中考数学模拟试卷试卷6

合集下载

2020年江苏省启东中学中考模拟考试(六)初中数学

2020年江苏省启东中学中考模拟考试(六)初中数学

2020年江苏省启东中学中考模拟考试(六)初中数学数学试卷本试卷分第一卷(选择题)和第二卷两部分第一卷(选择题,共32分)一、选择题(此题共10小题;第1~8题每题3分,第9~10题每题4分,共32分)以下各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.据2006年5月27日«沈阳日报»报道,〝五一〞黄金周期间2006年沈阳〝世园会〞的游客接待量累计1760000人次.用科学记数法表示为 ( ) A .176×104人次 B .17.6×105人次 C .1.76×106人次D .0.176×107人次2.在闭合电路中,电流I ,电压U ,电阻R 之间的关系为:RUI =.电压U(V)一定时,电流I(A)关于电阻R(Ω)的函数关系的大致图像是图中的 ( )3.一鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情形如下表所示:型号 22 22.5 23 23.5 24 24.5 25 数量/双351015842A .平均数B .众数C .中位数D .极差4.如下图,平行四边形ABCD 的周长是48,对角线AC 与BD 相交于点O ,△AOD 的周长比△AOB 的周长多6,假设设AD=x ,AB=y ,那么可用列方程组的方法求AD ,AB 的长,那个方程组能够是 ( )A .⎩⎨⎧=-=+648)(2y x y xB .⎩⎨⎧=-=+648)(2x y y xC .⎩⎨⎧=-=+648y x y xD .⎩⎨⎧=-=+648x y y x5.李明设计了图中的四种正多边形的瓷砖图案,用同一种瓷砖能够平面密铺的是( )A .①②④B .②③④C .①③④D .①②③6.在一个不透亮的口袋中,装有假设干个除颜色不同其余都相同的球,假如口袋中装有4 个红球且摸到红球的概率为31,那么口袋中球的总数为 ( ) A .12个 B .9个C .6个D .3个7.将一个正方形纸片依次按图a ,图b 方式对折,然后沿图c 中的虚线裁剪,最后将图d 的纸再展开铺平,所看到的图案是图e 中的 ( )8.⎩⎨⎧+=+=+12242k y x ky x 且01<-<-y x ,那么k 的取值范畴为 ( )A .211-<<-kB .210<<k C .10<<kD .121<<k 9.如下图,半径为2的两个等圆⊙O 1与⊙O 2外切于点P ,过O 1作⊙O 2的两条切线,切点分不为A 、B ,与⊙O 1分不交于C 、D ,那么APB 与CPD 的弧长之和为 ( )A .2πB .π23C .πD .π21 10.如下图,P 是Rt △ABC 斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt △ABC 相似,如此的直线能够作 ( )A .1条B .2条C .3条D .4条第二卷(共118分)二、填空题(此题共8小题;每题3分,共24分)请把最后结果填在题中横线上. 11.(33-)的相反数是 .12.函数12+=x y 中自变量x 的取值范畴是 .13.如下图,将长为20cm ,宽为2cm 的长方形白纸条,折成右图所示的图形并在其一面着色,那么着色部分的面积为 。

精品模拟2020年安徽省中考数学模拟试卷6解析版

精品模拟2020年安徽省中考数学模拟试卷6解析版

精品模拟2020年安徽省中考数学模拟试卷6一.选择题(共10小题,满分40分,每小题4分)1.2019的相反数是()A.2019B.﹣2019C.D.﹣2.下列运算中,正确的是()A.3a2﹣a2=2B.(2a2)2=2a4C.a6÷a3=a2D.a3•a2=a53.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.4.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣45.不等式3x﹣1≥x+3的解集是()A.x≤4B.x≥4C.x≤2D.x≥26.由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B 类:少放烟花爆竹;C类:使用电子鞭炮;D类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有()A.900名B.1050名C.600名D.450名7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.如图,点A是反比例函数y=图象上一点,过点A作x轴的平行线交反比例函数y=﹣的图=,则k=()象于点B,点C在x轴上,且S△ABCA.6B.﹣6C.D.﹣9.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,△DCE绕点O旋转,DE交OC于点P.则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE.其中正确的结论有()A.①④B.②③C.①②③D.①②③④二.填空题(共4小题,满分20分,每小题5分)11.若=2.938,=6.329,则=.12.分解因式:﹣3ab+2a﹣4+6b=.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=14.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.三.解答题(共2小题,满分16分,每小题8分)15.(8分)计算:+()﹣1﹣(π﹣3.14)0﹣tan60°.16.(8分)重庆某化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价连续两次上涨10%,而乙种产品下降10%后又上涨a%,计划甲种产品比乙种产品多生产5件,A原料比B原料要多剩下8吨留为它用,结果销售完后的总产值是1485630元,求a值是多少?四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,在边长为1个单位长度的小正方形组成的8×10网格中,点A,B,C均为网格线的交点.(1)用无刻度的直尺作BC边上的中线AD(不写作法,保留作图痕迹);(2)①在给定的网格中,以A为位似中心将△ABC缩小为原来的,得到△AB'C',请画出△AB'C'.②填空:tan∠AB'C'=.18.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B 两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)五.解答题(共2小题,满分20分,每小题10分)19.(10分)若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.20.(10分)如图,已知AB是⊙O的直径,弦CD⊥AB于点E,F是上的一点,AF,CD的延长线相交于点G.(1)若⊙O的半径为,且∠DFC=45°,求弦CD的长.(2)求证:∠AFC=∠DFG.六.解答题(共1小题,满分12分,每小题12分)21.(12分)张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)大熊山某农家乐为了抓住“五一”小长假的商机,决定购进A、B两种纪念品,若购进A种纪念品4件,B种纪念品3件,需要550元:若购进A种纪念品8件,B种纪念品5件,需要1050元.(1)求购进A、B两种纪念品每件各需多少元.(2)若该农家乐决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该农家乐共有几种进货方案.(3)若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润20元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元.八.解答题(共1小题,满分14分,每小题14分)23.(14分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别判断得出答案.【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(2a2)2=4a4,故此选项错误;C、a6÷a3=a3,故此选项错误;D、a3•a2=a5,正确.故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x ≥2,故选:D .【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.6.【分析】用全校的学生数乘以“使用电子鞭炮”所占的百分比即可得出答案.【解答】解:被调查的学生中“使用电子鞭炮”的学生由100﹣(30+35+15)=20全校“使用电子鞭炮”的学生有:20÷100×3000=600.故选:C .【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x 个球队参加比赛,根据题意可列方程为:x (x ﹣1)=30.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】延长AB ,与y 轴交于点D ,由AB 与x 轴平行,得到AD 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOD 与三角形BOD 面积,由三角形AOD 面积减去三角形BOD 面积表示出三角形AOB 面积,由于S △AOB =S △ABC ,将已知三角形ABC 面积代入求出k 的值即可.【解答】解:延长AB ,与y 轴交于点D ,∵AB ∥x 轴,∴AD ⊥y 轴,∵点A 是反比例函数y =图象上一点,B 反比例函数y =﹣的图象上的点,∴S △AOD =﹣k ,S △BOD =,∵S △AOB =S △ABC =,即﹣k ﹣=,解得:k =﹣6,故选:B .【点评】此题考查了反比例函数k的几何意义,熟练掌握反比例函数k的几何意义是解本题的关键.9.【分析】本题是动点函数图象问题,可由菱形的对角线互相平分,选取特殊位置﹣﹣两对角线交点来考虑,问题不难解答.【解答】解:y随x的增大,先是由大变小,当点P位于AC与BD交点处时,y=0;由于菱形的对角线互相平分,所以点P在从AC与BD的交点处向点D的运动过程中,函数图象应该与之前的对称,故排除掉选项B,C,D.只有A正确.故选:A.【点评】考查了菱形对角线互相平分的性质.动点函数图象问题,可以着重考虑起始位置,中间某个特殊位置,采用排除法来解题比较简单.10.【分析】由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B =45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【解答】解:∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE在Rt△CDE中,CD2+CE2=DE2,∴AD 2+BE 2=DE 2,∵△ADO ≌△CEO ,△CDO ≌△BEO∴S △ADO =S △CEO ,S △CDO =S △BEO ,∴△ABC 的面积等于四边形CDOE 面积的2倍;故选:D .【点评】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】将变形为=×100,再代入计算即可求解.【解答】解:==×100 =2.938×100=293.8.故答案为:293.8.【点评】考查了立方根,关键是将变形为×10012.【分析】利用分组分解法进行因式分解即可.【解答】解:﹣3ab +2a ﹣4+6b =(3b ﹣2)(2﹣a ),故答案为:(3b ﹣2)(2﹣a ),【点评】本题考查的是因式分解,掌握分组分解法因式分解是解题的关键.13.【分析】根据同弧所对的圆周角相等,求出∠DCB =∠A =32°,再根据直径所对的圆周角为90°,求出∠ABD 的度数.【解答】解:∵∠DCB =32°,∴∠A =32°,∵AB 为⊙O 直径,∴∠ADB =90°,在Rt △ABD 中,∠ABD =90°﹣32°=58°.故答案为:58°【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.14.【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x 值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【解答】解:从图象可以看出当y=0时,y=|x2﹣2x﹣3|的x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.【点评】本题主要考查抛物线与x轴交点问题,解题的关键是根据图象分析判断函数值与自变量之间的关系.三.解答题(共2小题,满分16分,每小题8分)15.【分析】先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得.【解答】解:原式=2+3﹣1﹣=+2.【点评】此题主要考查了实数运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及其运算律.16.【分析】(1)设生产甲种产品x件,生产乙种产品y件,根据“生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设生产乙种产品m件,则生产甲种产品(m+5)件,根据A原料比B原料要多剩下8吨留为它用,即可得出关于m的一元一次方程,解之即可得出m的值,再根据总产值=甲种产品的售价×数量+乙种产品的售价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设生产甲种产品x件,生产乙种产品y件,依题意,得:,解得:,∴15×50+30×20=1350(千元)=135(万元).答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+5)件,依题意,得:120﹣4(m+5)﹣3m﹣[50﹣2(m+5)﹣m]=8,解得:m=13,50(1+10%)×(1+10%)×(13+5)+30(1﹣10%)(1+a%)×13=1485.63,解得:a=13.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用网格作出BC的中点,再连接AD即可得;(2)①根据位似变换的定义作图可得;②先利用勾股定理逆定理证△ABC是直角三角形,且∠ACB=90°,再利用tan∠AB′C′=tan∠ABC=可得答案.【解答】解:(1)如图所示,AD即为所求;(2)①如图所示,△AB'C'即为所求;②∵BC2=32+32=18,AC2=62+62=72,AB2=32+92=90,∴BC2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵△ABC∽△AB′C′,∴tan∠AB′C′=tan∠ABC===2,故答案为:2.【点评】本题主要考查作图﹣位似变换,解题的关键是掌握位似变换的定义和性质及勾股定理逆定理.18.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC•sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC•cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,∴AC+BC﹣AB=100+50﹣(50+50)=(50+50﹣50)千米答:开通隧道后,汽车从A地到B地可以少走(50+50﹣50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)根据勾股数的定义即可得到结论;(2)当a为奇数时,当a为偶数时,根据勾股数的定义即可得到结论.【解答】解:(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,,;当a为偶数时,,;证明:当a为奇数时,a2+b2=,∴(a,b,c)是“勾股数”.当a为偶数时,a2+b2=∴(a,b,c)是“勾股数“.”【点评】本题考查了勾股数,数字的变化类﹣规律型,读懂表格,从表格中获取有用信息进而发现规律是解题的关键.20.【分析】(1)连接OD,OC,先证明△DOE是等腰直角三角形,再由垂径定理和勾股定理可得DE=CE=3,从而得CD的长;(2)先由垂径定理可得:=,则∠ACD=∠AFC,根据圆内接四边形的性质得:∠DFG=∠ACD,从而得结论.【解答】解:(1)如图1,连接OD,OC,∵直径AB⊥CD,∴,DE=CE,∴,又∵在Rt△DEO中,,∴DE=3,∴CD=6;(2)证明:如图2,连接AC,∵直径AB⊥CD,∴=,∴∠ACD=∠AFC,∵四边形ACDF内接于⊙O,∴∠DFG=∠ACD,∴∠DFG=∠AFC.【点评】本题考查垂径定理,圆周角等知识,中等题,根据题意作出辅助线,构造出圆内接四边形是解答此题的关键.六.解答题(共1小题,满分12分,每小题12分)21.【分析】(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.【解答】解:(1)2÷0.1=20,m==0.3,n==0.1;故答案为0.3;0.1;条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据题意可以列出相应的二元一次方程组,即可求得购进A、B两种纪念品每件各需多少元;(2)根据题意可以列出相应的不等式组,从而可以求得有几种进货方案;(3)根据题意可以求得利润和购进A种纪念品的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设购进A、B两种纪念品每件各需x元、y元,,解得,,答:购进A、B两种纪念品每件各需100元、50元;(2)设购进A种纪念品a件,则购进B种纪念品(100﹣a)件,,解得,50≤a≤53,∵a是整数,∴a=50,51,52,53,∴有四种购买方案,即该农家乐共有四种进货方案;(3)设利润为w元,购进A种纪念品a件,w=30a+20(100﹣a)=10a+2000,∵a=50,51,52,53,∴当a=53时,w取得最大值,此时w=10×53+2000=2530,即当购进A种纪念品53件,B种纪念品47件时,可以获得最大利润,最大利润是2530元.【点评】本题考查一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,利用一次函数的性质和一元一次不等式的性质解答.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)由AD∥BC知,,结合DB=DC=15,DE=DF=5知,从而得,据此可得答案;(2)作DP⊥BC,NQ⊥AD,求得BP=CP=9,DP=12,由知BG=CH=2x,BH=18+2x,根据得,即,再根据知,由三角形的面积公式可得答案;(3)分∠ADN=∠FGH和∠ADN=∠GFH两种情况分别求解可得.【解答】解:(1)∵AD∥BC,∴,.∵DB=DC=15,DE=DF=5,∴,∴.∴BG=CH.(2)过点D作DP⊥BC,过点N作NQ⊥AD,垂足分别为点P、Q.∵DB=DC=15,BC=18,∴BP=CP=9,DP=12.∵,∴BG=CH=2x,∴BH=18+2x.∵AD∥BC,∴,∴,∴,∴.∵AD∥BC,∴∠ADN=∠DBC,∴sin∠ADN=sin∠DBC,∴,∴.∴.(3)∵AD∥BC,∴∠DAN=∠FHG.(i)当∠ADN=∠FGH时,∵∠ADN=∠DBC,∴∠DBC=∠FGH,∴BD∥FG,∴,∴,∴BG=6,∴AD=3.(ii)当∠ADN=∠GFH时,∵∠ADN=∠DBC=∠DCB,又∵∠AND=∠FGH,∴△ADN∽△FCG.∴,∴,整理得x2﹣3x﹣29=0,解得,或(舍去).综上所述,当△HFG与△ADN相似时,AD的长为3或.【点评】本题是相似三角形的综合问题,解题的关键是掌握平行线分线段成比例定理及相似三角形的判定与性质、分类讨论思想的运用等知识点.。

江西中考数学模拟试卷(六)

江西中考数学模拟试卷(六)

江西中考数学模拟试卷(六)一.选择题(共6小题,满分18分,每小题3分)1.(3分)如图,是正方体的表面展开图,在相对面上的两数字互为相反数,则在A、B、C 内的三个数依次为()A.0,1,﹣2B.0,﹣2,1C.1,0,﹣2D.﹣2,0,1 2.(3分)预防和控制新冠肺炎最有效的办法就是接种疫苗.截止2021年12月1日,某市累计接种新冠病毒疫苗超过350万剂次,用科学记数法表示350万为()A.35×105B.3.5×105C.3.5×106D.3.5×1073.(3分)如图所示的几何体是由五个小正方体组合而成的,它的俯视图是()A.B.C.D.4.(3分)下列计算正确的是()A.=±4B.3a3•2a2=6a6C.(﹣a3b)2=a6b2D.=5.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=2,AB=7,则△ABD的面积是()A.7B.30C.14D.606.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的是()A.a<0B.4a+2b+c>0C.c>0D.当x=1时,函数有最小值二.解答题(共6小题,满分18分,每小题3分)7.(3分)因式分解;(1)ax2+2a2x+a3;(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y).8.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为a n,计算a2021﹣a2020的值为.9.(3分)若x1,x2是一元二次方程x2+3x﹣2=0的两根,则x1+x2=,x1•x2=.10.(3分)某区10名学生参加实际汉字听写大赛,他们得分情况如表:那么10名学生所得分数的中位数是.人数3421分数8085909511.(3分)已知直角三角形的周长为3+,斜边上的中线长为1,则该直角三角形的面积是.12.(3分)若等腰三角形的两边长分别为2和5,则这个等腰三角形的周长是.三.解答题(共6小题,满分30分)13.(3分)已知:(|x|﹣4)x+5=1,求整数x的值.14.(3分)如图,在Rt△ACB中,∠ACB=90°,CM=BM,点E在线段AM上,EF⊥AC 于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.15.(6分)解不等式组,并在数轴上表示其解集.16.(6分)请仅用无刻度的直尺,分别按下列要求完成画图.(1)如图1,在菱形ABCD中,E,F分别是AB,BC上的中点,以EF为边画一个矩形;(2)如图2,在网格中有一定角XOY和一定点P,请作一条线段AB,使点P为AB中点,且点A、B分别在OX、OY上.17.(6分)一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中摸出1个球,请用树状图或列表法列出所有的等可能结果,并求至少摸到1个红球的概率.18.(6分)如图,一次函数y=k1x+1的图象与反比例函数y=点的图象相交于A、B两点,点C在x轴正半轴上,点D(1,﹣2),连接OA、OD、DC、AC,四边形OACD为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x的取值范围;(3)设点P是直线AB上一动点,且S△OAP=S菱形OACD,求点P的坐标.四.解答题(共3小题,满分24分,每小题8分)19.(8分)据悉,2022年,我国载人航天空间站工程进入空间站建造阶段,将完成问天实验舱、梦天实验舱、神舟载人飞船和天舟货运飞船等6次重大任务.为了庆祝我国航天事业的蓬勃发展,某校举办名为“弘扬航天精神•拥抱星辰大海”的书画展览,并给书画展上的作品打分(满分10分).评分结果有6分,7分,8分,9分,10分五种.每位同学只能上交一份作品,现从中随机抽取部分作品,对其份数及成绩进行整理,制成如图所示两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)所抽取作品成绩的众数为,中位数为,扇形统计图中6分所对应的扇形的圆心角为°;(3)已知该校收到书画作品共900份,请估计得分为8分(及8分以上)的书画作品大约有多少份?20.(8分)我国强大的制造业系统在“新冠肺炎”疫情防控中发挥了巨大作用.为缓解口罩供需矛盾,疫情防控期间新增3000多家公司生产口罩.统计数据显示:A公司口罩日产量比B公司口罩日产量多300万只,A公司生产10000万只口罩与B公司生产4000万只口罩所用的时间相等.(1)A,B两公司口罩日产量分别是多少?(2)A公司由主营汽车生产临时转型口罩生产,随着工人操作不断娴熟和技术不断改进,口罩月产量保持相同增长率的增长.已知A公司第1个月口罩产量为15000万只,第3个月口罩产量为18150万只,请通过计算判断A公司第4个月口罩产量能否达到20000万只?21.(8分)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B 的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).五.解答题(共2小题,满分18分,每小题9分)22.(9分)如图,已知△ABC内接于⊙O,直径AD交BC于点E,连接OC,过点C作CF ⊥AD,垂足为F.过点D作⊙O的切线,交AB的延长线于点G.(1)若∠G=50°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2,若,求tan∠CAF的值.23.(9分)如图,已知在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B两点(A点位于B点左侧),与y轴相交于点C,直线y=x+m经过B,C两点.(1)求抛物线的解析式;(2)点P为第一象限内抛物线上一动点,过点P作PD⊥BC,垂足为D,连接AP.①线段PD是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由;②当∠DP A=∠ACO时,求直线AP的表达式.六.解答题(共1小题,满分12分,每小题12分)24.(12分)已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明MB=ME;(2)回答问题:①用等式表示线段AM与CF的数量关系,并证明.②用等式表示线段AM,BM,DM之间的数量关系(直接写出即可).。

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)(含答案)

2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:254.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.28.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②.∵四边形ABCD是平行四边形,∴③.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=.b=,m=;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:(结果保留一位小数,误差范围不超过0.2).24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.2024年重庆中考数学模拟预测试卷(六)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各数中,最小的数是()A.﹣2 B.﹣1 C.D.【答案】D2.(4分)下列与杭州亚运会有关的图案中,中心对称图形是()A.B.C.D.【答案】A3.(4分)如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为()A.5:7 B.7:5 C.25:49 D.49:25【答案】C4.(4分)正方形具备而矩形不具备的性质是()A.四条边都相等B.四个角都是直角C.对角线互相平分D.对角线相等【答案】A5.(4分)正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.17时,小明体温是37.5℃C.从5时至24时,小明体温一直是升高的D.从0时至5时,小明体温一直是下降的【答案】C6.(4分)估计3的运算结果应在()A.14到15之间B.15到16之间C.16到17之间D.17到18之间【答案】C7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x,则下列方程正确的是()A.225(1﹣2x)=225﹣30.2 B.30.2(1+x)2=225C.225(1﹣x)2=30.2 D.225(1﹣x)2=225﹣30.2【答案】D8.(4分)如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点D,DB=AD,连接AC,若AB=4,则AC的长度为()A.B.C.4 D.【答案】D9.(4分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【答案】D10.(4分)在多项式x﹣y﹣m﹣n(其中x>y>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|m﹣n|=x﹣y﹣m+n,|x ﹣y|﹣|m﹣n|=x﹣y﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有3种不同运算结果.其中正确的个数是()A.0 B.1 C.2 D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:2﹣1﹣()0+|﹣|=0 .【答案】0.12.(4分)十三届全国政协共收到提案约29000件,数据29000用科学记数法表示为 2.9×104.【答案】2.9×104.13.(4分)有四张正面分别标有数字1、2、3、4的卡片,它们除数字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的数字之和为偶数的概率是.【答案】.14.(4分)根据如图所示的程序计算,若输入x的值为2,则输出的值为 1 .【答案】1.15.(4分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,分别以AB、AD的长为半径作弧,两弧分别交CD、AB于点E,F,则图中阴影部分的面积为2+.【答案】2+.16.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程的解是负整数,则所有满足条件的整数a之和是﹣13 .【答案】﹣13.17.(4分)在Rt△ABC中,∠ABC=90°,点D在BC边上,点E在AB边上,连接AD、ED,∠ADE=45°,且AE =CD.过点B作BF⊥AD,延长BF交AC于点G,连接DG,若∠DBF=∠CAD,CG+BE=5,则AC的长为.【答案】.18.(4分)设a为正整数,对于一个四位正整数,若千位与百位的数字之和等于b,十位与个位的数字之和等于b ﹣1,则称这样的数为“b级收缩数”.例如正整数2634中,因为2+6=8,3+4=7=8﹣1,所以2634是“8级收缩数”,其中b=8.最小的“4级收缩数”是1303 ;若一个“6级收缩数”的千位数字与十位数字之积为6,且这个数能被19整除,则满足条件的数是2432 .【答案】1303,2432.三.解答题(共8小题,满分78分)19.(8分)化简:(1)4x(x﹣2y)﹣(2x+y)(2x﹣y);(2).【答案】(1)﹣8xy+y2;(2)﹣x3.20.(10分)如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E(1)用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)(2)在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)解:(1)所作图形如图所示;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,①AB∥CD.∴∠ABE=∠CDF.∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠BAD,②∠DCF=∠BCD.∵四边形ABCD是平行四边形,∴③∠BAD=∠DCB.∴∠BAE=∠DCF.在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴BE=DF【答案】(1)见解答;(2)AB∥CD,∠DCF=∠BCD,∠BAD=∠DCB,AB=CD.21.(10分)猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.七八年级抽取的竞答成绩统计表年级七年级八年级平均数80 80中位数a83众数82 b请根据以上信息,解答下列问题:(1)填空:a=85 .b=83 ,m=40 ;(2)根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?【答案】(1)83.5,83,40;(2)七年级成绩较好,理由:因为七年级学生成绩的中位数比八年级的高,所以七年级成绩较好;(3)估计该校七、八年级学生中竞答成绩不低于90分的有300人.22.(10分)宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.(1)求甲、乙两种点茶器具套装的单价.(2)某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?【答案】(1)甲种点茶器具套装的单价为148元,则乙种点茶器具套装的单价为178元;(2)甲种点茶器具套装为8套,乙种点茶器具套装6套.23.(10分)如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:(1)直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,请直接估计当y1=y时x的取值:x1≈2.8,x2≈6.0 (结果保留一位小数,误差范围不超过0.2).【答案】(1);(2)作图见详解,当0<x<4时,y随x的增大而增大;当4<x<7时,y随x的增大而减小(答案不唯一);(3)x1≈2.8,x2≈6.0.24.(10分)在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE =900米,点B在点C的正西方向,且米,点B在点A的南偏东60°方向且AB=600米,点D在点A 的东北方向.(参考数据:)(1)求道路AD的长度(结果保留根号);(2)若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)【答案】(1)道路AD的长度约为米;(2)乙先到达点E.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若,求△DEF的面积的最大值,及此时点E的坐标;(3)将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.【答案】(1)y=x2﹣x﹣4;(2)△DEF的面积的最大值为1,点E(2,﹣2),(3)点P的坐标为:(3,﹣)或(0,2)或(﹣4,24)或(﹣1,).26.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.(1)如图1,若CD=4,∠ABD=15°,求AD的长;(2)如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;(3)如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF 于点H,连接AH,若GE:BF=:2,AB=2,求AH的最小值.【答案】(1)2﹣2;(3)AH的最小值为﹣.。

2020年天津市中考数学模拟试题(含答案) (6)

2020年天津市中考数学模拟试题(含答案)  (6)

2020年天津市中考数学模拟试卷(典型考点整理)一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y2.下列交通标志是中心对称图形的为()A.B.C.D.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±26.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是m.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.参考答案与试题解析一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y【分析】直接利用比例的性质将原式变形进而得出答案.【解答】解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.下列交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义即可解答.【解答】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.【解答】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.5.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.6.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.【解答】解:∵OA=1,的长是,∴,解得:n=60,∴∠AOB=60°,故选:B.8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数图象大致是二次函数图象,开口向下.故选:C.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.【分析】此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合(1,﹣2)的解析式即可.【解答】解:将点(1,﹣2)代入一次函数或反比例函数的形式或二次函数得:y=﹣2x,,y=﹣2x2等.故答案为:(答案不唯一).10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是90 °.【分析】根据网格结构,先找出对应点连线的垂直平分线的交点为旋转中心,那么一对对应点与旋转中心连线的夹角即为旋转角.【解答】解:由图可知,A与D、B与E分别是对应点,作出线段AD、BE的垂直平分线,得到旋转中心P的坐标为(﹣1,0),则∠BPE=90°.故答案为90.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为 1 .【分析】根据直角三角形30度角的性质即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是①②④.【分析】连接AD,如图,利用等腰直角三角形的性质得AB=AC,∠B=∠C=45°,AD⊥BC,BD=CD=AD,∠1=45°,再证明△DBE ≌△DAF得到DE=DF,则可对①进行判断;同理可得△DCF≌△DAE,则可对②进行判断;利用三角形面积公式得到S△ABC=AD2,由于当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,于是可对③进行判断;利用勾股定理得到EF2=AE2+AF2,由于△DBE≌△DAF,△DCF ≌△DAE,则BE=AF,CF=AE,从而可对④进行判断.【解答】解:连接AD,如图,∵△ABC为等腰直角三角形,∴AB=AC,∠B=∠C=45°,∵点D为等腰直角△ABC的斜边的中点,∴AD⊥BC,BD=CD=AD,AD平分∠BAC,∴∠2+∠3=90°,∠1=45°,∵∠EDF=90°,即∠4+∠3=90°,∴∠2=∠4,在△DBE和△DAF中,∴△DBE≌△DAF(ASA),∴DE=DF,所以①正确;同理可得△DCF≌△DAE,∴S四边形AEDF=S△BED+S△CFD,所以②正确;∵S△ABC=•AD•BC=•AD•2AD=AD2,而只有当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,∴S△ABC不一定等于EF2,所以③错误;在Rt△AEF中,EF2=AE2+AF2,∵△DBE≌△DAF,△DCF≌△DAE,∴BE=AF,CF=AE,∴EF2=BE2+CF2,所以④正确.故答案为①②④.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是12 m.【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.【解答】解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=12.即旗杆的高是12米.故答案为:12.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD 的对角线的交点,直线MN就是所求的线段AB的垂直平分线.三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.18.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【解答】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?【分析】过O作OD⊥AB,交AB于点C,交于点D,如图所示,利用垂径定理得到C为AB的中点,由AB长求出AC长,在直角三角形AOC中,利用锐角三角函数定义求出sin∠AOC的值,利用特殊角的三角函数值求出∠AOC度数,进而求出∠AOB度数,利用弧长公式即可求出拱形的弧长.【解答】解:过O作OD⊥AB,交AB于点C,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==20π.21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.【分析】根据同一时刻物高与影长成正比,因而作DE⊥AB于点E,则AE与DE的比值,即同一时刻物高与影长的比值,即可求解.【解答】解:作DE⊥AB于点E,根据题意得:=,=,解得:AE=8米.则AB=AE+BE=8+2=10米.即旗杆的高度为10米.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为4,所以两次抽取的牌上的数字都是偶数的概率=.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且=.【解答】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且=.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,D是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.【分析】(1)根据对称性进行判断;(2)根据偶函数的定义,知二次函数的对称轴是y轴,则其中的b=0,从而进一步求得点A、B、P的坐标,根据三角形的面积公式即可求出该三角形的面积.【解答】解:(1)A、y=3x是经过一、三象限的直线,其对称轴不是y轴,则不是偶函数;B、y=x+1是经过一、二、三象限的直线,其对称轴不是y轴,则不是偶函数;C、是在一、三象限的双曲线,其对称轴不是y轴,则不是偶函数;D、y=x2是关于y轴对称的抛物线,则是偶函数.故答案为D.(2)∵二次函数y=x2+bx﹣4是偶函数,∴其对称轴是y轴,则b=0.即二次函数y=x2﹣4.则A(﹣2,0),B(2,0),P(0,﹣4),则△ABP的面积=×4×4=8.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.【分析】将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=4k﹣6,那么y1•y2=k2﹣3k+当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值即可.【解答】解:将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,设抛物线y=﹣x2与直线y=kx﹣2k+3交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=4k﹣6,∴y1•y2=(x12)•(x22)=(x1•x2)2=(4k﹣6)2=4k2﹣6k+9 当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2﹣6k+9=﹣4k+6,∵k>0,∴k=,27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)+答案解析

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)+答案解析

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的相反数是()A.3B.C.D.2.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A ,B ,相对面上的两个数互为相反数,则()A. B.C.1D.23.我国自主研发的500m 口径球面射电望远镜有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据250000为()A.B.C. D.4.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,把一块含有角的直角三角板的两个顶点分别放在直尺的一组对边上.如果,那么的度数是()A.B. C. D.6.下列计算正确的是()A.B. C. D.7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.下列命题中真命题的个数是()①过一点有且只有一条直线与已知直线平行;②同角的余角相等;③垂直于同一条直线的两直线平行;④长度相等的弧是等弧.A.1个B.2个C.3个D.4个9.如图,在中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线AP,交CD于点E,若,,则AE长为()A. B.3 C.4 D.510.如图,在中,,,,在中,,,BC与EF在同一条直线上,点C与点E重合以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

11.若二次根式有意义,则x的取值范围为______.12.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频数则绿豆发芽的概率估计值是______精确到13.若关于x的方程的一个根是3,则此方程的另一个根是______.14.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果,那么线段BF的长度为______.15.如图,一条抛物线与x轴相交于A、B两点点A在点B的左侧,其顶点P在线段MN上移动.若点M、N的坐标分别为、,点B的横坐标的最大值为3,则点A的横坐标的最小值为______.三、解答题:本题共7小题,共63分。

2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。

山西省晋中市平遥县2023届九年级中考模拟(六)数学试卷(含答案)

山西省晋中市平遥县2023届九年级中考模拟(六)数学试卷(含答案)

2023年中考总复习预测模拟卷数学(六)注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共6页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号写在本试卷及答题卡相应的位置.3.请把答案全部填写在答题卡上,答在本试卷上无效.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算的结果是()A.B.C.D.62.中国地铁是指中国建设和运营中的城市轨道交通.下列城市地铁图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.黄河之水,连天入海,浩荡奔涌,在我国经济社会发展和生态安全方面具有十分重要的地位,是我国水电资开发的富矿.黄河流域水力资理论蕴藏量4331.2万千瓦.该数据可用科学记数法表示为()A.千瓦B.千瓦C.千瓦D.千瓦4.在求解方程时,在方程两边同乘,把原方程化为:,这一变形过程体现的数学思想主要是()A.类比思想B.函数思想C.方程思想D.转化思想5.下列运算正确的是()A.B.C.D.6.将矩形绕点旋转到如图位置,若,则的度数为()A.B.C.D.7.用配方法解方程时,配方后正确的是()A.B.C.D.8.点,,,在反比例函数图像上,则,,,中最小的是()A.B.C.D.9.今年是我国现行宪法公布施行40周年.为贯彻党的二十大精神,强化宪法意识,弘扬宪法精神,推动宪法实施,某学校开展法律知识竞赛活动,全校一共100名学生参与其中,得分情况如下表,则分数的中位数和众数分别是()分数(分)60708090100人数822203322A.80分,90分B.90分,100分C.85分,90分D.90分,90分10.如图,以直角顶点为圆心、以一定的长为半径画弧,恰好与边相切,分别交,于点,,已知,则图中阴影部分的面积是()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:_________.12.若的整数部分为,小数部分为,则代数式的值是_________.13.已知菱形的一边长为,其一条对角线的长为,则该菱形的面积为_________.14.小良帮助爸爸妈妈一同在家装市场选购新家的地板样式,期间被一款如图,类似鱼骨的拼接方式所吸引.通过和手工师傅交流,与自己实际动手操作,她发现图中所有矩形地板是全等的,并且符合黄金分割比例.比如点是的黄金分割点,即.延长与相交于点,则_________.(精确到0.001)15.如图,在中,,,点为斜边的中点,点在上,,现将线段绕点旋转,点的对应点为点,连接,.当时,的长为_________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)计算:;(2)解不等式组:17.(本题8分)如图,在中,.(1)利用尺规:作的外接圆;作的角平分线交于点,连接;(不写作法,保留作图痕迹)(2)若,,求的长.18.(本题9分)为优化全民健身组织体系,强化全民健身政策激励,我省推广并贯彻实施《山西省构建更高水平的全民健身公共服务体系行动方案》.某社区积极响应号召、为构建15分钟健身圈,购买了甲、乙两种健身器材,已知购买甲种器材共花费82000元,购买乙种器材共花费54000元,并且甲种健身器材的单价是乙种健身器材的2倍,甲种器材比乙种器材少13 件.(1)甲、乙两种健身器材一共购买了多少件?(2)相邻社区决定效仿该社区,计划购进甲、乙两种健身器材共120件,且费用不超过150 000 元,请问:相邻社区甲种健身器材最多能购买多少件?19.(本题6分)公司生产、两种型号的洗碗机,为了解它们的用水量,工作人员从某月生产的、型洗碗机中各随机抽取10台,保证洗碗数、脏污度等相同的情况下,记录下它们的用水量的数据(单位:),并进行整理、描述和分析(用水量用表示,共分为三个等级:合格,良好,优秀),下面给出了部分信息:10台型洗碗机的用水量:10,13,13,13,10,16,15,8,11,9.10台型洗碗机中“良好”等级包含的所有数据为:12,11,11,12,14.抽取的、型洗碗机用水量统计表型号平均数中位数众数方差“优秀”等级所占百分百11.5137.92420%12.51010.2530%根据以上信息,解答下列问题:(1)填空:_________,_________,_________;(2)这个月公司预计销售型洗碗机1500台,估计该月型洗碗机“合格”等级的台数;(3)根据以上数据,请你为该公司接下来的生产计划提出一条建议,并说明理由.20.(本题7分)阅读与思考.请仔细阅读并完成相应的任务.利用我们所学习的三角函数的相关知识可以解决许多关于三角形边长、角度、面积等问题.如图,在锐角中,,,的对边分别是,,过点作于点,则,即,于是.在中,,在中,,,整理得.任务:(1)__________,__________;(2)已知中,,,所对边分别是,,,,,,求.21.(本题8分)预防青少年近视,从一点一滴做起,为提高同学们保护视力的意识,某学校开展了一系列爱眼护眼宣传活动.某数学小组从网课期间利用笔记本电脑学习的同学处得到启发,准备探究笔记本电脑屏幕与键盘的夹角以及屏幕上方边界离桌面的距离与视力的关系.如图,当屏幕与键盘所成夹角时,上方边界处离桌面的高度的长为,通过发放调查问卷统计的数据显示,多数同学表示此角度不理想.通过不断调整与问卷调查分析,发现多数同学认为当夹角时,感觉比较适宜.求此时上方边界处离桌面的高度的长.(结果精确到;参考数据:,,,)22.(本题13分)综合与实践.问题情境:如图,和的顶点重合,,,,.(1)猜想发现:如图1,当点,分别在,上时,可以得出结论:________,直线与直线的位置关系是________;(2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接,,它们的延长线交于点,当时,求的值.23.(本题14分)综合与探究.如图1,在平面直角坐标系中,已知二次函数的图象与轴交于,两点(点在点的左侧),与轴交于点,连接.(1)求,,三点的坐标,并直接写出直线的函数表达式;(2)点是二次函数图象上的一个动点,请问是否存在点使?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线,交轴于点.若点是二次函数图象上一动点,且点始终位于轴上方,作直线,,分别交于点,,在点的运动过程中,的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.2023年中考总复习预测模拟卷参考答案数学(六)一、选择题1.B 2.C 3.B 4.D 5.B 6.A 7.D 8.C 9.C 10.A 二、填空题11.12.1 13.96 14.0.618 15.或三、解答题16.解:(1)原式(2)解不等式组:解不等式①,得:,解不等式②,得:,原不等式组的解集是.17.解:(1)如图,的外接圆即为所求.(2)连接.,是的直径,,,,平分,,,,.18.解:(1)设一件乙健身器材的单价为元,则一件甲健身器材的单价为元.由题意可得,解得,经检验,是原分式方程的解且满足题意(件).(件),(件).答:甲,乙两种健身器材一共购买了95件.(2)设相邻社区甲种健身器材购买件,由题意可得,解得.答:相邻社区甲种健身器材最多能购买30件.19.解:(1)11.8;11.5;20(2)(台),答:该月型洗碗机“合格”等级的台数为300台.(3)可以加大型洗碗机的生产量,因为其平均用水量较低,同时方差较小,说明用水量比较稳定.(答案不唯一)20.;.(2),,即,解得,(舍去),.21.解:,,,,.在中,,,解得.由题意得:,,,在中,,此时上方边界处离桌面的高度的长约.22.(1)垂直(2)结论成立.证明:,,,,,,,,,,;,.(3)如图3,过点作于点,设交于点,过点作于点,,,,,,,,当时,四边形是矩形,,设,则,,,,,,,23.解:(1)当时,即,解得,.图象与轴交于点,,当时,图象与轴交于点直线的函数表达式为(2)存在,理由如下:当点在上方时,,,即轴,点与点关于抛物线的对称轴对称抛物线的对称轴为直线,当点在下方时,设交轴于点,则,.,.在中,,,解得:,设直线的解析式为,则解得:直线的解析式为联立,得解得:(舍去).综上所述,点的坐标为或,(3)的值为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考模拟试卷 数学卷(6)考生须知:※ 本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟. ※ 答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.※ 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. ※ 考试结束后,上交试题卷和答题卷.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列各式中,运算正确的是( )【原创】A .632a a a ÷=B .325()a a =C .223355+=D .632÷=2.函数2y x =+中,自变量x 的取值范围是( )【原创】 A .2x >- B .2x -≥C .2x ≠-D .2x -≤3.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( )【原创】 A .50B .80C .65或50D .50或804.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( )【原创】A .平均数B .中位数C .众数D .方差5.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为( )【原创】 A .(3,1) B .(3,2) C .(2,3) D .(1,3)6.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A .5米B .8米C .7米D .53米(第6题) (第7题)xy1 2 43 0 -1-2 -3 12 3AB(第5题)7.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( ) A .1∶3B .2∶3C .3∶2D .3∶38.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( ) (A )18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 9.如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 ( ) A .35︒B .40︒C .50︒D .80︒(第10题)10. 在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( )【2010威海改编】 A .201035()2B .201195()4C . 200995()4D .402035()2二、认真填一填(本小题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.方程组26x y x y -=⎧⎨+=⎩的解是 .【原创】12.直线y =kx +b 经过A (2, 1)和B (0,-3)两点,则不等式组-3<kx +b <12x 的解集为______.【原创】13.有一个正十二面体,12个面上分别写有1至12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 .14.如图,在Rt △ABC 中,∠C =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB = . 【原创】CABD (第9题)Oy o xA A 1 A 2B 1B B 2C 2C 1 C D(第14题) (第15题)15. 如图,将边长为33+的等边△ABC 折叠,折痕为DE ,点B 与点F 重合,EF 和DF 分别交AC 于点M 、N ,DF ⊥AB ,垂足为D ,AD =1,则重叠部分的面积为 .【原创】 16、已知直线1y x =,2113y x =+,5343+-=x y ,若无论x 取何值,y 总取1y 、2y 、3y 中的最小值,则y 的最大值为 。

【原创】三、全面答一答(本小题有8个小题,共66分)解答应写出文字说明、证明过程或推理步骤.如果觉得有些题有点困难,那么把自己 能写出的解答写出一部分也可以. 17.(本小题满分6分) 计算:(1)22cos 4522+-(2)解方程:1321x x =+ .【原创】18. (本小题满分6分) 若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小. 观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.【2009白银市】19. (本小题满分6分)在一次数学活动课上,某校初三数学老师带领学生去测河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)CA DBDNE F MCBA20. (本小题满分8分)如图,AB//CD,∠CAB=108°,AC=2.⑴用直尺和圆规作∠A 的平分线AE,交CD 于E,并在AB 上取一点F ,使AC=AF ,再连接CF,交AE 于K ; (要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形,并求出AK. (图中不再增加字母和线段,不要求证明).【2010临浦片第二学期期初改编】21. (本小题满分8分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)求该班共有多少名学生?(2)在图(1)中,将表示“步行”的部分补充完整;(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数; (4)如果全年级共600名同学,请你估算全年级步行上学的学生人数?【2006攀枝花改编】22. (本小题满分10分)阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图12,矩形1111A B C D 是矩形ABCD 的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,2时,它是否存在“减半”矩形?请作出判断,并请说明理由; (2)边长为a 的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,说明理由.【2006鄂尔多斯市改编】人数 25 20 15 10 5 0 乘车 步行 骑车 上学方式图⑴乘车 50% 步行 20% 骑车 图⑵ ABCD宽:3D1C1B1A1 长:4宽:2 长:12D CBA23. (本小题满分10分)某生产“科学计算器”的公司, 有100名职工,该公司生产的计算器由百货公司代理销售,经公司多方考察,发现公司的生产能力受到限制.决定引进一条新的计算器生产线生产计算器,并从这100名职工中选派一部分人到新生产线工作.分工后,继续在原生产线从事计算器生产的职工人均年产值可增加20%,而分派到新生产线的职工人均年产值为分工前人均年产值的4倍,如果要保证公司分工后,原生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值,而新生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值的一半.(1)试确定分派到新生产线的人数;(2)当多少人参加新生产线生产时,公司年总产值最大?相比分工前,公司年总产值的增长率是多少?【来自网络】24. (本小题满分12分)如图, 在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P, PH ⊥OA,垂足为H, △PHO 的中线PM 与NH 交于点G . (1)求证:2PGGM; (2)设PH=x , GP=y ,求y 关于x 的函数解析式,并写自变量x 的取值范围;(3)如果△PGH 是等腰三角形,试求出线段PH 的长.【2000年上海改编】H M NG P O AB 24题 xy2011年中考模拟试题数学答题纸姓 名准考证号二、认真填一填 (本题有6个小题, 每小题4分, 共24分)11.___________________________________12.___________________________________13.___________________________________14.___________________________________15.___________________________________16.___________________________________请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效17.(本小题6分) (1)22cos 4522+-(2)解方程:1321x x =+18.(本小题6分)请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效19.(本小题6分)20.(本小题8分)A BC D请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效21.(本小题8分) (1) (3) (4)22.(本小题8分) (1) (2)请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效人数 25 20 15 10 5 0乘车步行 骑车上学方式图⑴23.(本小题12分)请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效24.(本小题12分) (1) (2) (3) 请在各题目的区域内作答,超出黑色矩形边框限定区域的答案无效HMNG POAB24题xy2011年中考模拟试卷数学参考答案及评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1、D2、B3、D4、B5、D6、B7、A8、A9、B 10、D 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11、 22x y =⎧⎨=-⎩ 12、0﹤x ﹤2 13、1214、5515、39344+ 16、16 三. 全面答一答 (本题有8个小题, 共66分)17、解:(1)原式222222⎛⎫=⨯+- ⎪ ⎪⎝⎭…………………………………………………1分12222=⨯+-………………………………………………………2分=222-…………………………………………………………………3分 (2)去分母得:213x x +=………………………………………………………………4分解得:1x =………………………………………………………………………5分 检验…………………………………………………………………………………6分18、解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正实数,且m >n ,则11n n m m +<+.…………………………………………4分 若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n rm m r+<+.…………………………………………………………………………………6分 19、解:过点C 作CD⊥AB,垂足为D ,设CD=x ,在Rt△BCD 中,∠CBD=45°∴BD=CD=x 米.…………………………………………………………………………………1分 在Rt△ACD 中,∠DAC=31°,AD=AB+BD=(20+x )米,CD=x 米.…………………………3分∵tan ∠DAC=ADCD∴3520x x=+…………………………………………………………………………………5分 ∴30x =………………………………………………………………………………………6分 所以这条河宽度约为30米20、解:(1)AE 作法正确;……………………………………………………………………1分 F 点作法正确;…………………………………………………………………………………2分 (2)△CKF ∽△ACF ∽△EAK ;△CAK ∽△CEA ;………………………………………………6分 (3)51-……………………………………………………………………………………8分 21、解:(1)25×2=50人;……………………………………………………………………1分 (2)图略,步行人数是10;…………………………………………………………………4分(3)圆心角度数=10030×3600×1080;……………………………………………………6分 (4)估计该年级步行人数=600×20%=120.…………………………………………………8分 22、(1)不存在.………………………………………………………………………………1分 假设存在,不妨设“减半”矩形的长和宽分别为x 、y ,则⎪⎩⎪⎨⎧==+123xy y x ……………………………………………………………………………3分 由①得:32y =-x ③ 把③带入②得:23102x x -+= 29444b ac -=-<0………………………………………………………………………5分 所以不存在(2)不存在.…………………………………………………………………………………… 6分因为两个正方形是相似图形,当它们的周长比为2时,面积比必定是4,所以正方形不存在“加倍”正方形.……………………………………………………………………………………………10分 23、解:(1)假设人均年产值“1”,则年产值“100” 设分派到新生产线的人数为x 人,由题意可知:(100-)(1+20%)100450x x ≥⎧⎨≥⎩……………………………………………………………………3分 ∴⎪⎩⎪⎨⎧≤≥350225x x ……………………………………………………………………………………4分 ∴255023x ≤≤ ,且x 为整数 ∴13141516x =或或或………………………………………………………………………5分 (2)设公司的年总产值为y∴ (100-x)(1+20%)+4x y =………………………………………………………………6分∴ 2.8120y x =+……………………………………………………………………………7分∵k=2.8>0,y 随x 的增大而增大当x=16时,公司的年总产值最大,年产值164.8万……………………………………9分 公司的年总产值的增长率是64.8%。

相关文档
最新文档