
本文将介绍地铁隧道盾构施工监控量测的方法以及顶管沉降变形的预测方法。
1. 地铁隧道盾构施工监控量测的方法地铁隧道盾构施工监控量测是通过使用各种现代监测设备和技术手段来实现的。
下面是常用的监控量测方法:1.1 激光扫描监测激光扫描监测是一种高精度的测量手段,它通过激光扫描仪来获取地铁隧道盾构施工过程中的数据。
这种方法可以实时监测盾构机的位移、管片质量等参数,并通过数据分析和处理,进一步预测施工过程中可能发生的问题。
1.2 雷达监测雷达监测是利用地下雷达设备对地铁隧道盾构施工区域进行扫描和测量,获取地下隧道结构的各种信息。
通过对雷达监测数据的分析,可以了解盾构施工过程中的地层变化、隧道结构的稳定性等情况,为施工提供准确的参考数据。
1.3 倾斜仪监测倾斜仪监测是一种常用的盾构施工监测手段,它通过安装在盾构机和顶管上的倾斜仪来实时监测隧道施工过程中的倾斜情况。
倾斜仪监测可以提供关键的施工数据,帮助工程师及时调整施工参数,确保隧道的稳定性和安全性。
2. 顶管沉降变形的预测方法顶管的沉降变形是地铁隧道盾构施工过程中常见的问题之一。
为了预测和控制顶管的沉降变形,以下是一些常用的方法:2.1 数值模拟方法数值模拟方法是通过建立地铁隧道盾构施工的有限元模型,利用计算机仿真技术来模拟和预测顶管的沉降变形。
这种方法可以考虑到各种影响因素,如地层情况、盾构机参数、隧道结构等,并通过模型的分析和优化,得出预测结果。
2.2 统计方法统计方法是通过对历史施工数据进行分析和统计,来预测顶管的沉降变形。
通过收集和整理大量的施工数据,包括地层情况、盾构机参数、施工工艺等,建立合适的数学模型,可以得到相对准确的预测结果。
2.3 监测方法监测方法是通过实时监测顶管的沉降和变形情况,及时发现问题并采取相应的措施。
地铁隧道监控量测施工方案

地铁隧道监控量测施工方案1. 背景隧道监控量测是地铁建设中的重要环节,旨在确保隧道的安全性和稳定性。
本方案将介绍地铁隧道监控量测施工的方法和步骤。
2. 施工步骤2.1 安装监控系统在隧道内部安装监控系统,包括摄像机、传感器和数据采集设备。
监控系统应能监测隧道内的温度、湿度、位移等情况,并能实时传输数据。
2.2 校准设备在施工前,需要确保监控系统的准确性和可靠性。
对于传感器和摄像机,需要进行校准,以获得准确的监测数据。
2.3 数据采集与分析监控系统将实时采集隧道的数据,并进行分析和处理。
通过对数据的分析,可以评估隧道的安全性,及时发现潜在风险,并采取相应的措施。
2.4 报告生成与反馈根据监测数据生成报告,将监测情况以图表和文字形式呈现。
报告应包括监测结果、分析和建议,以及针对潜在风险的措施。
报告应定期提交给相关部门,并根据需要进行更新和修订。
3. 安全措施在施工过程中,需要采取有效的安全措施,确保施工人员和设备的安全。
施工人员应接受相关培训,并遵守相关的安全规定和操作程序。
4. 项目管理为了保证施工顺利进行,需要建立有效的项目管理制度。
包括施工计划的制定和执行、进度控制、质量管理等方面的工作。
5. 沟通与配合隧道监控量测施工涉及多个部门和单位的配合,需要建立良好的沟通机制。
各部门之间应保持密切联系,及时共享信息和解决问题。
6. 风险评估与管理在施工过程中,应对潜在的风险进行评估和管理。
根据监测数据和施工情况,及时调整施工计划和措施,以降低风险和确保施工质量。
7. 结束工作隧道监控量测施工结束后,需要对施工过程进行总结和评估。
评估结果应反馈给相关部门,以及时改进和提升施工质量。
以上是地铁隧道监控量测施工方案的简要介绍,具体的施工细节和注意事项可以根据实际情况进行调整和完善。
为了保证施工质量和安全性,我们建议在施工过程中充分利用现有技术和经验,并遵循相关法规和标准。
隧道施工监控量测项目和方法

隧道施工监控量测项目和方法一、监控量测的内容隧道监控量测的项目应根据工程特点、规模大小和设计要求综合选定。
量测项目可分为必测项目A和选测项目B两大类。
隧道施工过程中应进行洞内、外观察,洞内观察可分开挖工作面观察和已施工地段观察两部分。
浅埋暗挖法各种监控量测项目的简介见表10-1。
(1)洞内观察:开挖工作面观察应在每次开挖后进行。
观察中发现围岩条件恶化时,应立即采取相应处理措施;观察后应及时绘制开挖工作面地质素描图、填写开挖工作面地质状态记录表和施工阶段围岩级别判定卡。
对已施工地段的观察每天至少应进行1次,主要观察围岩、喷射混凝土、锚杆和钢架等的工作状态。
(2)洞外观察重点应在洞口段、岩溶发育区段地表和洞身埋置深度较浅地段,其观察内容应包括地表开裂、地表沉陷、边坡及仰坡稳定状态、地表水渗透情况、地表植被变化等。
表10-1 隧道现场监控量测项目注:b—隧道开挖宽度;h—隧道埋深。
二、监控量测的方法(一)目测观察1.目的在地下工程施工中,开挖前的地质勘探工作很难提供非常准确的地质资料,所以在施工过程中对开挖面附近围岩的性质、状态进行目测。
另外,对开挖后初期支护稳定状态进行目测,也是监控量测中的重要项目。
2.目测观察的内容开挖后对无支护围岩的目测内容包括:(1)围岩类型及分布特征、结构面位置和产状、节理裂隙发育程度和几何特性、节理裂隙的填充物的性质和状态等。
(2)开挖工作面的围岩稳定状态,顶板有无剥落掉块现象。
(3)是否有涌水、涌水量大小、涌水位置、地下水的物理性质(颜色、气味、色度等)。
开挖后对已支护段的目测内容包括:(1)有无锚杆被拉断或垫板陷入围岩内部的现象。
(2)喷射混凝土是否产生裂隙或剥离,要特别注意喷射混凝土是否发生剪切破坏。
(3)钢拱架有无被压屈现象。
(4)是否有底鼓现象。
3.目测结果如果发现异常现象,要详细记录发现的时间、距开挖工作面的距离以及附近监控量测点的各项监控量测数据,及时综合观察测量数据并分析原因,采取相应措施。
宁波地铁公司监控量测规定要求

其他要求:宁波市轨道交通工程各标段承包单位委托的施工监测单位严禁进行业务分包,不得转包监测业务,不得与所监测工程的承包单位有隶属关系或者其他利害关系。任何施工监测单位在同一条线工程范围内承接的业务量不可超过3个标段。
本手册包括管理类和技术类两大部分,其中管理类包括:监测单位资质管理、方案管理、仪器管理、预警管理、监测监控分中心管理、图表管理和档案管理等七章节内容;技术类包括:测点埋设、测点标识与保护、测点验收、初值采集、数据处理、监测时限频率、现场巡视等七章节内容。
本手册将作为宁波市轨道交通建设监测监控工作管理流程和现场操作执行的准则。宁波市轨道交通工程建设指挥部负责管理和具体内容的解释。在本《标准》执行过程中,将定期结合工程实践与经验做进一步地完善和修订。
一、
1、施工监测单位、人员资质管理
1.1单位资质要求
基坑、盾构隧道工程:施工监测单位应具有工程勘察综合类甲级资质和具有省级以上质量技术监督主管部门颁发的测量和监测参数的计量认证CMA(China Metrology Accreditation)证书,并具有深基坑或盾构隧道施工监测业绩。
矿山法隧道、高架桥梁工程:除满足基坑、隧道工程监测资质外,可以选择具有公路、铁路及地铁桥梁及隧道工程质量检测资质。
变更流程:施工监测单位项目负责人发生变更时,按照人员更换申请(附表二)由承包单位提前一个月向监理单位、建设单位(安质处)提出变更申请,经监理单位总监理工程师、建设单位安质处工程师审核同意后方可变更,更换人员资质不得低于原岗位人员。审批后建设单位(安质处)留存一份,第三方监测单位留存一份,监理单位留存一份,承包单位自留两份。
2、第三方监测单位、人员资质管理
地铁施工监测规范

地铁施工监测规范篇一:地铁工程监控量测技术规程地铁工程监控量测技术规程第一章定义、术语1.1 定义1.1 监控量测地铁工程施工中对围岩、地表、支护结构及周边环境的动态进行的经常性观察和量测工作。
1.2 施工监控量测土建承包商按施工合同有关要求在满足监测技术规程的要求下,自行组织对地铁工程实施的监控量测工作。
1.3 第三方监控量测由业主通过招标或委托形式引入的有关资质的单位对其签订的承包合同范围实施的监控量测工作。
1.2 术语2.1 地铁在城市中修建的快速、大运量、用电力牵引并位于隧道内或地铁转到地面和高架桥上的轨道交通。
2.2 应测项目保证地铁周边环境和围岩的稳定以及施工安全应进行的日常监测项目。
2.3 选测项目相对于应测项目而言,为了设计和施工的特殊需要,由设计文件规定的在局部地段进行的检测项目。
2.4 浅埋暗挖法在浅埋软质地层的隧道中,基于喷锚技术而发展的一种矿山工法。
2.5 盾构法使用盾构机械进行开挖并采用管片作为衬砌而修建隧道的施工方法。
2.6 明挖法由地面开挖的基坑中修筑地铁构筑物的方法。
2.7 隧道周边收敛位移隧道周边任意两点间距离的变化。
2.8 水平位移监测测定变形体沿水平方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.9 垂直位移监测测试那个变形体沿垂直方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.10 拱顶沉降隧道拱顶内壁的绝对沉降(量)。
2.11 地表沉降地铁工程施工中地层的(应力)扰动区延伸至地表而引起的沉降。
2.12 隧道围岩隧道周围一定范围内对洞身产生影响的岩土体。
2.13 围岩压力开挖隧道时围岩变形或松散等原因而作用而支护、衬砌上的压力。
2.14 初期支护隧道开挖后即行施作的支护结构。
2.15 二次衬砌初期支护完成后施作的衬砌。
2.16 衬砌沿着隧道洞身周边修建的永久性支护结构。
2.17 管片是一种在工厂制作的圆弧形板肋状并由钢筋混凝土、钢、铸铁或其它材料制作的预制构件。
隧道监控测量方案

隧道监控测量方案1. 引言隧道是一个封闭的道路系统,通常位于地下或山脉中,连接两个地点。
由于隧道的特殊性,其监控和测量是非常重要的。
监控隧道可以帮助确保隧道的安全性和可靠性,并提供实时的数据以便进行维护和改进。
本文档提出了一个隧道监控测量方案,旨在提供一种有效的方法来监控和测量隧道的关键参数。
2. 监控设备2.1 摄像头为了实现对隧道的实时监控,我们建议安装摄像头。
摄像头可以用于监测隧道的交通状况和行人活动。
建议在出入口和重要位置安装摄像头以获得最佳监控效果。
摄像头应具备高分辨率和低光照下的良好表现,以确保清晰的图像质量。
2.2 温度传感器温度是隧道内部环境的一个重要参数。
安装温度传感器可以实时监测隧道内的温度变化。
这对于检测火灾或其他温度异常非常有用。
温度传感器应该具有高精度和可靠性,并能够与监控系统实时通信。
2.3 烟雾传感器烟雾是隧道内部可能发生的火灾的一个重要指标。
安装烟雾传感器可以及时检测到隧道内的烟雾,并发出警报。
烟雾传感器应具有高度敏感性和可靠性,以确保在火灾发生之前及时发出警报。
2.4 气体传感器隧道中的气体浓度是另一个需要监控的重要参数。
高浓度的有害气体会对隧道使用者的健康产生危害。
安装气体传感器可以实时监测隧道中气体浓度的变化,并及时采取措施。
气体传感器应具有高灵敏度和稳定性,能够准确地测量各种气体。
3. 数据采集和存储为了实现对隧道的监控和测量,采集和存储数据是至关重要的。
采集传感器数据可以通过有线或无线方式进行。
建议使用无线传感器网络来收集传感器数据,并配备数据收集节点。
数据收集节点可以将采集到的数据传输到中央服务器进行存储和分析。
4. 数据分析和展示隧道监控数据的分析和展示对于及时发现问题和做出决策非常重要。
建议使用数据分析和可视化工具来对采集到的传感器数据进行处理。
通过分析数据,可以识别出潜在的问题和异常,并通过可视化界面向用户呈现。
5. 报警系统隧道监控中的报警系统是一项关键功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁隧道及车站监控量测方案1施工监测目的将监控量测作为一道工序纳入到施工组织设计中去。
其主要目的为:⑴了解暗挖隧道和明开车站的支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。
⑵为修改工程设计方案提供依据。
⑶保证施工影响范围内建筑物、地下管线的正常使用,为合理确定保护措施提供依据。
⑷验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。
⑸积累资料,以提高地下工程的设计和施工水平。
2监控量测设计原则⑴可靠性原则可靠性原则是监测系统设计中所考虑的最重要的原则。
为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。
第二,应在监测期间保护好测点。
⑵多层次监测原则多层次监测原则的具体含义有四点:①在监测对象上以位移为主,兼顾其它监测项目;②在监测方法上以仪器监测为主,并辅以巡检的方法;③在监测仪器选择上以机测仪器为主,辅以电测仪器;④考虑分别在地表、及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。
⑶重点监测关键区的原则在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。
稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。
⑷方便实用原则为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。
⑸经济合理原则系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。
3监测项目3.1监测项目分类本工程的施工监测项目分为A类和B类。
⑴A类监测项目:包括地质及支护观察、周边位移、拱顶下沉、地表沉降、地下水位等项目,属必测项目,施工时严格按照有关规范设计要求进行监测。
⑵B类监测项目:包括土体水平位移、土体垂直位移、围岩压力、钢架应力,属于选测项目,根据设计要求,施工的实际要求和地层情况选择有实际意义的监测项目进行监测,以保证结构施工满足设计要求。
各种观测数据相互印证,确保监测结果的可靠性,为确保周围建筑物的安全,合理确定施工参数提供依据,达到反馈指导施工的目的。
3.2区间隧道监测项目区间隧道标准断面监测项目如下表所示。
区间隧道标准断面监测项目表车站监控量测项目如下表所示。
车站监控量测项目表3.4基坑开挖监控项目基坑开挖监控量测项目如下表所示。
基坑开挖监控量测项目表4.1监测测点布置原则⑴观测点类型和数量的确定结合本工程性质、地质条件、设计要求、施工特点等因素综合考虑,并能全面反映被监测对象的工作状态。
⑵为验证设计数据而设的测点布置在设计中最不利位置和断面上,为结合施工而设计的测点,布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。
⑶表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于应用仪器进行观测,还要有利于测点的保护。
⑷埋测点不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。
⑸在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一个监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。
⑹根据监测方案预先布置好各监测点,以便监测工作开始时,监测元件进入稳定的工作状态。
⑺如果测点在施工过程中遭到破坏,尽快在原来位置或尽量靠近原来位置补设测点,保证该测点观测数据的连续性。
⑻暗挖隧道以洞内、地表、管线、房屋和桥桩监测为主布点;明挖车站、出入口以地表、管线、房屋和基坑变形监测为主布点。
4.2区间监测测点布置⑴区间隧道标准断面地表沉降测点布置区间隧道标准断面地表沉降测点布置图⑵洞内测点布置区间隧道标准断面洞内测点布置图4.3明挖车站监测测点布置明挖监测测点剖面布置图5监测方法5.1地表沉降及裂缝监测⑴地表沉降监测①监测实施方法A.基点埋设:基点应埋设在沉降影响范围以外的稳定区域,并且应埋设在视野开阔、通视条件较好的地方;基点数量根据需要设置,基点要牢固可靠。
基点埋设方法示意图如图所示。
C.测量方法:观测方法采用精密水准测量方法。
基点和附近水准点联测取得初始高程。
观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,超过时应重读后视点读数,以作核对。
首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。
D.沉降值计算:在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,然后按照测站进行平差,求得各点高程。
施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。
则高差△H=Hn-H即为沉降值。
②数据分析与处理地表沉降量测随施工进度进行,根据开挖部位、步骤及时监测,并将各沉降测点沉降值绘制成沉降变化曲线图、沉降变化速度、加速度曲线图。
5.2地表裂缝观测地表裂缝开展状况的监测通常作为地铁明挖、暗挖施工影响程度的重要依据之一。
采用直接观测的方法,将裂缝进行编号并划出测读位置,必要时可用钢尺测读。
监测数量和位置根据现场情况确定。
5.3地表建筑沉降、倾斜及裂缝监测⑴建筑物沉降监测①监测实施方法A.测点埋设:在地表下沉的纵向和横向影响范围内的建筑物应进行建筑物下沉及倾斜监测,基点的埋设同地表沉降观测。
沉降测点埋设,用冲击钻在建筑物的基础或墙上钻孔,然后放入长直径200mm~300mm,20mm~30mm的半圆头弯曲钢筋,四周用水泥砂浆填实。
测点的埋设高度应方便观测,对测点应采取保护措施,避免在施工过程中受到破坏。
每幢建筑物上一般布置4个观测点,特别重要的建筑物布置6个测点。
建筑物沉降测点如下图所示。
沉降测点水泥砂浆墙体建筑物沉降测点示意图B.测量方法:与地表沉降观测同。
C.沉降计算:与地表沉降观测同。
②数据分析与处理采用比较法、作图法和数学、物理模型,分析各监测物理量值大小、变化规律、发展趋势,以便对工程的安全状态和应采取的措施进行评估、决策。
绘制时间位移曲线散点图和距离位移曲线散点图,如图所示。
如果位移的变化随时间而渐趋稳定,说明围岩处于稳定状态,支护系统是有效、可靠的,如图中的正常曲线。
图中的反常曲线中,出现了反弯点,这说明位移出现反常的急剧增长现象,表明围岩和支护已呈不稳定状态,应立即相应的工程措施。
时间-位移曲线和距离-位移曲线如下图所示。
时间-位移曲线和距离-位移曲线在取得足够的数据后,还应根据散点图的数据分布状况,选择合适的函数,对监测结果进行回归分析,以预测该测点可能出现的最大位移值,预测结构和建筑物的安全状况。
⑵建筑物裂缝观测建筑物的沉降和倾斜必然导致结构构件的应力调整而产生裂缝,裂缝开展状况的监测通常作为施工影响程度的重要依据之一。
通常采用直接观测的方法,将裂缝进行编号并划出测读位置,观测裂缝的发生发展过程。
必要时通过裂缝观测仪进行裂缝宽度测读。
监测数量和位置根据现场情况确定。
5.4地下管线沉降监测⑴监测实施方法①测点布置:地下管线测点重点布设在煤气管线、给水管线、污水管线、大型的雨水管及电力方沟上,测点布置时要考虑地下管线与隧道的相对位置关系。
有检查井的管线应打开井盖直接将监测点布设到管线上或管线承载体上;无检查井但有开挖条件的管线应开挖暴露管线,将观测点直接布到管线上;无检查井也无开挖条件的管线可在对应的地表埋设间接观测点。
管线沉降观测点的设置可视现场情况,采用抱箍式或套筒式安装。
每根监测的管线上最少要有3~5个测点。
基点的埋设同地表沉降监测。
②测量方法:与地表沉降观测同。
③沉降计算:与地表沉降观测同。
⑵数据分析与处理根据施工进度,将各测点变形值绘成管线变形曲线图。
即:绘制位移—时间曲线散点图,据以判定施工措施的有效性;位移—时间曲线趋于平缓时,可选取合适的函数进行回归分析,预测管线的最大沉降量;沿管线沉降槽曲线,判断施工影响范围、最大沉降坡度、最小曲率半径等。
5.5暗挖隧道拱顶沉降监测⑴监测实施方法测点埋设:沿隧道轴线每隔10m埋设1个拱顶下沉测点。
测点埋设方法为在初支钢拱架立好后即将拱顶下沉预埋件焊接在拱架上,测点应露出喷混凝土外10mm~15mm,并进行初测。
在每个断面做一个醒目的测点里程标识牌,以免破坏,保证监测工作的连续性。
量测及计算方法:量测方法为由洞外基准点起测量洞内相对基准点高程,再由洞内相对基准点起测量拱顶下沉预埋件高程,通过计算后、前两次拱顶下沉预埋件高程的变化值即可算得拱顶下沉值。
这里的计算与地表略有不同,因为尺子是倒挂的。
⑵数据分析与处理根据变形值绘制沉降—时间曲线图和变形—开挖距离的曲线变化图,其中,包含测点距工作面的距离、施工步序、地质和地下水情况的记录描述和标记。
在隧道横断面图上按不同的施工阶段,以一定的比例把变形值点画在分布位置上,并以连线的形式将各点连接起来,成为隧道支护变形分布形态图。
并与设计值进行比较,验证设计结构形式的合理性,为施工安全提供可靠的依据。
5.6暗挖隧道、竖井、车站明开槽水平收敛及支护结构裂缝监测⑴暗挖隧道、竖井水平收敛①监测实施方法测点埋设:在拱顶下沉测点同一断面拱腰部位(以方便量测为易)埋设收敛测点预埋件。
测点埋设方法为在初支钢拱架立好后即将收敛测点预埋件焊在拱架上,测点应露出喷混凝土外10mm~15mm,每对收敛点隧道左右两侧各一个,并进行初测。
在每个断面做一个醒目的测点里程标识牌,以免破坏,保证监测工作的连续性。
量测及计算方法:通过测量两个预埋件的距离,为了减小误差,每次应测三次取平均值为本次测量结果,计算后、前两次所测距离的差值即为该对测点在这一段时间内净空收敛值,其累计值即为该对测点的净空收敛值。
②数据分析与处理根据变形值绘制收敛—时间曲线图和收敛—开挖距离的曲线变化图。
⑵支护结构裂缝观测初期支护裂缝开展状况的监测通常采用直接观测的方法,并将裂缝进行编号划出测读位置,必要时通过裂缝观测仪进行裂缝宽度测读。
监测数量和位置根据现场情况确定。
5.7初支及内衬结构钢筋轴力对于暗挖隧道的初次支护结构,钢筋计直接布置在钢拱架或格栅拱架上;对于二次支护结构,钢筋计布置在环向主受力钢筋上。
6监控量测数据处理及信息反馈监控量测资料均由计算机进行处理与管理,当取得各种监测资料后,能及时进行处理,绘制各种类型的表格及曲线图,对监测结果进行回归分析,预测最终位移值,预测结构物的安全性,确定工程技术措施。
因此,对每一测点的监测结果要根据管理基准和位移变化速率(mm)/d等综合判断结构和建筑物的安全状况,并编写周、月汇总报表,及时反馈指导施工,调整施工参数,达到安全、快速、高效施工之目的。
取得各种监测资料后,需及时进行处理,排除仪器、读数等操作过程中的失误,剔除和识别各种粗大、偶然和系统误差,避免漏测和错测,保证监测数据的可靠性和完整性,采用计算机进行监控量测资料的整理和初步定性分析工作。
数据处理方法为:⑴数据整理把原始数据通过一定的方法,如按大小的排序用频率分布的形式把一组数据分布情况显示出来,进行数据的数字特征值计算,离群数据的取舍。