2017高考数学一轮复习第二章函数的概念及其基本性质2.4.2幂函数对点训练理
高考数学一轮复习第二章函数的概念及其基本性质幂函数课件

解析
因为函数
f(x)=x
1 2
在(0,+∞)上是增函数,又
0<a<b<1b<1a,故选
C.
10 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬法·命题法 解题法
11 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
a>1,由 g(x)的图象知 0<a<1,矛盾,故 B 不符合;在 C 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 a>1,
矛盾,故 C 不符合;在 D 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 0<a<1,相符.
(2)因为
y=x
2 3
在第一象限内是增函数,所以
a=21
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬点·基础点 重难点
4 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1 幂函数的定义 一般地,形如 y=xα (α∈R)的函数称为幂函数. 2 五种幂函数图象的比较
5 撬点·基础点 重难点
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1
3.已知 f(x)=x 2 ,若 0<a<b<1,则下列各式中正确的是( )
A.f(a)<f(b)<fa1<fb1 B.f1a<fb1<f(b)<f(a)
高考数学一轮复习第2章函数的概念及基本初等函数Ⅰ第4节二次函数与幂函数课件理新人教A版

第四节 二次函数与幂函数
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.了解幂函数的概念.
2.结合函数 y=x,y=x2,y
幂函数一般不单独命题,常与指数、对数
=x3,y=1x,y=x12的图象,函数交汇命题;二次函数的图象与应用仍是 1.逻辑推理
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
图象
定义域 值域
(-∞,+∞) 4ac4-a b2,+∞
f(x)=ax2+bx+c(a<0)
(-∞,+∞) -∞,4ac4-a b2
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
单调性
在-∞,-2ba上单调递减; 在 6 ___-__∞__,__-__2b_a__上单调递增; 在 5 ___-__2b_a_,__+__∞___上单调递 在-2ba,+∞上单调递减 增
考点二 二次函数的图象与性质 |题组突破|
4.如图是二次函数 y=ax2+bx+c 图象的一部分,图象过点 A(-3,0),对称轴为 x =-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的 是( )
A.②④ B.①④ C.②③ D.①③
解析:选 B 因为图象与 x 轴交于两点,所以 b2-4ac>0,即 b2>4ac,①正确;对称 轴为 x=-1,即-2ba=-1,2a-b=0,②错误;结合图象知,当 x=-1 时,y>0,即 a -b+c>0,③错误;由对称轴为 x=-1 知,b=2a.又函数图象开口向下,所以 a<0,所 以 5a<2a,即 5a<b,④正确.故选 B.
[推荐学习]2017高考数学一轮复习第二章函数的概念及其基本性质2.4.2幂函数对点训练理
![[推荐学习]2017高考数学一轮复习第二章函数的概念及其基本性质2.4.2幂函数对点训练理](https://img.taocdn.com/s3/m/b6a7518e0029bd64783e2ca4.png)
2017高考数学一轮复习 第二章 函数的概念及其基本性质 2.4.2幂函数对点训练 理1.若幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫3,33,则其定义域为( ) A .{x |x ∈R ,且x >0}B .{x |x ∈R ,且x <0}C .{x |x ∈R ,且x ≠0}D .R答案 A解析 设f (x )=x α,∴3α=33,α=-12,f (x )=x -12 , ∴其定义域为{x |x >0},选A 项.2.下面给出4个幂函数的图象,则图象与函数的大致对应是( )A .①y =x13 ,②y =x 2,③y =x 12 ,④y =x -1 B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1C .①y =x 2,②y =x 3,③y =x 12 ,④y =x -1D .①y =x13 ,②y =x 12 ,③y =x 2,④y =x -1 答案 B解析 ②的图象关于y 轴对称,②应为偶函数,故排除选项C 、D.①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A.选B.3.若f (x )=x 23 -x - 12 ,则满足f (x )<0的x 的取值范围是________.答案 (0,1)解析 令y 1=x 23 ,y 2=x - 12 ,则f (x )<0即为y 1<y 2.函数y 1=x 23 ,y 2=x - 12 的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).4.已知幂函数f (x )=(m 2-m -1)·x-5m -3在(0,+∞)上是增函数,则m =________. 答案 -1解析 由已知得⎩⎪⎨⎪⎧ m 2-m -1=1,-5m -3>0,解得m =-1.。
高考数学一轮复习 第2章《函数与导数》幂函数课件

考点分析
1.幂函数的意义 一般地,函数y= xα(α∈R) 叫做幂函数,其中x是自变 量,α是常数. 2.画幂函数图象的方法 (1)列表、描点、连线法. (2)先画出幂函数在第一象限的图象,再利用幂函数的性 质作出其余的图象.
返回目录
1
3.幂函数y=x,y=x2,y=x3, y x 2 ,
返回目录
*对应演练*
已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x): (1)是幂函数; (2)是幂函数,且是(0,+∞)上的增函数; (3)是正比例函数; (4)是反比例函数; (5)是二次函数.
(1)因为f(x)是幂函数, 故m2-m-1=1,即m2-m-2=0, 解得m=2或m=-1.
返回目录
【解析】 (1)设f(x)=xα,
∵其图象过( 2 ,2)点,故2=( 2 )α,
解得α=2,∴f(x)=x2.
设g(x)=xβ, ∵其图象过点(2, 1 ),
4
∴ 1 =2β,解得β=-2.
4
∴g(x)=x-2.
返回目录
(2)在同一坐标系中,作出f(x)=x2与g(x)=x-2的图象,如图 所示.
(1)3
5 2
和
3.1
5
2;
(2)
-
8
7 8
和
-
(
1
)
7 8
;
9
(3)(-
2
)
2 3
和
(
2
) 3;
3
6
(4)(4.1)
2
5 ,3.8
-2 3
和
(-1.9)
3
5.
返回目录
高考数学一轮复习 第二章 函数的概念、基本初等函数ⅰ 2.4 二次函数与幂函数课件 理

设 x1,x2 是实系数一元二次方程 ax2+bx+c=0(a>0)的两实根,则 x1, x2 的分布范围与系数之间的关系如表所示.
2021/12/8
第三页,共五十页。
根的分布(m<n<p 且 m,n,p 均为常数) x1<x2<m m<x1<x2 x1<m<x2
m<x1<x2<n
图象
2021/12/8
,
故
只
要
Δ>0,
f(5)>0
即可,解得 0<a<14.故填0,14.
2021/12/8
第十一页,共五十页。
类型一 求二次函数的解析式
已知二次函数 f(x)满足 f(2)=-1, f(-1) =-1,且 f(x)的最大值是 8,试确定此二次函数的 解析式.
2021/12/8
第十二页,共五十页。
解法一:(利用一般式)
2021/12/8
第二十一页,共五十页。
【点拨】本题巧妙地利用二次函数与 一次函数图象经过特殊点,结合排除法解 答.在遇到此类问题时,要牢记在二次函 数 y=ax2+bx+c(a≠0)中,a 的正负决定 抛物线开口的方向,c 确定抛物线在 y 轴 上的截距,b 与 a 确定顶点的横坐标(或对 称轴的位置).
时,f(x)在-∞,-2ba上是
;
;
,a<0 时,开口
;
,a<0 时,y∈
;
上是减函数,在
上是增函数;a<0
,在-2ba,+∞上是________.
2021/12/8
第二页,共五十页。
3.二次函数、二次方程、二次不等式三者之间的关系
二次函数 f(x)=ax2+bx+c(a≠0)的零点(图象与 x 轴交点的横坐标)是
所以必有a>0, -a=-1.
高考数学一轮复习专题训练—幂函数与二次函数

幂函数与二次函数考纲要求 1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题. 知识梳理 1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.(2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数 单调性在⎝⎛⎦⎤-∞,-b 2a 上是减函数; 在⎣⎡⎭⎫-b2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数; 在⎣⎡⎭⎫-b2a ,+∞上是减函数1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)函数y =2x 13是幂函数.( )(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.( ) (4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a.( )答案 (1)× (2)√ (3)× (4)×解析 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错误. (3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式. (4)对称轴x =-b 2a ,当-b2a 不在给定定义域内时,最值不是4ac -b 24a,故(4)错误.2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12B.1C.32D.2答案 C解析 因为f (x )=k ·x α是幂函数,所以k =1. 又f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22, 所以α=12,所以k +α=1+12=32.3.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________. 答案 2 2解析 f (x )=-2x 2+mx +3=-2⎝⎛⎭⎫x -m 42+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.4.(2021·全国大联考)不等式(x 2+1)12>(3x +5)12的解集为( ) A.⎣⎡⎭⎫-53,-1∪(4,+∞) B.(-1,4)C.(4,+∞)D.(-∞,-1)∪(4,+∞)答案 A解析 不等式(x 2+1)12>(3x +5)12等价于x 2+1>3x +5≥0, 解得-53≤x <-1或x >4.所以原不等式的解集为⎣⎡⎭⎫-53,-1∪(4,+∞). 5.(2020·贵阳质检)若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( ) A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)答案 C解析 f (x )图象的对称轴x =k8,且f (x )在[5,8]上是单调函数, ∴k 8≥8或k8≤5,解之得k ≥64或k ≤40. 6.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______. 答案 -1解析 由y =x α为奇函数,知α取-1,1,3. 又y =x α在(0,+∞)上递减, ∴α<0,取α=-1.考点一 幂函数的图象和性质1.若幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )答案 C解析 设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.2.已知函数f (x )=(m 2-m -1)·x m 2-2m -3是幂函数,且在(0,+∞)上递减,则实数m =( )A.2B.-1C.4D.2或-1答案 A解析 依幂函数定义,m 2-m -1=1,∴m =2或m =-1, 当m =2时,f (x )=x-3在(0,+∞)上是减函数,当m =-1时,f (x )=x 0=1在(0,+∞)上不是减函数,舍去. ∴m =2.3.(2021·衡水中学调研)已知点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,设a =f ⎝⎛⎭⎫13,b =f (ln π),c =f (2-12),则a ,b ,c 的大小关系是( ) A.a <c <b B.a <b <cC.b <c <aD.b <a <c答案 A解析 由于f (x )=(m -1)x n 为幂函数, 所以m -1=1,则m =2,f (x )=x n . 又点(2,8)在函数f (x )=x n 的图象上,所以8=2n ,知n =3,故f (x )=x 3,且在R 上是增函数, 又ln π>1>2-12=22>13, 所以f (ln π)>f (2-12)>f ⎝⎛⎭⎫13,则b >c >a .4.(2021·郑州质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1,解得m =1或m =2, 当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2.感悟升华 1.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴. 考点二 二次函数的解析式【例1】 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 法一 (利用“一般式”) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三 (利用“零点式”)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.感悟升华 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练1】 (1)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0),且有最小值-1,则f (x )=________.(2)已知二次函数f (x )的图象经过点(4,3),在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 (1)x 2+2x (2)x 2-4x +3解析 (1)设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax , 由4a ×0-4a 24a =-1,得a =1,所以f (x )=x 2+2x .(2)因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以y =f (x )的图象关于x =2对称.又y =f (x )的图象在x 轴上截得的线段长为2, 所以f (x )=0的两根为2-22=1或2+22=3.所以二次函数f (x )与x 轴的两交点坐标为(1,0)和(3,0). 因此设f (x )=a (x -1)(x -3). 又点(4,3)在y =f (x )的图象上, 所以3a =3,则a =1.故f (x )=(x -1)(x -3)=x 2-4x +3. 考点三 二次函数的图象和性质角度1 二次函数的图象【例2】 (1)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A.②④B.①④C.②③D.①③(2)设函数f (x )=x 2+x +a (a >0),若f (m )<0,则( ) A.f (m +1)≥0 B.f (m +1)≤0C.f (m +1)>0D.f (m +1)<0答案 (1)B (2)C解析 (1)因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确. 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误.结合图象,当x =-1时,y >0,即a -b +c >0,③错误. 由对称轴为x =-1知,b =2a .根据抛物线开口向下,知a <0,所以5a <2a , 即5a <b ,④正确.(2)因为f (x )的对称轴为x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,所以m +1>0>-12,所以f (m +1)>f (0)>0.感悟升华 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x 轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.角度2 二次函数的单调性与最值【例3】 (2021·西安模拟)已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图象开口方向向上,且对称轴为x =1a.①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增.∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a. ②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.感悟升华 (1)闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.(2)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.角度3 二次函数中的恒成立问题【例4】 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解 (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0,满足题意;若m ≠0,得⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0, 即-4<m <0.∴-4<m ≤0.∴所求m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在x ∈[1,3]上恒成立.就要使m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,∴g (x )max =g (3)=7m -6<0,∴0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,∴g (x )max =g (1)=m -6<0,得m <6,∴m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 法二 当x ∈[1,3]时,f (x )<-m +5恒成立,即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立.∵x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又m (x 2-x +1)-6<0,∴m <6x 2-x +1. ∵函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可. 综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 感悟升华 由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【训练2】 (1)(2021·长春五校联考)已知二次函数f (x )满足f (3+x )=f (3-x ),若f (x )在区间[3,+∞)上单调递减,且f (m )≥f (0)恒成立,则实数m 的取值范围是( )A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)已知函数f (x )=x 2-x +1,在区间[-1,1]上f (x )>2x +m 恒成立,则实数m 的取值范围是________.答案 (1)B (2)(-∞,-1)解析 (1)设f (x )=ax 2+bx +c (a ,b ,c ∈R ,且a ≠0),∵f (3+x )=f (3-x ),∴a (3+x )2+b (3+x )+c =a (3-x )2+b (3-x )+c ,∴x (6a +b )=0,∴6a +b =0,∴f (x )=ax 2-6ax +c =a (x -3)2-9a +c .又∵f (x )在区间[3,+∞)上单调递减,∴a <0,∴f (x )的图象是以直线x =3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,令g(x)=x2-3x+1-m,要使g(x)=x2-3x+1-m>0在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.∵g(x)=x2-3x+1-m在[-1,1]上单调递减,∴g(x)min=g(1)=-m-1.由-m-1>0,得m<-1.因此满足条件的实数m的取值范围是(-∞,-1).(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图象的对称轴为x=1.当t+1≤1,即t≤0时,函数图象如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图象如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图象如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f (x )min =1,当t ≥1时,f (x )min =t 2-2t +2.A 级 基础巩固一、选择题1.若幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A.1或3B.1C.3D.2答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0,解得m =1.2.(2021·河南名校联考)函数y =1-|x -x 2|的图象大致是( )答案 C解析 ∵当0≤x ≤1时,y =x 2-x +1=⎝⎛⎭⎫x -122+34,又当x >1或x <0时,y =-x 2+x +1=-⎝⎛⎭⎫x -122+54,因此,结合图象,选项C 正确. 3.(2020·成都诊断)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 4f (2)的值为( ) A.14B.-14C.2D.-2答案 A解析 设幂函数为f (x )=x α,由于点⎝⎛⎭⎫12,22在幂函数的图象上,所以22=⎝⎛⎭⎫12α,解得α=12,则f (x )=x 12,故log 4f (2)=log 4212=14.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是( )A.a <c <bB.b <a <cC.b <c <aD.c <a <b 答案 B解析 ∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围是( )A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案 B解析 由于f (x )=x 2-2tx +1的图象的对称轴为x =t ,又y =f (x )在(-∞,1]上是减函数,所以t ≥1.则在区间[0,t +1]上,f (x )max =f (0)=1,f (x )min =f (t )=t 2-2t 2+1=-t 2+1,要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2,只需1-(-t 2+1)≤2,解得-2≤t ≤ 2.又t ≥1,∴1≤t ≤ 2.6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b =( )A.0B.1C.12D.2 答案 A解析 BM =MN =NA ,点A (1,0),B (0,1),所以M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0. 二、填空题7.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,则实数a =________. 答案 15解析 设f (x )=x α,则4α=12,所以α=-12. 因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15. 8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案 5解析 f (x )=x 2-2ax +b 的图象关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],所以⎩⎪⎨⎪⎧f (1)=1-2a +b =a ,f (a )=a 2-2a 2+b =1. 消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a 的取值范围为________.答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立, 又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x<1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. 三、解答题10.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4,故a 的取值范围是(-∞,-6]∪[4,+∞).11.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解 (1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2. 所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝⎛⎭⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1, 故k 的取值范围是(-∞,1). B 级 能力提升12.(2021·江南十校调研)已知幂函数f (x )=mx 1+n 是定义在区间[-2,n ]上的奇函数,设a =f ⎝⎛⎭⎫sin 2π7,b =f ⎝⎛⎭⎫cos 2π7,c =f ⎝⎛⎭⎫tan 2π7,则( ) A.b <a <cB.c <b <aC.b <c <aD.a <b <c 答案 A解析 根据f (x )=mx 1+n 是幂函数,且在区间[-2,n ]上是奇函数,得m =1,且-2+n =0,解得n =2,∴f (x )=x 3,且在定义域[-2,2]上是单调增函数.又0<π4<2π7<π2,∴cos 2π7<sin 2π7<1<tan 2π7, ∴f ⎝⎛⎭⎫cos 2π7<f ⎝⎛⎭⎫sin 2π7<f ⎝⎛⎭⎫tan 2π7,即b <a <c . 13.(2019·上海春招)如图,正方形OABC 的边长为a (a >1),函数y =3x 2的图象交AB 于点Q ,函数y =x -12的图象交BC 于点P ,则当|AQ |+|CP |最小时,a 的值为________.答案 3解析 依题意得Q ⎝⎛⎭⎫a 3,a ,P ⎝⎛⎭⎫a ,1a ,则|AQ |+|CP |=a 3+1a =a 3+1a ,记a =t (t >1),f (t )=|AQ |+|CP |,则f (t )=t 3+1t ,所以f (t )=t 3+1t ≥213, 当且仅当t 3=1t ,即t 2=3时取等号,此时a = 3. 14.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方,所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).。
2017版高考数学北师大版(理)一轮复习第2章函数概念与基本初等函数Ⅰ2.4二次函数与幂函数文档
1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图像和性质2.(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图像的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数122y x 是幂函数.( × )(5)如果幂函数的图像与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × )1.若关于x 的方程x 2+mx +14=0有两个不相等的实数根,则实数m 的取值范围是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-2)∪(2,+∞)D.(-2,2)答案 B解析 ∵方程x 2+mx +14=0有两个不相等的实数根,∴Δ=m 2-4×14×1>0,即m 2>1,解得m <-1或m >1,故选B.2.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.3.如图所示为二次函数y =ax 2+bx +c 的图像,则|OA |·|OB |等于( )A.ca B.-c aC.±c aD.无法确定 答案 B解析 |OA |·|OB |=|OA ·OB |=|x 1x 2|=⎪⎪⎪⎪c a =-ca(∵a <0,c >0).4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 如图,由图像可知m 的取值范围是[1,2].5.(教材改编)已知幂函数y =f (x )的图像过点⎝⎛⎭⎫2,22,则此函数的解析式为________;在区间________上递减. 答案 12y x-= (0,+∞)题型一 求二次函数的解析式例1 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解 方法一 (利用一般式): 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 方法二 (利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图像的对称轴为x =2+(-1)2=12.∴m =12.又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用零点式):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1),即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8.解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7.(1)二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是________________________________________________________________________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.答案 (1)f (x )=12x 2-2x +1 (2)-2x 2+4解析 (1)依题意可设f (x )=a (x -2)2-1, 又其图像过点(0,1), ∴4a -1=1,∴a =12.∴f (x )=12(x -2)2-1.∴f (x )=12x 2-2x +1.(2)由f (x )是偶函数知f (x )图像关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], ∴2a 2=4, 故f (x )=-2x 2+4.题型二 二次函数的图像与性质命题点1 二次函数的单调性例2 已知函数f (x )=x 2+2ax +3,x ∈[-4,6],(1)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (2)当a =-1时,求f (|x |)的单调区间.解 (1)函数f (x )=x 2+2ax +3的图像的对称轴为x =-2a2=-a ,∴要使f (x )在[-4,6]上为单调函数,只需-a ≤-4或-a ≥6,解得a ≥4或a ≤-6. 故a 的取值范围是(-∞,-6]∪[4,+∞). (2)当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0,其图像如图所示.又∵x ∈[-4,6],∴f (|x |)在区间[-4,-1)和[0,1)上为减函数,在区间[-1,0)和[1,6]上为增函数.命题点2 二次函数的最值例3 已知函数f (x )=x 2-2x ,若x ∈[-2,3],则函数f (x )的最大值为________. 答案 8解析 f (x )=(x -1)2-1,∵-2≤x ≤3(如图),∴[f (x )]max =f (-2)=8. 引申探究已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. 解 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内,∴应进行讨论,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1.综上,当-2<a ≤1时,y min =a 2-2a , 当a >1时,y min =-1.命题点3 二次函数中的恒成立问题例4 (1)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.答案 (1)⎝⎛⎭⎫12,+∞ (2)⎝⎛⎭⎫-∞,12 解析 (1)由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. (2)2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,适合;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12. 综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. 思维升华 (1)二次函数最值问题解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], 所以当x =1时,f (x )取得最小值1; 当x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图像的对称轴为直线x =-a , 因为y =f (x )在区间[-5,5]上是单调函数, 所以-a ≤-5或-a ≥5,即a ≤-5或a ≥5. 故a 的取值范围是(-∞,-5]∪[5,+∞).题型三 幂函数的图像和性质例5 (1)已知幂函数f (x )=k ·x α的图像过点⎝⎛⎭⎫12,22,则k +α等于( )A.12B.1C.32D.2(2)若12(21)m +>122(1)m m +-,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C.(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,2答案 (1)C (2)D解析 (1)由幂函数的定义知k =1.又f ⎝⎛⎭⎫12=22, 所以⎝⎛⎭⎫12α=22,解得α=12,从而k +α=32. (2)因为函数y =12x 的定义域为[0,+∞), 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1.解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12.解2m +1>m 2+m -1,得-1<m <2, 综上所述,5-12≤m <2. 思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.(1)已知幂函数f (x )=(m 2-m -1)·x-5m -3在(0,+∞)上是增函数,则m =________.(2)若12(1)a +<12(32)a -,则实数a 的取值范围是________. 答案 (1)-1 (2)[-1,23)解析 (1)∵函数f (x )=(m 2-m -1)·x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1.(2)易知函数y =12x的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解之得-1≤a <23.3.分类讨论思想在二次函数最值中的应用典例 (12分)已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.思维点拨 参数a 的值确定f (x )图像的形状;a ≠0时,函数f (x )的图像为抛物线,还要考虑开口方向和对称轴与所给范围的关系.规范解答解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.[2分](2)当a >0时,f (x )=ax 2-2x 图像的开口方向向上,且对称轴为x =1a .[3分]①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图像的对称轴在[0,1]内,∴f (x )在[0,1a ]上递减,在[1a ,1]上递增.∴f (x )min =f (1a )=1a -2a =-1a.[6分]②当1a >1,即0<a <1时,f (x )=ax 2-2x 图像的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.[9分](3)当a <0时,f (x )=ax 2-2x 的图像的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.[11分]综上所述,f (x )min =⎩⎪⎨⎪⎧a -2, a <1,-1a ,a ≥1.[12分]温馨提醒 (1)本题在求二次函数最值时,用到了分类讨论思想,求解中既对系数a 的符号进行讨论,又对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论. (2)在有关二次函数最值的求解中,若轴定区间动,仍应对区间进行分类讨论.[方法与技巧]1.二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关的量时,常使用顶点式.(3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2.研究二次函数的性质要注意: (1)结合图像分析;(2)含参数的二次函数,要进行分类讨论. 3.利用幂函数的单调性比较幂值大小的技巧在比较幂值的大小时,必须结合幂值的特点,转化为同指数幂,再选择适当的函数,借助其单调性进行比较. [失误与防范]1.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.2.幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像最多能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点.A 组 专项基础训练 (时间:40分钟)1.若二次函数f (x )=ax 2+bx +c 满足f (x 1)=f (x 2),则f (x 1+x 2)等于( ) A.-b 2aB.-baC.cD.4ac -b 24a答案 C解析 因为f (x 1)=f (x 2),所以x 1,x 2关于对称轴x =-b 2a 对称,所以x 1+x 2=-ba .因此,f (x 1+x 2)=a ⎝⎛⎭⎫-b a 2+b ·⎝⎛⎭⎫-b a +c =c . 2.函数f (x )=(m 2-m -1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( ) A.-1 B.2 C.3D.-1或2答案 B解析 f (x )=(m 2-m -1)x m 是幂函数⇒m 2-m -1=1⇒m =-1或m =2.又在x ∈(0,+∞)上是增函数,所以m =2.3.设函数f (x )=x 2+x +a (a >0),且f (m )<0,则( ) A.f (m +1)≥0 B.f (m +1)≤0 C.f (m +1)>0 D.f (m +1)<0答案 C解析 ∵f (x )的对称轴为x =-12,f (0)=a >0,∴f (x )的大致图像如图所示.由f (m )<0,得-1<m <0, ∴m +1>0,∴f (m +1)>f (0)>0.4.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2 D.-2答案 B解析 ∵函数f (x )=x 2-ax -a 的图像为开口向上的抛物线,∴函数的最大值在区间的端点取得, ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1,或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 5.二次函数f (x )的图像经过点⎝⎛⎭⎫0,32,且f ′(x )=-x -1,则不等式f (10x )>0的解集为( ) A.(-3,1) B.(-lg3,0) C.⎝⎛⎭⎫11000,1 D.(-∞,0)答案 D解析 由题意设f (x )=ax 2+bx +32(a ≠0),则f ′(x )=2ax +b ,∵f ′(x )=-x -1, ∴⎩⎪⎨⎪⎧2a =-1,b =-1, ∴⎩⎪⎨⎪⎧a =-12,b =-1,∴f (x )=-12x 2-x +32,令f (x )>0,得-3<x <1,∵10x >0,∴不等式f (10x )>0可化为0<10x <1,∴x <0,故选D.6.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像可能是( )答案 C解析 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 开口向下,故可排除D ; 对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,因此选C.7.当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________________.答案 h (x )>g (x )>f (x )解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图像,由此可知,h (x )>g (x )>f (x ).8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.答案 -1或3解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0, 解得a =3或a =-1.9.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式; (2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图像知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,所以所求实数k 的取值范围为(-∞,0]∪[6,+∞).10.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解 要使f (x )≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f (x )的最小值为g (a ). (1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73,故此时a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2,又-4≤a ≤4, 故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4, 综上得-7≤a ≤2.B 组 专项能力提升 (时间:20分钟)11.已知函数f (x )=ax 2+2ax +4(0<a <3),x 1<x 2,x 1+x 2=1-a ,则( ) A.f (x 1)=f (x 2) B.f (x 1)<f (x 2) C.f (x 1)>f (x 2)D.f (x 1)与f (x 2)的大小不能确定 答案 B解析 函数的对称轴为x =-1, 设x 0=x 1+x 22,由0<a <3得到-1<1-a 2<12.又x 1<x 2,用单调性和离对称轴的远近作判断得f (x 1)<f (x 2).12.已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是________. 答案 (-∞,1)解析 当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图像在y =x 的图像的下方,作出幂函数f (x )=x α在第一象限的图像,由图像可知α<1时满足题意.13.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝⎛⎭⎫23=______. 答案 -19解析 由题意得:|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1; |f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1, ∴f (0)=-1,f (1)=1.由f (x )的图像可知:要满足题意,则图像的对称轴为直线x =0,∴2-m =0,m =2, ∴f (x )=2x 2-1,∴f ⎝⎛⎭⎫23=-19. 14.若函数f (x )=cos2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.答案 (-∞,2]解析 f (x )=cos2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝⎛⎭⎫π6,π2,则t ∈⎝⎛⎭⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝⎛⎭⎫12,1上是减函数,结合二次函数图像可知,a 4≤12,所以a ≤2.15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解 (1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2, ∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。
高考数学一轮复习第二章函数的概念及其基本性质函数的综合应用课件
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
2.下列函数中随 x 的增大而增大速度最快的是( )
A.v=1100·ex
B.v=100ln x
C.v=x100
D.v=100×2x
解析 只有 v=1100·ex 和 v=100×2x 是指数函数,并且 e>2,所以 v=1100·ex 的增大速度最快,故选 A.
学霸团 ·撬分法 ·高考数学·理
第二章 函数的概念及其基本性质
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第9讲 函数模型及函数的综合应用
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
考点二 函数的综合应用
的条件,得ff2-<20<,0,
2x2-1-2x-1<0, 即-2x2-1-2x-1<0,
解得 x∈
72-1,
32+1.
12 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
【解题法】 函数综合性问题的解题思路 (1)与不等式联系:利用函数的单调性解不等式,利用函数的最值求不等式中有关参数问题. (2)与数列联系:数列是一种特殊的函数,以函数的观点解决数列的最值问题是常用的解题方法,要注 意自变量取值为正整数这一限制条件. (3)与解析几何联系:利用题设条件得到的等量关系,确定函数关系式,明确自变量,借助曲线本身对 自变量的限定,确定函数的定义域,然后求解函数的值域,从而明确一些范围问题的解决. (4)函数与方程的综合问题:研究方程的解实质是确定函数图象与 x 轴交点的位置问题,可以看作是函 数图象的一种特殊状态,这类问题考查的热点是方程解的讨论或方程解的条件,常以二次方程或对数方程 中含有参数的问题出现,关键是运用相关知识和方法把问题转化为混合组处理,尤其注意等价转化.
高考数学一轮复习 第二章 函数的概念及其基本性质 2.4.1 二次函数对点训练 理
2017高考数学一轮复习 第二章 函数的概念及其基本性质 2.4.1二次函数对点训练 理1.如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.812答案 B解析 由已知得f ′(x )=(m -2)x +n -8,又对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0f,即⎩⎪⎨⎪⎧m ≥0,n ≥0m +2n ≤182m +n ≤12,画出该不等式组表示的平面区域如图中阴影部分所示,令mn =t ,则当n =0时,t =0,当n ≠0时,m =tn.由线性规划的相关知识知,只有当直线2m +n =12与曲线m =tn 相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-126-12n =tn,解得n =6,t =18,所以(mn )max =18,选B.2.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4)得f (x )=ax 2+bx +c 的对称轴为x =-b2a=2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,∴a >0,选A.3.两个二次函数f (x )=ax 2+bx +c 与g (x )=bx 2+ax +c 的图象可能是( )答案 D解析 函数f (x )图象的对称轴为x =-b 2a ,函数g (x )图象的对称轴为x =-a2b,显然-b 2a 与-a2b同号,故两个函数图象的对称轴应该在y 轴的同侧,只有D 满足.故选D. 4.若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.答案 (-∞,2]解析 f (x )=cos2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝⎛⎭⎪⎫π6,π2,则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合抛物线图象可知,a 4≤12,所以a ≤2.5.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________. 答案 2或-1解析 f (x )=-(x -a )2+a 2-a +1,在x ∈[0,1]时, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1,a =2或⎩⎪⎨⎪⎧0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2.解得a =2或a =-1.6.对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b+5c的最小值为________. 答案 -2解析 设2a +b =t ,则2a =t -b ,由已知得关于b 的方程(t -b )2-b (t -b )+4b 2-c=0有解,即6b 2-3tb +t 2-c =0有解.故Δ=9t 2-24(t 2-c )≥0,所以t 2≤85c ,所以|t |max =210c 5,此时c =58t 2,b =14t ,2a =t -b =3t 4,所以a =3t8.故3a -4b +5c =8t -16t +8t2=8⎝ ⎛⎭⎪⎫1t 2-1t=8⎝ ⎛⎭⎪⎫1t -122-2≥-2. 7.已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案 (0,1)∪(9,+∞)解析 在同一坐标系中分别作出函数f (x )与y =a |x -1|的图象,由图知,当a =0时,两函数的图象只有2个交点,当a <0时,两图象没有交点,故必有a >0.若曲线y =-x 2-3x (-3≤x ≤0)与直线y =-a (x -1)(x ≤1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0得a =1(a =9舍去),因此当0<a <1时,f (x )的图象与y =a |x -1|的图象有4个交点;若曲线y =x 2+3x (x >0)与直线y =a (x -1)(x >1)相切,联立方程得x 2+(3-a )x +a =0,则由Δ=0可得a =9(a =1舍去),因此当a >9时,f (x )的图象与y =a |x -1|的图象有4个交点,故当方程有4个互异实数根时,实数a 的取值范围是(0,1)∪(9,+∞).。
2017版高考数学一轮复习 第二章 函数概念与基本初等函数Ⅰ 第4讲 二次函数性质的再研究与幂函数课件 理
解析
(1)由于 f(x)为幂函数,所以 n2+2n-2=1,
解得 n=1 或 n=-3,当 n=1 时,函数 f(x)=x-2 为 偶函数,其图象关于 y 轴对称,且 f(x)在(0,+∞) 上是减函数,所以 n=1 满足题意;当 n=-3 时, 函数 f(x)=x18 为偶函数,其图象关于 y 轴对称,而 f(x)在(0, +∞)上是增函数, 所以 n=-3 不满足题 意,舍去.故选 B.
解析
(1)由 A,C,D 知,f(0)=c<0.∵abc>0,∴ab<0,
b ∴对称轴 x=- >0,知 A,C 错误,D 符合要求.由 B 知 2a b f(0)=c>0,∴ab>0,∴x=- <0,B 错误. 2a
(2)作出二次函数 f(x)的草图,对于任意 x∈[m, m+1],都有
f(m)<0, f(x)<0,则有 f(m+1)<0,
1 , 2
2 ,则 k+α=( 2 B.1
) 3 C.2 D.2
1α 2 2 所以 2 = 2 , 2,
1 A.2
解析
1 由幂函数的定义知 k=1.又 f2=
1 3 解得 α= ,从而 k+α= . 2 2
答案 C
4.(2016· 汉中模拟)已知函数 h(x)=4x2-kx-8 在[5,20]上是 单调函数,则 k 的取值范围是( A.(-∞,40] C.(-∞,40]∪[160,+∞) )
>1, 即 0<a<1 时, 函数 f(x)的图象的对称轴在[0, 1]的右侧, ∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.
(3)当 a<0 时,函数 f(x)的图象的开口方向向下,且对 1 称轴 x=a<0,在 y 轴的左侧,∴f(x)在[0,1]上递减. ∴f(x)min=f(1)=a-2.综上所述, a-2,a<1, f(x)min= 1 - ,a≥1. a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高考数学一轮复习 第二章 函数的概念及其基本性质 2.4.2
幂函数对点训练 理
1.若幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎪⎫3,33,则其定义域为( ) A .{x |x ∈R ,且x >0}
B .{x |x ∈R ,且x <0}
C .{x |x ∈R ,且x ≠0}
D .R 答案 A
解析 设f (x )=x α,∴3α=3
3,α=-12,f (x )=x -12 , ∴其定义域为{x |x >0},选A 项. 2.下面给出4个幂函数的图象,则图象与函数的大致对应是( )
A .①y =x 13 ,②y =x 2,③y =x 12 ,④y =x -1
B .①y =x 3,②y =x 2,③y =x 12 ,④y =x -1
C .①y =x 2,②y =x 3,③y =x 12 ,④y =x -1
D .①y =x 13 ,②y =x 12 ,③y =x 2,④y =x -1
答案 B
解析 ②的图象关于y 轴对称,②应为偶函数,故排除选项C 、D.①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A.选B.
3.若f (x )=x 23
-x - 12 ,则满足f (x )<0的x 的取值范围是________.
答案 (0,1)
解析 令y 1=x 23
,y 2=x - 12 ,则f (x )<0即为y 1<y 2.函数y 1=x 23 ,y 2=x - 12 的
图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).
4.已知幂函数f (x )=(m 2-m -1)·x -5m -3在(0,+∞)上是增函数,则m =________. 答案 -1 解析 由已知得⎩⎪⎨⎪⎧
m 2-m -1=1,-5m -3>0,
解得m =-1.。