主变压器中性点零序过流

合集下载

(完整版)主变零序保护的知识

(完整版)主变零序保护的知识

主变零序保护的知识1 概述变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。

本文就变压器的零序电流保护的一些特点进行介绍。

2 零序电流互感器安装位置对保护的影响零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。

下面按故障点的不同展开如下分析(见图1):由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。

如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。

如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。

我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。

3 变压器中性点电流互感器极性试验一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。

可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

110KV电网主变中性点接地方式分析

110KV电网主变中性点接地方式分析

110KV电网主变中性点接地方式分析摘要:电力系统中变压器中性点接地方式的选择是一个综合性的技术问题,本文概述了目前电网的几种接地方式,分析了多个变压器时主变110kV侧的中性点接地方式,提出了主变接地方式选择应注意的问题。

关键词:变压器;中性点;接地方式引言电力系统中变压器中性点接地方式的选择是一个综合性的技术问题,它与系统的供电可靠性、短路电流大小、过电压大小及绝缘配合、保护配置、系统稳定、通信干扰等关系密切。

变压器中性点接地方式的选择直接影响到电网的安全稳定运行。

在电网系统中,变压器中性点直接接地系统在发生接地故障时,尤其是单相接地故障时,接地相的故障电流较大,非故障相对地电压不升高,这种系统称为大电流接地系统。

在大电流接地系统中,零序电压和接地电流的分布及大小主要取决于系统中中性点直接接地变压器的分布。

在电网发生的故障中,接地故障占80%以上。

因此,合理的选择主变中性点接地方式,快速的切除故障,可以提高系统的供电可靠性。

1 中性点接地方式介绍1.1 中性点直接接地中性点直接接地,就是将中性点直接与大地连接。

当发生单相接地时,其单相接地电流非常大,甚至会超过三相短路,任何故障将会引起断路器跳闸。

我国的110kV及以上变电站变压器多采用中性点采用直接接地方式,对于直接接地系统,发生单相接地时,非故障相的工频电压升高低于1.4 倍相电压;断路器响应时间短,跳开故障线路及时,设备承受过电压的时间相对较短,可降低设备的绝缘水平,从而使降低电网的造价。

但中性点直接接地系统的缺点是发生单相接地短路时,短路电流大,要迅速切除故障部分,使供电可靠性降低。

1.2 中性点不接地中性点不接地系统,又称小电流系统。

该方式不需附加设备,投资较省,适用于农村10kV 架空线路长的供电网络。

它的另一个优点是发生单相短路时,单相接地电流很小,对邻近通信线路、信号系统的干扰小,一般此时保护只动作于信号而不动作于跳闸,供电线路可以继续运行,但电网长期一相接地运行,其非故障相电压升高,绝缘点被击穿,而引起两相接地短路,最终将严重损毁电气设备。

220kV变电站主变中性点运行方式

220kV变电站主变中性点运行方式

220kV变电站主变中性点运行方式摘要:220kV主变中性点接地方式与电网结构、绝缘水平、供电可靠性、保护的配置及发生接地故障时的短路电流及分布等方面都有很大的关系。

本文介绍了变压器中性点的几种运行方式及其特点,分析了220kV变电站主变中性点正常情况下的运行方式,及其零序网络。

关键词:主变;运行方式;零序网络引言电网中变压器中性点接地方式的选择,对电网的安全经济运行具有重要的作用。

它与电网的绝缘水平、保护配置、系统的供电可靠性、发生接地故障时的短路电流及分布等关系密切⑴。

一、变压器中性点运行方式三相交流电力系统中,变压器的中性点有三种运行方式:中性点不接地、中性点经阻抗或消弧线圈接地、中性点直接接地。

(一)中性点不接地中性点不接地系统发生单相短路时,故障相电压为零,正常相电压为原来的3倍,中性点电位由零变为相电压 .一,此时的短路电流为电容电流一-,线电压不变。

因此变压器中性点不接地方式运行对变压器的绝缘工频耐压水平要求更高,由于电容电流较小,当发生单相接地故障时,允许系统短时运行,提高了系统的可靠性。

中性点不接地系统中,零序网络没有形成回路,在发生不平衡故障时,系统中没有零序阻抗,也不会产生零序电流。

(二)中性点经消弧线圈接地对于线路较长的系统,输电导线对地电容较大,因而电容电流较大,中性点消弧线圈可以有效补偿电容电流,泄放线路上的过剩电荷来限制过电压。

然而,这种接地方式会使中性点电位升高,对变压器中性点绝缘要求较高。

(三)中性点直接接地当发生单相短路故障时,中性点直接接地系统的故障点短路电流较大,会引起停电,同时对运行人员及设备的安全构成威胁。

但这种运行方式下,中性点电位稳定,接近于零,正常相电压不变,不易引起相间短路。

中性点直接接地方式多见于110kV以上的电网。

因为110 kV以上的电网单相接地的概率比中低压电网小,所以只要提高输电线路的耐雷水平,安装自动重合闸装置,就可以基本实现系统的安全运行[2]。

变压器零序保护与间隙保护

变压器零序保护与间隙保护

1、主变压器中性点零序过流、间隙过流和零序过压各保护什么类型故障保护整定原则是什么
答:主变压器中性点零序过流、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110——220千伏系统接地故障的后备保护,零序电流保护,是变压器中性接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;而间隙过流则是用于变压器中性点以放电间隙接地的运行方式中。

零序过流保护,一次启动电流很小,一般在100安左右,时间约秒,零序过压保护,按经验整定为二倍额定相电压,为躲过单相接地的暂态过压,时间通常整定为——秒,变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为秒。

变压器零序方向过流保护

变压器零序方向过流保护

零序方向过流保护小结变压器高压侧(110kV 及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。

变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。

一、变压器接地后备保护概述变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。

对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。

中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。

对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。

在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。

当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。

因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。

对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。

对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。

综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。

二、零序方向过流保护逻辑零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,则由“零序过流元件”、“零序方向元件”和“零序电压闭锁元件”相与构成。

其逻辑图如图1所示。

图1 零序方向过流保护逻辑框图零序电压闭锁元件的零序电压取自TV 开口三角。

继电保护试题库-技术比武

继电保护试题库-技术比武

第1章专业知识1 二次回路填空题1.电力系统继电保护应满足(选择性)(速动性)(灵敏性)(可靠性)四个基本要求。

2.电力系统发生骨子后,总伴随有电流(增大)电压(降低)线路始端测量阻抗的(减小)电压与电流之间相位角(变大)3.电力系统发生故障时,继电保护装置应(切除故障设备),继电保护装置一般应(发出信号)4.电力系统切除故障时的时间包括(继电保护动作)时间和(断路器跳闸)的时间5.继电保护灵敏性指其对保护范围内发生故障或不正常工作状态的反应能力6.继电保护装置一般由测量部分,逻辑环节和执行输出组成。

7.继电保护装置的测量部分是由被保护原件的(某些运行参数)与保护的整定值进行比较。

8.瞬时电流速断保护的保护范围随(运行方式)和(故障类型)而变。

9.瞬时电流速断保护的保护范围在被保护线路(始端),在(最小)运行方式下,保护范围最小。

10.本线路限时电流速断保护的保护范围一般不超过相邻下一条线路的(电流速断)保护的保护范围,故只需带()延时即保证选择性。

11.线路装设过电流保护一般是为了作本线路的(主保护和近后备保护)及作相邻下一条线路的(远后备保护)。

12.为使过电流保护在正常运行时不动作,其动作电流应大于(最大负荷电流),为使过电流保护在外部故障切除后可靠返回,其返回电流应大于(最大负荷电流)。

13.为保证选择性,过电流保护的动作时限应按(阶梯)原则整定,越靠近电源处的保护,动作时限越(长)。

14.线路纵差动保护是通过比较被保护线路首、末端(电流的大小和相位)的原理实现的,因此它不反应(外部故障)。

15.变压器采用的接线方式,在正常情况下(三角形)侧电流超前(星形)侧电流30°16.在变压器纵差动保护整定计算中引入同型系数是考虑两侧电流互感的(型号不同)对它们(产生不平衡电流)的影响接线变压器的纵差动保护,其相位补偿的方法是将变压器星形侧的TA接成(三角形)变压器三角形侧的TA接成(星形)18.变压器低电压启动的过电流保护的启动元件包括(电流)继电器和(低压)继电器。

中性点直接接地系统的零序电流保护讲解

中性点直接接地系统的零序电流保护讲解

第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。

但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。

图3-31( b )为其短路计算的零序等效网络。

在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。

零序电压的方向采用线路高于大地的电压为正。

这样,A 母线的零序是电压表示为。

11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。

二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。

(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。

当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。

(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。

变压器的零序电流保护

变压器的零序电流保护

变压器的零序电流保护、变压器间隙电流保护与变压器零序电压保护一起构成了反应零序故障分量的变压器零序保护,是变压器后备保护中的重要组成部分,同时也是整个电网接地保护中不可分割的一部分。

本文就变压器的零序电流保护的一些特点进行介绍。

2零序电流互感器安装位置对保护的影响零序电流的产生,对保护所体现的故障范围会有很大的影响(对于自耦变压器,零序电流只能由变压器断路器安装处零序电流互感器产生,本文不做讨论)。

下面按故障点的不同展开如下分析(见图1):由上面的三种故障情况我们可以看到,变压器断路器处零序电流保护只能对安装处母线两侧的故障进行区分,变压器中性点处的零序电流保护只能对变压器高压侧与低压侧故障进行区分。

如果采用断路器处的零序电流保护,则与线路的零序保护概念上基本是相同的,只不过零序方向可以根据电流互感器的极性选择指向主变或指向母线,指向母线则保护的范围只是断路器电流互感器安装处开始,需与线路零序保护配合且范围较小;指向主变,则要同主变另一侧的出线接地保护相配合,比较麻烦。

如果采用主变中性点处的零序电流保护,则保护的范围比断路器处零序电流保护宽一些,同样根据主变中性点零序电流互感器的极性接线可以将中性点零序电流保护分为指向本侧母线或对侧母线,一般采用指向本侧母线,整定配合较清晰方便。

我局目前运行的都是主变中性点零序电流保护,断路器处零序电流保护只有在旁路断路器带主变运行时才可能碰到,但如上面提到,对于主变其他侧有出线接地保护的因为整定配合的困难,此时旁路的零序电流保护宜退出,如为了对主变引线段进行保护,也可对旁路零序电流保护段进行适当保留。

3变压器中性点电流互感器极性试验一般情况下,零序功率方向要求做带负荷测试,但对于接于变压器中性点套管电流互感器的零序保护,其极性显然是无法用电流二次回路短接人为制造零序电流来检验接线极性正确与否的,因而整组极性试验就显得极为重要。

可以利用直接励磁冲击,在电流互感器线圈二次侧产生的直流响应,用直流毫安或微安表观察指针的摆动来确定极性关系,具体做法见图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110--220千伏系统接地故障的后备保护.零序电流保护,是变压器中性点接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;间隙过流则是用于变压器中性点经放电间隙接地的运行方式中.
零序过流保护,一次启动电流很小,一般在100安左右,时间约
0.2秒.零序过压保
护,按经验整定为二倍额定相电压115,为躲过单相接地的暂态过压,时间通常整定为0.1--
0.2秒.变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为
127.3千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为
0.2秒.在发生单相接地故障时,接在电流互感器上的单相接地电流继电器和零序电压继电器动作,启动时间继电器,时间继电器以整定的时限,通过信号继电器,发出信号和断开接地变压器各侧断路器
110kV线路接地故障时,电源侧为直接接地系统,对侧主变中性点不接地,此时,主变中性点会产生多高电压,主变间隙零序与对侧线路保护如何配合?望高人指点!!!
主变间隙零序与对侧线路保护不需配合,因不是同一系统。

主变间隙零序电压一般整定180V,
0.5S.
主变间隙零序电压一般整定110KV系统150V,
0.5S.220KV系统180V,
0.5S.
中性点不接地的主变单相接地中性点理论上产生100V零序电压
中性点直接接地的主变单相接地中性点理论上产生300V零序电压
主变中性点电压在主变非接地时为300V左右,接地时为173左右,反映中性点非直接接地的间隙零序电压所以设定为180V,考虑到雷击过电压、操作过电压等情况,设定时间为
0.5S。

最近我也研究了变压器的间隙保护:
1.从零序序网图可以分析,尽管你提到的变压器中性点不接地,但它仍然处在一个接地系统中(其上级变压器110kV侧接地),所以当线路系统发生基地故障时,本变压器零序电压(PT开口三角电压)是100V。

为了防止系统感应过电压、雷击过电压等的误动作,所以整定为150V(对于220kV变压器为
180V);
2.对于时间定值,我建议你与上一级线路的接地距离II段、零序过流II段等伸入变压器的线路保护段配合,这样可以防止当由于雷击等原因造成线路保护与间隙保护同时动作,即使线路重合成功,由于变压器间隙保护动作将变压器切除,重合闸已经没有意义了。

3.希望小兄弟咱能一起探讨,期待你的信息。

[16楼][继保工人累]于2010-9-22 16:17:07对文章回复如下:
不接地变中性点零序电压一次值应为接地点零序电压,约为110kV
//
方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路
的阻抗角φL,为了使继电器工作在最灵敏状态下,故要求继电器的最大灵敏角φS。

等于被保护线路的阻抗角φL。

方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路的阻抗角φL,为了使继电器工作在最灵敏状态下,故要求继电器的最大灵敏角φS。

等于被保护线路的阻抗角φL。

相关文档
最新文档