求方程的近似解

合集下载

用牛顿迭代法求方程的近似解课件

用牛顿迭代法求方程的近似解课件
研究如何将牛顿迭代法与其他数值方法结合,以 获得更好的求解效果。
感谢您的观看
THANKS
阻尼牛顿法
总结词
阻尼牛顿法是一种改进的牛顿迭代法,通过引入阻尼因子来控制迭代过程中的步长,从而改善收敛性 和稳定性。
详细描述
阻尼牛顿法在每一步迭代中引入一个阻尼因子,该因子可以控制迭代过程中的步长。通过调整阻尼因 子的大小,可以有效地改善牛顿法的收敛性和稳定性,特别是在求解非线性方程时。阻尼牛顿法可以 更好地处理局部极小值和鞍点问题,提高求解精度和可靠性。
确定新的点
02
根据切线斜率和初始点的位置,确定新的迭代点。
更新切线斜率
03
根据新的迭代点,重新计算切线斜率。
判断收敛
设定收敛条件
设定一个收敛阈值,当连续两次迭代 之间的差值小于该阈值时,认为迭代 收敛。
检查收敛
在每次迭代后,检查是否满足收敛条 件,如果满足则停止迭代,否则继续 迭代计算。
04 牛顿迭代法的改进
二阶修正牛顿法
总结词
二阶修正牛顿法是在标准牛顿法基础上进行改进,通过引入二阶导数信息来加速收敛并 提高解的精度。
详细描述
二阶修正牛顿法利用二阶导数信息,在每一步迭代中构造一个更高阶的近似函数,从而 更快地逼近方程的真实解。这种方法在某些情况下可以显著减少迭代次数,提高求解效 率。然而,二阶修正牛顿法需要更多的计算资源和存储空间,因此在实际应用中需要根
用牛顿迭代法求方程 的近似解课件
目录
CONTENTS
• 引言 • 牛顿迭代法的基本原理 • 牛顿迭代法的实现步骤 • 牛顿迭代法的改进 • 实例演示 • 总结与展望
01 引言
牛顿迭代法的背景
牛顿迭代法是一种求解方程近似解的数值方法。

用二分法求方程的近似解(高中数学)

用二分法求方程的近似解(高中数学)
1.(变条件)求本例函数f(x)在区间[-2,-1]上精确度为0.1的一个 零点近似值.
[解] 因为 f(-1)>0,f(-2)<0,且函数 f(x)=x3-3x2-9x+1 的图象 是连续的曲线,根据函数零点的存在性定理可知,它在区间[-2,-1]内 有零点,用二分法逐步计算,列表如下:
22
端点(中点)
________.
11
合作探究 提素养
12
二分法的概念 【例 1】 已知函数 f(x)的图象如图所示,其中零点的个数与可以用 二分法求解的个数分别为( )
A.4,4
B.3,4
C.5,4
D.4,3
D [图象与 x 轴有 4 个交点,所以零点的个数为 4;左右函数值异号
的零点有 3 个,所以用二分法求解的个数为 3,故选 D.]
内的唯一零点时,精确度为 0.001, 长度|b-a|小于精确度ε时,便可结束
则结束计算的条件是( )
计算.]
A.|a-b|<0.1
B.|a-b|<0.001
C.|a-b|>0.001
D.|a-b|=0.001
3.已知函数 y =f(x)的图象如图所 示,则不能利用二分 法求解的零点是 ________.
由于|1.75-1.687 5|=0.062 5<0.1,所以函数的正数
零点的近似值可取为1.687 5.
26
利用二分法求方程近似解的过程图示
27
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点 逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度, 用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足: (1)在区间[a,b]上连续不断; (2)f(a)·f(b)<0, 上述两条的函数方可采用二分法求得零点的近似值.

方程的近似解

方程的近似解

方程的近似解大家好,我今天要谈论的是“方程的近似解”。

令()为有限多元函数,求解()=0的根,称为求解方程。

求解方程的方法很多,但它们能够准确求得根却不多。

在实际工作中,很多时候我们需要寻找近似解。

近似解指的是某个方程的接近解,但不完全等于0。

近似解的意义在于它们比根更容易求得,但仍可以用于算法的一些计算和应用。

通常来说,要找到近似解,就需要定义某个误差量来度量它们之间的差异。

在具体应用中,我们可以将误差量作为近似解的公式来计算。

以下是一些常用的近似解求取方式:(1)平方根法:平方根法是其中一种最古老的方法,可以用来计算一个方程的近似解。

它使用迭代法求出方程的近似解,直到解收敛为偶函数为止。

(2)牛顿法:牛顿法是另一种比较古老的方法,它使用多项式近似函数和偏导数来对方程求解。

它最初是由牛顿发明的,后来被改进。

牛顿法可用来计算一个特定方程的近似解,但它也有其缺点,即在特定情况下,它可能无法收敛到解。

(3)梯度下降法:梯度下降法是一种非常流行的数值方法,它可以用来求解一个多变量函数的极小值。

它使用步长来移动步长,以便在每个步骤上求出一个近似解。

该方法也有一定的局限性,它有可能陷入局部最小值。

(4)拟牛顿法:拟牛顿法是一种近似求解方程的近似方法,它使用迭代法更新解,直到解收敛到某个精度为止。

它的优点在于它的执行速度很快,而且可以在高精度下求得一个近似解。

以上就是关于求取方程的近似解的介绍。

有了这些算法,我们可以更容易地求出近似解,让方程更容易求解。

它们可以帮助我们更快地解决一些复杂的数值问题。

在实际应用中,我们还可以组合使用这些方法,在一定精度范围内,以更快的速度解决一些复杂的数值问题。

总之,方程的近似解对于许多数值计算问题来说是非常有用的,近似解的求取方法也有很多,比如平方根法、牛顿法、梯度下降法和拟牛顿法等。

我们可以根据实际应用情况,灵活选择这些方法,帮助我们更快地解决这些问题。

用牛顿迭代法求方程的近似解课件

用牛顿迭代法求方程的近似解课件
牛顿迭代法在一般情况下是收敛的,但在某些情况下可能会出现发散的情况。需要对迭代过程的收敛 性进行分析,以确保迭代法的有效性。
迭代过程的收敛性分析主要涉及到函数$f(x)$的性质和初始值的选择等因素。如果$f(x)$在根附近有多 个极值点或者$f'(x)$在根附近变化剧烈,可能会导致迭代过程发散。
03 牛顿迭代法的应 用实例
THANKS
感谢观看
多变量牛顿迭代法 对于多变量非线性方程组,可以使用多变量牛顿迭代法进行求解。该方法在每一步迭代中,同时更新多 个变量的值,以更快地逼近方程组的解。
05 误差分析
迭代法中的误差来源
01 02
初始近似值的选取
初始近似值的选择对迭代法的收敛性和最终解的精度有重要影响。如果 初始近似值与真实解相差较大,可能会导致迭代过程发散或收敛速度缓 慢。
优化算法
作为优化算法的一种,牛顿 迭代法可以用于求解各种优 化问题,如机器学习中的损 失函数优化等。
工程计算
在工程计算中,牛顿迭代法 可以用于求解各种复杂的数 学模型和物理模型,如有限 元分析、流体动力学等。
经济和金融领域
在经济和金融领域,牛顿迭 代法可以用于求解各种复杂 的经济模型和金融模型,如 资产定价、风险评估等。
一元高次方程的求解
总结词
牛顿迭代法同样适用于一元高次方程的求解, 但需要特别注意初始值的选取和收敛速度。
详细描述
对于形式为 (a_nx^n + a_{n-1}x^{n-1} + ldots + a_1x + a_0 = 0) 的一元高次方程, 可以使用牛顿迭代法进行求解。迭代公式与 一元二次方程类似,但需要注意初始值的选
04 牛顿迭代法的改 进与优化

牛顿法——用导数方法求方程的近似解

牛顿法——用导数方法求方程的近似解
探究与发现
牛顿法——用导数方法求方程 的近似解
下面,我们再看如何求方程 x3 2x2 10 x 20 0的根.
y
r x
从函数的观点看 , 方程 x3 2x2 10 x 20 0的根就
是函数f x x3 2x2 10 x 20的零点.从图形上看 , 一个函数的零点 r就是f x的图象与 x轴的交点横坐标 。
给定精度z0和初始值
根 据 牛 顿 法 公 式 计 算 当前 值
x1

x0

x30
2x20 10x0 20 3x20 4x0 10
令x0 x1
计算当前精度: z x1 x0 x0
No
z z0
Yes
x1为 方 程 的 近 似 解
求解结束
思考 1:不同的初始值对求方程的近似解有 影响吗?如果有,影响在什么地方?
1.38568பைடு நூலகம்135
x4
x3
f (x3 ) f (x3 )
1.3688121321
5
z x1 x0 0.392 x0
z x2 x1 0.335 x1
z x3 x2 0.143 x2
z x4 x3 0.012 x3
此时z z0
所以方程的一个近似解为x 1.36881213215
y
y
y
O x1 r0 x2 x0
r
x
x2
O x1 r
x0
xO
x0
x
gsp
思考
2: 你还知道其他求方程近似解的方法吗? 你认为牛顿法的优点和缺点是什么?
优点:速度较快,算法简单,精度高, 缺点:对初始值的选取很敏感。

专题40 高中数学用二分法求方程的近似解(解析版)

专题40 高中数学用二分法求方程的近似解(解析版)

专题40 用二分法求方程的近似解知识点一二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.知识点二用二分法求方程近似解的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点C.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=C.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).知识点三新知拓展1.用二分法求函数零点近似值的方法仅适用于函数的变号零点(曲线通过零点时,函数值的符号变号),对函数的不变号零点(曲线通过零点时,函数值的符号不变号)不适用.如求函数f(x)=(x-1)2的零点近似值就不能用二分法.2.用二分法求函数零点的近似值时,要根据函数的性质尽可能地找到含有零点的更小的区间,这样可以减少用二分法的次数,减少计算量.3.二分法采用逐步逼近的思想,使区间逐步缩小,使函数零点所在的范围逐步缩小,也就是逐渐逼近函数的零点.当区间长度小到一定程度时,就得到近似值.4.由|a-b|<ε,可知区间[a,b]中任意一个值都是零点x0的满足精确度ε的近似值.为了方便,这里统一取区间端点a(或b)作为零点的近似值.精确度与精确到是不一样的概念.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后保留一位小数得1.3.而“精确度为0.1”指零点近似值所在区间[a,b]满足|a-b|<0.1,比如零点近似值所在区间[1.25,1.34].若精确度为0.1,则近似值可以是1.25,也可以是1.34.5.在第一步中要使区间[a,b]的长度尽量小,且f(a)·f(b)<0.6.由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数F(x)零点近似值的步骤求解.题型一二分法的适用条件1.下列图象与x轴均有交点,其中不能用二分法求函数零点的是()[解析]按定义,f(x)在[a,b]上是连续的,且f(a)·f(b)<0,才能不断地把函数零点所在的区间一分为二,进而利用二分法求出函数的零点.故结合各图象可得选项B,C,D满足条件,而选项A不满足,在A中,图象经过零点x0时,函数值不变号,因此不能用二分法求解.故选A.2.已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3[解析]图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.3.下列函数图象中表示的函数能用二分法求零点的是()[解析]由于只有C满足图象连续,且f(a)·f(b)<0,故只有C能用二分法求零点.4.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是()A B C D[解析]二分法的理论依据是零点存在定理,必须满足零点两侧函数值异号才能求解.而选项B图中零点两侧函数值同号,即曲线经过零点时不变号,称这样的零点为不变号零点.另外,选项A,C,D零点两侧函数值异号,称这样的零点为变号零点.答案为B5.已知函数y=f(x)的图象如图所示,则不能利用二分法求解的零点是________.[解析]因为x3左右两侧的函数值同号,故其不能用二分法求解.6.用二分法求如图所示的函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3D.x4[解析]由二分法的原理可知,x3不能用二分法求出,因为其左右两侧的函数值同负.7.下列函数中不能用二分法求零点近似值的是()A.f(x)=3x-1 B.f(x)=x3C.f(x)=|x| D.f(x)=ln x[解析]对于选项C而言,令|x|=0,得x=0,即函数f(x)=|x|存在零点,但当x>0时,f(x)>0;当x<0时,f(x)>0,所以f(x)=|x|的函数值非负,即函数f(x)=|x|有零点,但零点两侧函数值同号,所以不能用二分法求零点的近似值.8.用二分法求函数f(x)在区间[a,b]内的零点时,需要的条件是()①f(x)在区间[a,b]上是连续不断的;②f(a)·f(b)<0;③f(a)·f(b)>0;④f(a)·f(b)≥0.A.①②B.①③C.①④D.②[解析]由二分法的定义知①②正确.9.下列函数不宜用二分法求零点的是()A.f(x)=x3-1 B.f(x)=ln x+3C.f(x)=x2+22x+2 D.f(x)=-x2+4x-1[解析]因为f(x)=x2+22x+2=(x+2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.题型二用二分法求方程的近似解(函数零点的近似值)1.下面关于二分法的叙述中,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只能用二分法求函数的零点[解析]用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A错误;二分法是一种程序化的运算,故可以在计算机上完成,故选项C错误;求函数零点的方法还有方程法、函数图象法等,故D错误,故选B.2.关于“二分法”求方程的近似解,说法正确的是( )A .“二分法”求方程的近似解一定可将y =f (x )在[a ,b ]内的所有零点得到B .“二分法”求方程的近似解有可能得不到y =f (x )在[a ,b ]内的零点C .应用“二分法”求方程的近似解,y =f (x )在[a ,b ]内有可能无零点D .“二分法”求方程的近似解可能得到f (x )=0在[a ,b ]内的精确解[解析]二分法求零点,则一定有且能求出,故B ,C 不正确;零点左侧与右侧的函数值符号相同的零点不能用二分法得到,故A 不正确,故选D.3.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( )A .[-2,-1]B .[-1,0]C .[0,1]D .[1,2][解析]∵f (-2)=-3<0,f (-1)=4>0,f (-2)·f (-1)<0,可取[-2,-1]作为初始区间,用二分法逐次计算. 4.函数f (x )的图象是连续不断的曲线,在用二分法求方程f (x )=0在(1,2)内近似解的过程可得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的解所在区间为( )A .(1.25,1.5)B .(1,1.25)C .(1.5,2)D .不能确定[解析]由于f (1.25)·f (1.5)<0,则方程的解所在区间为(1.25,1.5).5.用二分法求函数f (x )=2x +3x -7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )A .(0,1)B .(0,2)C .(2,3)D .(2,4)[解析] 因为f (0)=20+0-7=-6<0,f (4)=24+12-7>0,f (2)=22+6-7>0,所以f (0)·f (2)<0,所以零点在区间(0,2)内.6.在用二分法求函数f (x )的一个正实数零点时,经计算,f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6[解析]已知f (0.64)<0,f (0.72)>0,则函数f (x )的零点的初始区间为[0.64,0.72],又0.68=12(0.64+0.72),且f (0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此,0.7就是所求函数的一个正实数零点的近似值.答案C7.用二分法求函数y =f (x )在区间[2,4]上零点的近似值,经验证有f (2)·f (4)<0.取区间的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间). [解析]因为f (2)·f (3)<0,所以零点在区间(2,3)内.8.在用“二分法”求函数f (x )零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是()A .[1,4]B .[-2,1] C.⎣⎡⎦⎤-2,52 D.⎣⎡⎦⎤-12,1 [解析]∵第一次所取的区间是[-2,4],∴第二次所取的区间可能为[-2,1],[1,4], ∴第三次所取的区间可能为⎣⎡⎦⎤-2,-12,⎣⎡⎦⎤-12,1,⎣⎡⎦⎤1,52,⎣⎡⎦⎤52,4.答案D 9.若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.375C .1.42D .1.5[解析]由表格可得,函数f (x )=x 3+x 2-2x -2的零点在(1.406 25,1.437 5)之间.结合选项可知,方 程x 3+x 2-2x -2=0的一个近似根(精确度为0.05)可以是1.42.故选C. 10.用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:[解析] f (1.562 5)≈0.003>0,f (1.556 2)≈-0.029<0,方程3x -x -4=0的一个近似解在(1.556 2,1.562 5)上,且满足精确度为0.01,所以所求近似解可取为1.562 5.11.在用二分法求方程f (x )=0在[0,1]上的近似解时,经计算,f (0.625)<0,f (0.75)>0,f (0.687 5)<0,即得出方程的一个近似解为________.(精确度为0.1)[解析]∵f (0.625)<0,f (0.75)>0,f (0.687 5)<0,∴方程的解在(0.687 5,0.75)上,而|0.75-0.687 5|<0.1,∴方程的一个近似解为0.687 5.(答案不唯一)12.用二分法求方程ln(2x +6)+2=3x 的根的近似值时,令f (x )=ln(2x +6)+2-3x ,并用计算器得到下表:[解析]因为f (1.25)·f (1.375)<0,故根据二分法的思想,知函数f (x )的零点在区间(1.25,1.375)内,但区间(1.25,1.375)的长度为0.125>0.1,因此需要取(1.25,1.375)的中点1.312 5,两个区间(1.25,1.312 5)和(1.312 5,1.375)中必有一个满足区间端点的函数值符号相异,又区间的长度为0.062 5<0.1,因此1.312 5是一个近似解.13.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.[解析] ∵f (0)<0,f (0.5)>0,∴x 0∈(0,0.5),故第二次应计算f (0.25).14.已知函数f (x )=ln x +2x -6有一个零点,求这个零点所在的一个区间,使这个区间的长度不超过14(不能用计算器).[解析] ∵f (2)<0,f (3)>0,∴f (x )的零点x 0∈(2,3).取x 1=52,∵f ⎝⎛⎭⎫52=ln 52-1=ln 52-ln e<0, ∴f ⎝⎛⎭⎫52f (3)<0,∴x 0∈⎝⎛⎭⎫52,3.取x 2=114,∵f ⎝⎛⎭⎫114=ln 114-12=ln 114-ln e12 >0, ∴f ⎝⎛⎭⎫114f ⎝⎛⎭⎫52<0,∴x 0∈⎝⎛⎭⎫52,114.而⎪⎪⎪⎪114-52=14≤14,∴⎝⎛⎭⎫52,114即为符合条件的一个区间. 15.已知方程2x +2x =5.(1)判断该方程解的个数以及所在区间; (2)用二分法求出方程的近似解(精确度0.1).参考数值:[解析](1)令f (所以函数f (x )=2x +2x -5至多有一个零点.因为f (1)=21+2×1-5=-1<0,f (2)=22+2×2-5=3>0, 所以函数f (x )=2x +2x -5的零点在(1,2)内. (2)用二分法逐次计算,列表如下:因为|1.375-1.25|=所以函数的零点近似值为1.312 5,即方程2x +2x =5的近似解可取为1.312 5. 16.用二分法求方程x 2-5=0的一个近似正解.(精确度为0.1)[解析]令f (x )=x 2-5,因为f (2.2)=-0.16<0,f (2.4)=0.76>0,所以f (2.2)·f (2.4)<0, 即这个函数在区间(2.2,2.4)内有零点x 0,取区间(2.2,2.4)的中点x 1=2.3,f (2.3)=0.29,因为f (2.2)·f (2.3)<0,所以x 0∈(2.2,2.3), 再取区间(2.2,2.3)的中点x 2=2.25,f (2.25)=0.062 5,因为f (2.2)·f (2.25)<0, 所以x 0∈(2.2,2.25),由于|2.25-2.2|=0.05<0.1,所以原方程的近似正解可取为2.25. 17.求方程lg x =2-x 的近似解.(精确度为0.1)[解析]在同一平面直角坐标系中,作出y =lg x ,y =2-x 的图象如图所示, 可以发现方程lg x =2-x 有唯一解,记为x 0,并且解在区间(1,2)内.设f (x )=lg x +x -2,则f (x )的零点为x 0.用计算器计算得f (1)<0,f (2)>0⇒x 0∈(1,2); f (1.5)<0,f (2)>0⇒x 0∈(1.5,2);f (1.75)<0,f (2)>0⇒x 0∈(1.75,2),f (1.75)<0,f (1.875)>0⇒x 0∈(1.75,1.875);f (1.75)<0,f (1.8125)>0⇒x 0∈(1.75,1.8125). ∵|1.8125-1.75|=0.0625<0.1,∴方程的近似解可取为1.8125. 18.求函数f (x )=x 3-3x 2-9x +1的一个负零点(精确度0.01).[解析] 确定一个包含负数零点的区间(m ,n ),且f (m )·f (n )<0.因为f (-1)>0,f (-2)<0,所以可以取区间(-2,-1)作为计算的初始区间,当然选取在较大的区间也可以.用二分法逐步计算, 列表如下:端点(中点)端点或中点的函数值 取值区间f (-1)>0,f (-2)<0 (-2,-1) x 0=-1-22=-1.5f (x 0)=4.375>0 (-2,-1.5) x 1=-1.5-22=-1.75 f (x 1)≈2.203>0 (-2,-1.75) x 2=-1.75-22=-1.875 f (x 2)≈0.736>0 (-2,-1.875) x 3=-1.875-22=-1.937 5 f (x 3)≈-0.097 4<0 (-1.937 5,-1.875) x 4=-1.875-1.937 52=-1.906 25f (x 4)≈0.328 0>0 (-1.937 5,-1.906 25) x 5=-1.937 5-1.906 252=-1.921 875f (x 5)≈0.117 4>0 (-1.937 5,-1.921 875) x 6=-1.937 5-1.921 8752=-1.929 687 5f (x 6)≈0.010 5>0(-1.937 5,-1.929 687 5)由于|19.若函数y =f (x )在区间(a ,b )内的零点用二分法按精确度为ε求出的结果与精确到ε求出的结果相等,则称函数y =f (x )在区间(a ,b )内的零点为“和谐零点”.试判断函数f (x )=x 3+x 2-2x -2在区间(1,1.5)上按ε=0.1用二分法逐次计算求出的零点是否为“和谐零点”.(参考数据:f (1.25)≈-0.984,f (1.375)≈-0.260,f (1.4375)≈0.162,f (1.4065)≈-0.052)[解析] 函数f (x )=x 3+x 2-2x -2在区间(1,1.5)上有f (1)=-2<0,f (1.5)>0,故f (x )在(1,1.5)内有零点. 又f (x )=0,即x 3+x 2-2x -2=0,所以(x +1)(x -2)(x +2)=0, 所以f (x )在(1,1.5)内的零点为2,故精确到ε=0.1的零点为1.4.而根据二分法,将(1,1.5)分为(1,1.25),(1.25,1.5),因f (1.25)≈-0.984<0,故f (x )的零点在(1.25,1.5)内,此时区间长度为0.25>ε,继续下去,f (x )的零点在(1.375,1.4375)内,此时区间长度为0.0625<ε,此时零点的近似解可取1.375或1.4375,显然不等于1.4,故求出的零点不为“和谐零点”.题型三 二分法的实际应用1.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在区间[0,1]内有两个实根.[解析] ∵f (1)>0,∴3a +2b +c >0,即3(a +b +c )-b -2c >0.∵a +b +c =0,∴-b -2c >0,则-b -c >c ,即a >c .∵f (0)>0,∴c >0,则a >0. 在区间[0,1]内选取二等分点12,则f ⎝⎛⎭⎫12=34a +b +c =34a +(-a )=-14a <0. ∵f (0)>0,f (1)>0,∴函数f (x )在区间⎝⎛⎭⎫0,12和⎝⎛⎭⎫12,1上各有一个零点. 又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根. 2.已知函数f (x )=13x 3-x 2+1.(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内. [解析](1)∵f (0)=1>0,f (2)=-13<0,∴f (0)·f (2)=-13<0,由函数的零点存在性定理可得方程f (x )=0在区间(0,2)内有实数解.(2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)=-19<0,下一个有解区间为(1,2).再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0,∴f (1)·f ⎝⎛⎭⎫32=-124<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0,∴f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 故f (x )=0的实数解x 0在区间⎝⎛⎭⎫54,32内.3.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量小一点),现在只有一架天平,则应用二分法的思想,最多称________次就可以发现这枚假币.[解析]从26枚金币中取18枚,将这18枚金币平均分成两份,分别放在天平两端,(1)若天平不平衡,则假币一定在质量小的那9枚金币里面.从这9枚金币中拿出6枚,然后将这6枚金币平均分成两份,分别放在天平两端,若天平平衡,则假币一定在剩下的那3枚金币里;若不平衡,则假币一定在质量小的那3枚金币里面,从含有假币的3枚金币里取两枚,分别放在天平两端,若天平平衡,则剩下的那一枚是假币,若不平衡,则质量小的那一枚是假币.(2)若天平平衡,则假币在剩下的8枚金币里,从这8枚金币中取6枚,将这6枚金币平均分成两份,分别放在天平两端,若天平平衡,假币在剩下的两枚里,若天平不平衡,假币在质量小的3枚里.在含有假币的金币里取2枚分别放在天平左右,即可找到假币.综上可知,最多称3次就可以发现这枚假币.故填3.4.现有12个小球,从外观上看完全相同,除了1个小球质量不合标准外,其余的小球质量均相同,用同一架天平(无砝码),限称三次,把这个“坏球”找出来,并说明此球是偏轻还是偏重.如何称?[解析]先在天平左右各放4个球.有两种情况:(1)若平,则“坏球”在剩下的4个球中.取剩下的4个球中的3个球放天平的一端,取3个好球放天平的另一端,①若仍平,则“坏球”为4个球中未取到的那个球,将此球与1个好球放上天平比一比,即知“坏球”是轻还是重;②若不平,则“坏球”在天平一端的3个球之中,且知是轻还是重.任取其中2个球分别放在天平左右两端,无论平还是不平,均可确定“坏球”.(2)若不平,则“坏球”在天平上的8个球中,不妨设天平右端较重.从右端4个球中取出3个球,置于一容器内,然后从左端4个球中取3个球移到右端,再从外面好球中取3个补到左端,看天平,有三种可能.①若平,则“坏球”是容器内3个球之一且偏重;②若左端重,“坏球”已从左端换到右端,因此,“坏球”在从左端移到右端的3个球中,并且偏轻;③若右端重,据此知“坏球”未变动位置,而未被移动过的球只有两个(左右各一),“坏球”是其中之一(暂不知是轻还是重).显然对于以上三种情况的任一种,再用天平称一次,即可找出“坏球”,且知其是轻还是重.。

迭代法求方程的近似解

迭代法求方程的近似解

迭代法求方程的近似解在数学中,方程是一种重要的数学工具,它可以描述各种自然现象和数学问题。

解方程是数学学习中的基本内容之一,而求解方程的近似解是数值计算中的重要问题之一。

本文将介绍一种常用的方法——迭代法,用于求解方程的近似解。

一、什么是迭代法迭代法是一种通过逐步逼近的方式求解方程的方法。

其基本思想是从一个初始值开始,通过不断迭代计算,逐步逼近方程的解。

迭代法的优点在于简单易行,适用于各种类型的方程。

二、迭代法的基本原理迭代法的基本原理是通过不断迭代计算,逐步逼近方程的解。

具体步骤如下:1. 选择一个初始值x0作为方程的近似解。

2. 根据方程的特点,构造一个递推公式xn+1=f(xn),其中f(x)是方程的函数表达式。

3. 通过不断迭代计算,得到xn+1的值。

4. 判断xn+1与xn之间的差距是否小于给定的精度要求,如果满足要求,则停止计算,否则返回第3步继续迭代计算。

三、迭代法的实例下面通过一个实例来说明迭代法的具体应用。

假设我们要求解方程x^2 - 2 = 0的近似解。

首先选择一个初始值x0=1作为方程的近似解。

然后,根据方程的特点,构造递推公式xn+1=(xn+2/xn)/2。

通过不断迭代计算,得到如下结果:初始值x0=1,迭代1次得到x1=1.5迭代1次得到x1=1.5,迭代2次得到x2=1.4167迭代2次得到x2=1.4167,迭代3次得到x3=1.4142迭代3次得到x3=1.4142,迭代4次得到x4=1.4142通过迭代计算,我们得到了方程x^2 - 2 = 0的近似解x≈1.4142。

可以发现,随着迭代次数的增加,近似解逐渐逼近方程的真实解。

四、迭代法的注意事项在使用迭代法求解方程的过程中,需要注意以下几点:1. 初始值的选择:初始值的选择对迭代结果有很大影响,一般需要根据方程的特点和实际情况进行选择。

2. 迭代公式的构造:迭代公式的构造需要根据方程的特点进行合理设计,以确保迭代过程的收敛性和稳定性。

计算方法 02第二章 方程的近似解法

计算方法 02第二章 方程的近似解法

∈ (0.5, 0.75)
-1
3
二、代数方程实根的上下界
若f
( )
x
为 n 次多项式,则
f ( x) = 0
称为 n 次代数方程。
对于代数方程有如下定理: [定理] 设有 且 则 证明
f ( x ) = a0 x n + a1 x n −1 + L + an (a0 ≠ 0)
f ( x) = 0
A = max { a1 、 2 、 、 n } a L a
若同号,则取 于是得到区间
an −1 + bn −1 an = an −1,bn = 2 an −1 + bn −1 an = , bn = bn −1 2
1 。区间长为 n ( b − a ) , α ∈ ( an , bn )。 2
[ an,bn ]
若取α 的近似值
则绝对误差限为
例.求解方程
an + bn α = 2 1 b − a) n +1 ( 2
xn +1 − xn ≤ m xn − xn −1
xn + p − xn + p −1 ≤ m p xn − xn −1
xn + p − xn ≤ xn + p − xn + p −1 + xn + p −1 − xn + p − 2 + L + xn +1 − xn
其中p为任意正整数
……
≤ (m p + m p −1 + L + m) xn − xn −1
1 区间长为 ( b − a ) , α ∈ (a1 ,b1 ). 2
7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课
课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式.
1.函数f(x)在区间(0,2)内有零点,则()
A.f(0)>0,f(2)<0
B.f(0)·f(2)<0
C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0
D.以上说法都不正确
2.函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是()
A.0 B.1
C.2 D.1或2
3.设函数f(x)=log3x+2
x-a在区间(1,2)内有零点,则实数a的
取值范围是()
A.(-1,-log32) B.(0,log32)
C.(log32,1) D.(1,log34)
4.方程2x-x-2=0在实数范围内的解的个数是________________________________.
5.函数y=(1
2)
x与函数y=lg x的图象的交点的横坐标是
________.(精确到0.1)
6.方程4x2-6x-1=0位于区间(-1,2)内的解有__________个.
一、选择题
1.已知某函数f(x)的图象如图所示,则函数f(x)有零点的区间大致是()
A.(0,0.5)
B.(0.5,1)
C.(1,1.5)
D.(1.5,2)
2.函数f(x)=x5-x-1的一个零点所在的区间可能是()
A.[0,1] B.[1,2]
C.[2,3] D.[3,4]
3.若x0是方程lg x+x=2的解,则x0属于区间()
A.(0,1) B.(1,1.25)
C.(1.25,1.75) D.(1.75,2)
4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0]
C.[0,1] D.[1,2]
5.已知函数f(x)=(x-a)(x-b)+2(a<b),并且α,β(α<β)是函数y =f(x)的两个零点,则实数a,b,α,β的大小关系是()
A.a<α<β<b B.α<a<b<β
C.α<a<β<b D.a<α<b<β
二、填空题
6.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.
7.已知偶函数y=f(x)有四个零点,则方程f(x)=0的所有实数根之和为________.
8.若关于x的二次方程x2-2x+p+1=0的两根α,β满足0<α<1<β<2,则实数p的取值范围为___________________.
9.已知函数f(x)=ax2+2x+1(a∈R),若方程f(x)=0至少有一正根,则a的取值范围为________.
三、解答题
10.若函数f(x)=x3+x2-2x-2的一个零点附近的函数值的参考数据如下表:
求方程x3.
11.分别求实数m的范围,使关于x的方程x2+2x+m+1=0,
(1)有两个负根;
(2)有两个实根,且一根比2大,另一根比2小;
(3)有两个实根,且都比1大.
能力提升
12.已知函数f(x)=x|x-4|.
(1)画出函数f(x)=x|x-4|的图象;
(2)求函数f(x)在区间[1,5]上的最大值和最小值;
(3)当实数a为何值时,方程f(x)=a有三个解?
13.当a取何值时,方程ax2-2x+1=0的一个根在(0,1)上,另一个根在(1,2)上.
习题课
双基演练
1.D [函数y =f (x )在区间(a ,b )内存在零点,我们并不一定能找到x 1,x 2∈(a ,b ),满足f (x 1)·f (x 2)<0,故A 、B 、C 都是错误的,正确的为D.]
2.D [当f (x )的图象和x 轴相切与y 轴相交时,函数f (x )的零点个数为1,当f (x )的图象与y 轴交于原点与x 轴的另一交点在x 轴负半轴上时,函数f (x )有2个零点.]
3.C [f (x )=log 3(1+2x )-a 在(1,2)上是减函数,由题设有f (1)>0,
f (2)<0,解得a ∈(lo
g 32,1).]
4.2
解析 作出函数y =2x 及y =x +2的图象,它们有两个不同的交点,因此原方程有两个不同的根.
5.1.9(答案不唯一)
解析 令f (x )=(12)x -lg x ,则f (1)=12>0,f (3)=18-lg 3<0,∴f (x )=0在(1,3)内有一解,利用二分法借助计算器可得近似解为1.9.
6.2
解析 设f (x )=4x 2-6x -1,由f (-1)>0,f (2)>0,且f (0)<0,知方程4x 2-6x -1=0在
(-1,0)和(0,2)内各有一解,因此在区间(-1,2)内有两个解. 作业设计
1.B
2.B [因为f (0)<0,f (1)<0,f (2)>0,
所以存在一个零点x ∈[1,2].]
3.D [构造函数f (x )=lg x +x -2,由f (1.75)=f (74)=lg 74-14<0,f (2)
=lg 2>0,知x 0属于区间(1.75,2).]
4.A [由于f (-2)=-3<0,f (1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.]
5.A [函数g (x )=(x -a )(x -b )的两个零点是a ,b .
由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b .]
6.7
解析 区间(2,3)的长度为1,当7次二分后区间长度为 127=1128<1100=0.01.
7.0
解析 不妨设它的两个正零点分别为x 1,x 2.
由f (-x )=f (x )可知它的两个负零点分别是-x 1,-x 2, 于是x 1+x 2-x 1-x 2=0.
8.(-1,0)
解析 设f (x )=x 2-2x +p +1,根据题意得f (0)=p +1>0, 且f (1)=p <0,f (2)=p +1>0,解得-1<p <0.
9.a <0。

相关文档
最新文档