浅析常微分方程的常数变易法

合集下载

推荐-常微分方程的常数变易法及其应用 精品

推荐-常微分方程的常数变易法及其应用 精品

常微分方程的常数变易法及其应用[摘 要]本文归纳整理了常微分方程常数变易法的几个应用. [关键词]常数变易法; 微分方程; 齐次; 系数Constant Variating Method and Application in Ordinary Differential EquationAbstract This paper is summarised several applications of constant variating method in ordinary differential equationKeywords constant variating method ; differential equation ; homogeneous coefficient一、关于常数变易法 []4常数变易法是微分方程中解线性微分方程的方法,就是将齐次线性微分方程通解中的c 变换为函数()x c ,它是拉格朗日(Lagrangr Joseph Louis,1736-1813)十一年的研究成果,微分方程中所用的仅是他的结论。

二、常数变易法的几个应用1.常数变易法在一阶线性非齐次微分方程中的应用[]75.3,一阶线性非齐次微分方程)()(x Q y x P dxdy+= (1) 它所对应的齐次方程为y x P dxdy)(= (2) y x P dxdy)(=是变量分离方程,它的通解为 ⎰=dxx p ce y )( (3)下面讨论一阶线性非齐次微分方程(1)的解法。

方程(2)与方程(1)既有联系又有区别设想它们的解也有一定的联系,(3)中的c 恒为常数,它不可能是(1)的解,要使(1)具有形如(3)的解,c 不再是常数,将是()x c 的待定函数,为此令()()P x dxy c x e ⎰= (4)两边积分得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx⎰⎰=+ 将(4).(5)代入(1),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx⎰⎰⎰+=+ (5)即()()()P x dx dc x Q x e dx-⎰= 两边积分得()()()P x dxc x Q x e dx c -⎰=+⎰(6)这里c 是任意的常数,将()()()P x dx c x Q x e dx c -⎰=+⎰代入()()P x dxy c x e ⎰=得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--⎛⎫⎰⎰=+ ⎪⎝⎭⎰⎰⎰+⎰⎰这就是方程)()(x Q y x P dxdy+=的通解 例1 求方程1(1)(1)x n dyx ny e x dx++-=+的通解,这里的n 为常数.解 将方程改写为(1)1x n dy ny e x dx x -=++ (7)先求对应齐次方程01dy ny dx x -=+的通解,得 (1)n y c x =+ 令()(1)n y c x x =+ (8) 微分得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (9) 将(8)、(9)代入(7)中再积分,得 ()x c x e c =+ 将其代入(8)中,即得原方程的通解(1)()n x y x e c =++ 这里c 是任意的常数例2 求方程22dy y dx x y =-的通解. 解 原方程改写为2dx x y dy y=- (10) 把x 看作未知函数,y 看作自变量,这样,对于x 及dxdy来说,方程(10)就是一个线性 先求齐次线性方程2dx x dy y= 的通解为2x cy = (11) 令2()x c y y =,于是2()2()dx dc y y c y y dy dy=+ 代入(10),得到()ln c y y c =-+ 从而原方程的通解为2(ln )x y c y =- 这里c 是任意的常数,另外0y =也是方程的解. 初值问题为了求初值问题00()()()dyP x y Q x dx y x y ⎧=+⎪⎨⎪=⎩常数变易法可采用定积分形式,即(4)可取为 ⎰=xx d p e x c y 0)()(ττ (12)代入(1)化简得.0()()()xx p d c x Q x e ττ-⎰'=积分得⎰+⎰=-x x d p c ds es Q x c sx 00)()()(ττ代入(12)得到⎰⎰⎰+⎰=--xx d p d p d p ds es Q ece y sx xx xx 000)()()()(ττττττ将初值条件0x x =、0y y =代入上式0y c =于是所求的初值问题为⎰⎰⎰+⎰=--xx d p d p d p ds es Q eey y sx xx xx 0000)()()(0)(ττττττ或⎰⎰+⎰=x x d p d p ds e s Q ey y sxxx 00)()(0)(ττττ定理①一阶非齐线性方程(1)的任两解之差必为相应的齐线性方程(2)之解; ②若()y y x =是(2)的非零解,而()y y x =是(1)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数;③方程(2)任一解的常数倍或两解之和(或差)仍是方程(2)的解.证明 ①设12,y y 是非齐线性方程的两个不同的解,则应满足方程使)()(2211x Q py dxdy x Q py dxdy +=+=两式相减有1212()()d y y p y y dx-=- 说明非齐线性方程任意两个解的差12y y -是对应的齐次线性方程的解. ②因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论②成立.③因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论③成立.2.常数变易法在二阶常系数非齐次线性微分方程中的应用[]1我们知道常数变易法用来求非齐次线性微分方程的通解十分有效,现将常数变易法应用于二阶常系数非齐次线性微分方程中.该方法是新的,具有以下优点:①无需求非齐次方程的特解,从而免去记忆二阶微分方程各种情况特解的形式;②无需求出相应齐次方程的全部解组,仅需求出一个即可;③可得其通解公式.现考虑二阶常系数非齐次线性微分方程)(x f qy y p y =+''+'' (1) 其对应的齐次方程为0=+'+''qy y p y (2) 下面对(2)的特征方程02=++q pr r (3)x有实根和复根加以考虑①若r 为(3)的一实根,则rx e y =是(2)的一解,由常数变易法,可设(1)的解为rx e x c y )(=通过求导可得()()()()rxrxrxrxrx ex c r e x c r e x c y e x rc e c y 22+'+''=''+'=' (4)将(4)和()rx e x c y =代入(1)化简得()()()()x f e x c p r x c rx -='++''2 这是关于)(x c '的一阶线性方程,其通解为()dx dx x f e e e y x p r x p r rx ⎰⎰++-=][)()2( (5)②若r 为(3)的一复根,不妨设,bi a r +=R b a ∈,,且0≠b ,则f 为(2)一解,由常数变易法,可设(1)的解为()bx e x c y ax sin = ,与情形①的推到类似,不难求得方程(1)的通解公式为⎰⎰++-=dx bxsi bxdxsi e x f e bx si e y x a p x a p ax )n n )((n 2)()2((6)例1求six y y y =-'+''2的通解 解 相应的特征方程为022=-+r r 有解1=r ,故设非齐次方程的解为()x e x c y =对其求导得()()()()()xxxxx ex c e x c e x c y e x c e x c y +'+''=''+'='2代入原方程化简得()()x si e x c x c x n 3-='+'' 其通解为()⎰---+-=='x x x x ce e x co x si bxdx si e e x c 323s n 251n )( 所以()()231s n 3101c e c e x co x si x c x x +++-=-- 从而原方程的通解为()x x x e c e c x co x si e x c y 221s n 3101)(+++-==- 例2求x e y y y =+'+''44的通解 解 相应的特征方程为0442=++r r 有解4,2=-=p r 且,有公式(5),得其通解为()[]()⎰⎰+-+-⨯--=dx dx e e e e y x x x x ][424222dx c e e x x ⎰⎪⎭⎫ ⎝⎛+=-13231= x x xe c xe c e 222191--++3.常数变易法在三阶常系数非齐次线性微分方程中的应用[]2前文中对二阶常系数非齐次线性微分方程的解法进行了讨论,以下对一般的 三阶常系数非齐次线性微分方程()x f sy y q y p y =+'+''+'''详细论述,此方法弥补了一般情况下只有特殊()x f 才能求解的缺陷,扩大了()x f 的适用范围.由前面知,二阶常系数非齐次线性微分方程 )(x f qy y p y =+''+'' 对应齐次微分方程的特征方程02=++q pr r ①若r 为实特征根,通解为dx dx e e e y x p r x p r rx ⎰⎰++-=][)()2( (1) ②若r 为一复根,不妨设,bi a r +=R b a ∈,,且0≠b ,通解为 ⎰⎰++-=dx bxsi bxdxsi e x f e bx si e y x a p x a p ax )n n )((n 2)()2((2)三阶常系数非齐次线性微分方程()x f sy y q y p y =+'+''+''' (3) 则对应的齐次方程为0=+'+''+'''sy y q y p y (5) 其对应的齐次方程023=+++s qr pr r (6)若r 为其一实根,λ为方程0)23(322=+++++q r r p r λλ)(根,则方程(3)的通解为① 当λ为实根时,()()[]{}dx dx dx e x f e e e e y rx p r x p r x rx -++++-⎰⎰=)(332λλλ ② 当λ为复根时,不妨设,bi a ±=λR b a ∈,,且0≠bdx dx bx bxdx si e x f bx si e e y x r a ax rx ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⎰⎰+-2)(sin n )(n 证明 因为特征方程(5)是三阶方程,所以它至少有一实根,不妨设r 为特征方程一实根,则rx e y =是(4)的一解,这时可设(3)的解为(),rx e x c y =将其代入(3)中可得()()()()()()rx e x f x c s qr pr r x c q pr r x c p r x c -=++++'+++''++'''23223)(3)(因为r 为特征方程一根,所以 023=+++s qr pr r ,因此()()()()rx e x f x c q pr r x c p r x c -='+++''++'''23)(3)(2这是关于()x c '的二阶常系数非齐次线性微分方程,其特征方程,其特征方程为 ()()023322=+++++q pr r p r λλ 若其根为λ为实根,则由二阶方程通解公式(1)可得 ()()()[]⎰⎰-++++-='dx dx e x f e e e x c rx x p r x p r x 332)(λλλ 那么(3)的通解为()()[]{}dx dx dx e x f e e e e y rx p r x p r x rx -++++-⎰⎰=)(332λλλ若其根为复根时,不妨设,bi a ±=λR b a ∈,,且0≠b 则由二阶方程通解公式(2)可得()()⎰⎰⎪⎪⎭⎫⎝⎛='--dx dx bx si bx si e e x f bx si e x c ax rx ax2n n n 那么(3)的通解为dx dx bx si bxdx si e x f bx si e e y x r a ax rx ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⎰⎰+-2)(n n )(n 例1 求解方程ax e y y y y =+'+''+'''的通解. 解 对应的齐次方程的特征方程为 0123=+++r r r 其根为i r i r r -==-=321,1,方程0)23(322=+++++q r r p r λλ)(,即0222=+-λλ, 其根为i i -=+=1,121λλ 所以取 11,1,===b a r 代入公式dx dx bx si bxdx si e x f bx si e e y x r a ax rx ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⎰⎰+-2)(n n )(n 则其通解为dx dx x si bx si e bx si e e y x xx ⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡=-2n n n 求解过程只需依次积分即可dx dx x si bx si e bx si e e y x xx ⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡=-2n n n ()dx dx x si c x co x si e bx si e e x x x ⎰⎰⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-21n s n 21n dx dx x si c dx x si x co e dx x si e x si e e x x x x ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+-=-212n 1n s 21n 121n ⎰⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+-=-dx c tx c c sx c x si e e x x 21o o 21n⎥⎦⎤⎢⎣⎡+-=⎰⎰⎰-xdx si e c xdx co e c dx e e x x x x n s 21212⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+-=-312212n 2c s 241c x si c x co e c c e e x x xx x e c x si c c x co c c e -+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+-=31221n 2s 241令33122211,2,2c C c c C c c C =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛+-=那么方程的通解为x x e C x si C x co C e y -+++=321n s 41(为任意常数3,21,C C C ).4.常数变易法在二阶变系数非齐次线性微分方程中的应用[]8,6二阶变系数微分方程()()()()x f y x q y x p x y =+'+''()()()其对应的齐次方程在某区间上连续,如果其中x f x q x p ,,的通解为2211y c y c y +=那么可以通过常数变易法求得非齐次方程的通解 设非齐次方程()()()()x f y x q y x p x y =+'+''具有形式()()2211~y x c y x c y += 的特解,其中()()x c x c 21,是两个待定函数,对y ~求导数得()()()()x c y x c y y x c y x c y 22112211~'+'+'+'=' 我们补充一个的条件()()02211='+'x c y x c y 这样()()2211~y x c y x c y '+'=' 因此()()()()22112211~y x c y x c y x c y x c y ''+''+''+''='' 将其代入()()()()x f y x q y x p x y =+'+''化简得()()x f c y x c y =''+''2211联立方程()()02211='+'x c y x c y 解得 ()()211221y y y y x f y x c '-'-=' ()()211212y y y y x f y x c '-'=' 积分并取得一个原函数 ()()dx y y y y x f y x c ⎰'-'-=211221 ()()dx y y y y x f y x c ⎰'-'=211212 则所求的特解为=y ~()dx y y y y x f y y ⎰'-'-211221+ ()⎰'-'dx y y y y x f y y 211212所以方程()()()()x f y x q y x p x y =+'+''的通解为 2211y c y c y +=()dx y y y y x f y y ⎰'-'-211221+ ()⎰'-'dx y y y y x f y y 211212例1 求方程x y xy ='-''1的通解解 方程x y xy ='-''1对应的齐次方程为 01='-''y xy 由y x y '=''1得dx xy d y 11='⋅' 积分得c x y ln ln ln +='即cx y =',得其通解为21c x c y +=所以对应的齐次方程的两个线性无关的特解是12和x ,为了求非齐次方程的一个特解y ~,将21,c c 换成待定函数()()x c x c 21,,且()()x c x c 21,满足下列方程 ()()()()⎩⎨⎧='⋅+'='⋅+'x x c x c x x c x c x 212120201 解得()211='x c ()2221x x c -=' ()x x c 211= ()3261x x c -= 于是原方程的一个特解为()()3221311~x x c x x c y =⋅+= 从而原方程的通解322131x c x c y ++=参考文献 [1] 邓春红.关于二、三阶线性微分方程通解求法[J].零陵学报.20XX,25(6):42-45.[2] 刘许成.三阶线性微分方程系数的常数化定理及应用[J].潍坊学报.20XX,3(2):39-40.[3] 常微分方程[M].北京:高等教育出版社,20XX.(4):22-26.[4] 崔士襄.常数变易法来历的探讨[J].邯郸农业高等专科学校学报,1998,(1):40-41.[5] 俞岑源.关于一阶线性常微分方程常数变易法的一点注记[J].20XX,(3):13-14.[6] 田飞,王洪林.常数变易法的使用[J].河北工程技术高等专科学校学报,20XX,14-15[7] 张志典.用常数变易法求一阶非线性微分方程的解[J].焦作大学学报(综合版),1996,(2):23-24.[8] 王辉,李政谦.巧用常数变易法解题[J].中学数学月刊,20XX,(4):53。

常微分方程线性微分方程与常数变易法-

常微分方程线性微分方程与常数变易法-

解: 原方程不是未知函数 y的线性方程 ,但将它改写为
dx 2x y2
dy y

dx 2 x y dy y
它是以x为未知函数 , y为自变量的线性方程 ,
故其通解为
x e p( y)dy (
Q(
y
)e
p
(
y
) dy
dy
~
c)
e
2 y
dy
(
(
y)e
2 y
dy
dy
~
c)
~
y2 ( ln y c), c为任意常数 。
g
m k
d
(e
k m
t
)
C
k
em
t
(
g
m
e
k m
t
k
C)
m
g
Ce
k m
t
k
由v 0得 t 0
c mg k
因此所求速度与时间的函数关系为
v
mg (1
kt
em
)
k
例1 求方程
(x 1) dy ny ex (x 1)n1 dx
通解,这里为n常数 解: 将方程改写为
dy n y ex (x 1)n dx x 1
解 设速度与时间的函数关系为: v v(t) ,
则依题有v t0 0 , 由牛顿第二定律知:
mg kv ma mv v(0) 0
即 v k v g 其中 P(t) k , Q(t) g
m
m
则通解为
v
e
k dt
m
g
e
k m
dt
dt
C
e
k m

常微分方程课件--常数变易法

常微分方程课件--常数变易法

电路的Kirchhoff第二定律: 在闭合回路中,所有支路上的电压的代数和为零.
解: 设当开关K合上后, 电路中在时刻t的电流强度为I(t),
dI 则电流经过电感L, 电阻R的电压降分别为 L , RI , dt
于是由Kirchhoff第二定律, 得到
dI L RI E.Байду номын сангаасdt 取开关闭合时的时刻为0, 即I (0) 0. dI R E I . 解线性方程: dt L L
§1.4 线性方程与常数变易法
在a( x) 0的区间上可写成 dy P( x) y Q( x) (1) dx 这里假设P( x),Q( x)在考虑的区间上是 的连续函数 x 若Q( x) 0, 则(1)变为 dy P( x) y (2) dx (2)称为一阶齐次线性方程
若Q( x) 0, 则(1)称为一阶非齐线性方程
x(t ) x(t t ) x(t ) 20 3.08t 1000 t 4000000 20t
因此有 dx
dt 100 x 61.6, x(0) 0. 400000 2t
该方程有积分因子
(t ) exp(
100 dt ) (4000 0.02t )50 400000 2t
积分得
c( x) Q( x)e
p ( x ) dx
p ( x )dx
dx c
~
~
30 故(1)的通解为
ye
( Q( x)e
p ( x ) dx
dx c)
(3)
注 求(1)的通解可直接用公式(3)
例1 求方程
dy ( x 1) ny e x ( x 1) n 1 dx

微分方程中常数变易法的应用

微分方程中常数变易法的应用

微分方程中常数变易法的应用杨秀香【摘要】利用微分方程中常数变易法、线性代数以及微分方程理论,研究伯努利方程、二阶常系数非齐次线性微分方程、二阶变系数齐次线性微分方程、二阶变系数非齐次线性微分方程、n阶非齐次线性微分方程、非齐次线性微分方程组的解法,得到各类方程的通解与特解。

%Using the variation of constants in differential equation, the knowledge of linear algebra and theory of differentiale⁃quation to research Bernoulli equations, two order nonhomogeneous linear differential equations with constant coefficients, two order homogeneous linear differential equation with variable coefficient, two order variable coefficient linear differential equation, n order nonhomogeneous linear differential equations, and non-homogeneous linear differential equations, the general solution and special solution of equations are got.【期刊名称】《渭南师范学院学报》【年(卷),期】2016(031)008【总页数】6页(P9-13,30)【关键词】常数变易法;微分方程;求解;应用【作者】杨秀香【作者单位】渭南师范学院数理学院,陕西渭南714099【正文语种】中文【中图分类】O175.1常数变易法是解微分方程的一种很特殊的方法,常微分方程教材中是在求解一阶非齐次线性微分方程时提出的,这种方法指的是将一阶线性齐次微分方程通解中的常数变易成待定的函数,代入原方程从而确定方程的解。

高阶常微分方程的解法

高阶常微分方程的解法

高阶常微分方程的解法在高等数学中,我们学习了微积分的基本概念和一阶常微分方程的解法。

而对于高阶常微分方程,我们需要运用一些特殊的方法来求解。

本文将介绍高阶常微分方程的解法,帮助读者更好地理解这一概念。

一、高阶常微分方程的定义高阶常微分方程是指未知函数的导数存在至少二阶及以上的微分方程。

一般写作:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,\(y\) 是未知函数,\(y'\) 表示一阶导数,\(y''\) 表示二阶导数,\(y'''\) 表示三阶导数,以此类推。

\(F\) 是已知的方程。

二、1. 常数变易法常数变易法是高阶常微分方程解法中的一种常见方法。

首先,我们假设某种形式的特解。

常见的形式包括多项式函数、三角函数等。

然后,将特解代入原方程,并解出未知参数。

最后,将特解与通解相加,得到方程的最终解。

举个例子,考虑二阶常微分方程 \(y'' + 2y' + y = e^x\)。

首先,我们猜测特解为 \(y_p = Ae^x\),其中 \(A\) 是待定常数。

将特解代入方程,得到 \(2Ae^x + 2Ae^x + Ae^x = e^x\)。

通过整理方程,我们可以求得\(A = \frac{1}{4}\)。

因此,特解为 \(y_p = \frac{1}{4}e^x\)。

通解为特解与齐次方程 \(y'' + 2y' + y = 0\) 的通解之和。

2. 变量替换法变量替换法也是一种常见的高阶常微分方程解法。

通过引入新的变量,可以将高阶常微分方程转化为一阶常微分方程。

这样,我们就可以利用一阶常微分方程的求解方法来求解原方程。

例如,考虑二阶常微分方程 \(y'' - 4y = 0\)。

我们引入新的变量 \(u =y'\),得到一阶方程组:\[\begin{cases} y' = u \\ u' - 4y = 0 \end{cases}\]解这个方程组,可以得到 \(u = 2ce^{2x}\) 和 \(y = c_1e^{2x} +c_2e^{-2x}\)。

浅析常微分方程的常数变易法

浅析常微分方程的常数变易法
既 然 常 数 变 易 法 适 用 于 一 阶 非 齐 次 线 性 微 分 方 程 .那 么 就会 想 到 此 法 是 否 能 用 来 解 决 高 阶 非 齐 次 线 性 微 分 方 程 的 通 解 问题 嘲 由 于 涉 及 面 较 广 。 里 只讨 ? 这 论 用 常 数 变 易 法求 解 二 阶 常 系数 线 性 微 分 方 程 。
作 者 简介 : 菲菲 , , 高 女 内蒙 古 呼 和 浩 特 人 , 师 , 士研 究 生 , 究 方 向 为微 分 方程 与 系统 仿 真 讲 硕 研
。 现 计 机 21. 下 代 算 027 o
穷 鼍 爱 差

即:
ye =
[ () f xe Q
d+ ] x C
() 5
O 引

的多 是 所谓 的 常数 变 易 法 。
在 计 算 机 的 相 关 教 学 和 研 究 中 .为 了研 究 某一 个 问 题 . 常 需 要 先 建 立 数 学 模 型 再 加 以研 究 . 建 模 就 经 而 是 要 确 定 变 量 间 的 函数 关 系. 很 多情 况 下 . 须 建 立 在 必 不 仅 包 含 这 些 函数 本 身 .而且 还包 含 着 这些 函 数 的导 数 或 微 分 的 方 程 或 方 程 组 才 有 可 能 确 定 这 些 函数 关 系 ,即微 分 方 程 。 因此 求 微 分 方 程 的解 就 显 得 尤 为 重
1 定 义
形如 :
Y+ ( ) Q() P
f( 出 P)
一尸 ) f

= ) C( e 即:
= Q()
i( 尸)
C ()Q() = e
的 方 程 称 为一 阶 非 齐 次 线 性 微 分 方 程 , 中 P( 其 )

常微分方程解法

常微分方程解法

常微分方程解法常微分方程是数学中的一门重要分支,研究描述自然界和社会现象中变化规律的方程。

解常微分方程的方法多种多样,下面将介绍常见的几种解法。

一、分离变量法分离变量法适用于形如dy/dx=f(x)g(y)的一阶常微分方程。

解题步骤如下:1. 将方程写成dy/g(y)=f(x)dx的形式,将变量分离。

2. 对两边同时积分,得到∫dy/g(y)=∫f(x)dx。

3. 左边的积分可以通过换元或者使用常见函数的积分公式进行计算。

4. 右边的积分可以通过与左边的积分结果进行比较来判断是否需要使用特殊的积分技巧。

5. 对左右两边同时积分后,解出方程中的积分常数。

6. 将积分常数代回原方程中,得到完整的解。

二、常数变易法常数变易法适用于形如dy/dx+p(x)y=q(x)的一阶常微分方程。

解题步骤如下:1. 先求出对应的齐次方程dy/dx+p(x)y=0的通解。

2. 假设原方程的特解为y=u(x)v(x),其中u(x)是一个待定的函数,v(x)是齐次方程的通解。

3. 将y=u(x)v(x)代入原方程中,整理后得到关于u(x)和v(x)的方程。

4. 解出关于u(x)的方程,得到u(x)的值。

5. 将u(x)的值代入v(x)中,得到特解。

6. 特解与齐次方程的通解相加,即得到原方程的完整解。

三、二阶齐次线性方程解法二阶齐次线性方程的一般形式为d^2y/dx^2+p(x)dy/dx+q(x)y=0。

解题步骤如下:1. 求解对应的齐次方程d^2y/dx^2+p(x)dy/dx+q(x)y=0的特征方程r^2+p(x)r+q(x)=0,其中r为未知数。

2. 求解特征方程得到两个不同的根r1和r2。

3. 根据r1和r2的值,得到齐次方程的通解y=c1e^r1x+c2e^r2x,其中c1、c2为任意常数。

四、变量替换法变量替换法适用于形如dy/dx=f(y/x)的一阶常微分方程。

解题步骤如下:1. 进行变量替换,令u=y/x,即y=ux。

二阶常微分方程边值问题求解的常数变易法

二阶常微分方程边值问题求解的常数变易法

二阶常微分方程边值问题求解的常数变易法数学物理方程与特殊函数复习资料二阶常微分方程边值问题求解的常数变易法20XX年-8-31数理方程所解决的问题与高等数学(微积分)教科书中的常微分方程有很大区别,其中最显著的特点是多数微分方程的条件是边值问题,即知道未知函数在自变量变化区域的边界上的取值。

这就是所谓的边值问题。

最简单的是二阶常微分方程的两点边值问题。

二阶常微分方程的解是一个一元函数,关于这个一元函数的信息,知道的不多,除了微分方程本身提供的之外,还有未知函数在一个区间的两个端点处的值。

微积分所教给我们的技巧是先求出常微分方程的通解,再根据两个条件确定通解中的两个任意常数。

进入这门课之初,先回顾初值问题,再思考边值问题。

在边值问题中,数理方程课程内容中出现了一个历史上非常著名的函数,即格林函数。

对力的分析中普遍使用一个方程:F=ma。

这是著名的牛顿第二定律,其中,F表示力,m表示物体的质量,而a表示物体运动的加速度。

由于加速度的物理意义可解释为物体运动时位移变量对时间的二阶导数,再结合使用虎克定律,就得出简单的振动所满足的二阶常微分方程y 2y 0如果考虑外力作用,该方程化为更一般的情况y 2y f(x)y(0) ,y(0)两个初始条件可解释为已经知道初始位移和初始速度。

求解上面方程需要用常数变易法。

先回顾一阶常微分方程求解的方法,然后再讨论二阶常微分方程的常数变易法。

一、一阶常微分方程初值问题的常数变易法一阶常微分方程常数变易法,用于解源函数不为零的常微分方程问题y (x) ry(x) f(x),x 0y(0)先求解简化的(源函数为零)的方程:y (x) ry(x) 0由分离变量:dydyrdx ry,ydx积分:lny rx c,y(x) Cexp( rx)应用常数变易法,假设简化前的方程的解具有与简化后方程的解有相同形式,将常数替换为待定的函数,即y(x) u(x)exp( rx)求导数,得y (x) u (x)exp( rx) ru(x)exp( rx)u (x)exp( rx) ry(x)数学物理方程与特殊函数复习资料将其代入化简前的方程,得等式u (x)exp( rx) f(x),u (x) exp(rx)f(x)积分,得u(x)xexp(r )f( )d C代入表达式y(x) u(x)exp( rx),得y(x) [ exp(r )f( )d C]exp( rx)x应用初始条件,得解函数y(x) exp( rx) exp[ r(x )]f( )dx从两部分解读解函数的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档