应用牛顿运动定律解题的方法和步骤

合集下载

应用牛顿运动定律解题的一般步骤

应用牛顿运动定律解题的一般步骤

应用牛顿运动定律解题的一般步骤一、分析物体的受力情况和运动情况,并将物体的运动过程进行分段处理,使每段运动过程的运动性质单一化。

(本步在草稿纸上进行)二、画好物体的受力示意图,并进行必要的分解或合成(也要在图上表示出来)。

如采用分解的方法,一般选择正交分解(分解到相互垂直的两个方向),其中对平衡问题是根据受力示意图分解的(保持原来已相互垂直的力);而非平衡问题是根据加速度方向分解的(与加速度垂直和平行)。

然后根据示意图建立平衡方程和合力的表达式(根据需要建立,并不是所有问题的解答都需要两个方向的方程)。

(象平抛运动这类物体在恒力作用下的曲线运动问题,我们往往不是采用力分解的方法,而是采用运动分解的方法,从而将复杂运动转化为两个相对较为简单的运动进行研究)。

三、画出物体的运动过程简图,并针对每个过程建立相应的运动学关系式(平抛类问题一般需要将运动分解到与合力平行和垂直的两个方向上,然后对两个方向的运动分别建立关系式;而圆周运动问题往往表现为正确选择向心力表达式和图象中某些线段和半径的关系),在建立运动学关系时,应注意选择对题意最合适的关系,尽量少走弯路。

四、分析已建立的方程,补充相应的公式(要根据题意将公式中的通用符号改换成适合题意的符号)和题中给出条件可建立的关系式。

五、解答时,要先分析哪些方程可以直接求解,哪些方程可以通过加减或乘除简化计算,同时应注重公式的推导、演化得出最终的表达式,不要每一步都想得出结论。

六、在建立每个表达式时,应在表达式的前面简要地说明该表达式的研究对象、研究的时间范围或空间范围(什么位置、时刻或什么过程、时间)、主要研究的物理量及物理学原理等。

七、最后要有必要的答,如题目要求压力,而我们在题中解答的是支持力;求某物理量的范围等。

物理知识点总结:牛顿第一、第二、第三定律

物理知识点总结:牛顿第一、第二、第三定律

牛顿第一定律1.历史上对力和运动关系的认识过程:①亚里士多德的观点:力是维持物体运动的原因。

②伽利略的想实验:否定了亚里士多德的观点,他指出:如果没有摩擦,一旦物体具有某一速度,物体将保持这个速度继续运动下去。

③笛卡儿的结论:如果没有加速或减速的原因,运动物体将保持原来的速度一直运动下去。

④牛顿的总结:牛顿第一定律2.伽利略的“理想斜面实验”程序内容:①(事实) 两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面②(推论) 如果没有摩擦,小球将上升到释放的高度。

③(推论) 减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度。

④(推论) 继续减小第二个斜面的倾角,最后使它成水平,小球沿水平面做持续的匀速直线运动。

⑤(推断) 物体在水平面上做匀速运动时并不需要外力来维持。

此实验揭示了力与运动的关系:①力不是..维持物体运动的原因,而是..改变物体运动状态的原因,物体的运动并不需要力来维持。

②同时说出了一切物体都有一种属性(运动状态保持不变....的属性)只有受力时运动状态才改变。

这种运动状态保持不变....的属性就称作惯性。

即:一切物体具都有保持..原来匀速直线运动状态或静止状态的性质,这就是惯性。

3.对惯性的理解要点:①惯性是物体的固有属性,即:保持原来运动状态不变的属性,不能克服,只能利用。

与物体的受力情况及运动状态无关。

任何物体,无论处于什么状态,不论任何时候,任何情况下都具有惯性。

②惯性不是力,惯性是物体的一属性(即保持原来运动不变的属性)。

不能说“受到惯性”和“惯性作用”。

力是物体对物体的作用,惯性和力是两个绝然不同的概念。

③物体的运动状态并不需要力来维持,因此惯性不是维持运动状态的力.④惯性的大小:体现在运动状态改变的难易程度,(即是保持原来运动状态的体领强弱),,其大小由质量来决定。

质量是惯性大小的唯一量度。

质量大,运动状态较难改变,即惯性大。

⑤惯性与惯性定律的区别:惯性:是.保持原来运动状态不变的属性..惯性定律:(牛顿第一定律)反映..物体在一定条件下(即不受外力或合外力为零)的运动规律....牛顿在《自然哲学的数学原理》中提出了三条运动定律(称为牛顿三大定律)奠定了力学基础4.牛顿第一定律内容:一切物体总保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止。

人教版高中物理(必修1) 知识讲解: 力与运动的两类问题(基础)(附答案)

人教版高中物理(必修1) 知识讲解: 力与运动的两类问题(基础)(附答案)

力与运动的两类问题【学习目标】1.明确用牛顿运动定律解决的两类问题;2.掌握应用牛顿运动定律解题的基本思路和方法. 【要点梳理】要点一、根据运动情况来求力运动学有五个参量0v 、v 、t 、a 、x ,这五个参量只有三个是独立的。

运动学的解题方法就是“知三求二”。

所用的主要公式:0v v at =+ ①——此公式不涉及到位移,不涉及到位移的题目应该优先考虑此公式2012x v t at =+ ②——此公式不涉及到末速度,不涉及到末速度的题目应该优先考虑此公式212x vt at =- ③——此公式不涉及到初速度,不涉及到初速度的题目应该优先考虑此公式02v v x t += ④——此公式不涉及到加速度,不涉及到加速度的题目应该优先考虑此公式2202v v x a-= ⑤——此公式不涉及到时间,不涉及到时间的题目应该优先考虑此公式根据运动学的上述5个公式求出加速度,再依据牛顿第二定律F ma =合,可以求物体所受的合力或者某一个力。

要点二、根据受力来确定运动情况先对物体进行受力分析,求出合力,再利用牛顿第二定律F ma =合,求出物体的加速度,然后利用运动学公式0v v at =+ ① 2012x v t at =+ ② 212x vt at =-③ 02v v x t +=④ 2202v v x a -=⑤ 求运动量(如位移、速度、时间等)要点三、两类基本问题的解题步骤1.根据物体的受力情况确定物体运动情况的解题步骤①确定研究对象,对研究对象进行受力分析和运动分析,画出物体的受力图. ②求出物体所受的合外力.③根据牛顿第二定律,求出物体加速度.④结合题目给出的条件,选择运动学公式,求出所需的物理量. 2.根据物体的运动情况确定物体受力情况的解题步骤①确定研究对象,对研究对象进行受力分析和运动分析,并画出受力图. ②选择合适的运动学公式,求出物体的加速度. ③根据牛顿第二定律列方程,求物体所受的合外力. ④根据力的合成与分解的方法,由合力求出所需的力. 要点四、应注意的问题1.不管是根据运动情况确定受力还是根据受力分析物体的运动情况,都必须求出物体的加速度。

高中物理5.牛顿运动定律的应用优秀课件

高中物理5.牛顿运动定律的应用优秀课件

三、解题步骤:
1.选取研究对象,受力分析,画出受力的示意图。
2.选取适宜的方法进行力的合成,注意规定正方向。
3.根据牛顿定律、运动公式列出方程求解。
说明:有时要对结果进行分析、检验或讨论。
四、几种典型的解题方法:
1.正交分解法
2.整体法和隔离法
3.假设法 4.极限法
5.图象法
五、典型例题:
1.牛顿第一定律的应用以及惯性问题:
牛顿运动定律的应用
运动
关系?

1、牛顿第一定律
牛顿运动定律 2、牛顿第二定律
3、牛顿第三定律
超重与失重
一、动力学的两类问题:
1.物体的受力情况

运动情况
2.物体的运动情况

受力情况
二、解决动力学问题的根本思路:
受力情况 F合 ma a 运动学公式 运动情况
运动情况 运动学公式 a F合 ma 受力情况
小, 那么加速度 ( B)
A.一定变小
B.一定变大
C.一定不变
D.可能变小, 可能变大, 也可能不变
解: 画出物体P受力图如图示:
F
由牛顿第二定律得
mgsinθ-Fcosθ=ma
保持F的方向不变,使F减小, 那么加速度a一定变大
FN PF
mg
例4 .一物体放置在倾角为θ的斜面上,斜面固定于加速上 升的电梯中,加速度为a,如下图.在物体始终相对于斜 面静止的条件下,以下说法中正确的选项是 (B C )
A.当θ 一定时,a 越大,斜面对物体的正压力越小 B.当θ 一定时,a 越大,斜面对物体的摩擦力越大 C.当a 一定时, θ 越大,斜面对物体的正压力越小 D.当a 一定时, θ 越大,斜面对物体的摩擦力越小

3章末总结综合应用牛顿运动定律解题

3章末总结综合应用牛顿运动定律解题

解析
木板与木块通过摩擦力联系, 木板与木块通过摩擦力联系,只有当两者
发生相对滑动时,才有可能将木板从木块下抽出. 发生相对滑动时,才有可能将木板从木块下抽出.此 时对应的临界状态是: 时对应的临界状态是:木板与木块间的摩擦力必定是 最大静摩擦力F 最大静摩擦力Ffm(Ffm=μ1mg),且木块运动的加速度 mg),且木块运动的加速度 ), 必定是两者共同运动时的最大加速度a 必定是两者共同运动时的最大加速度am.以木块为研 究对象, 究对象, 根据牛顿第二定律得F 根据牛顿第二定律得Ffm=mam. ① am也就是系统在此临界状态下的加速度,设此时 也就是系统在此临界状态下的加速度, 作用在木板上的力为F 取木板、 作用在木板上的力为F0,取木板、木块整体为研究对 象,
【例2】如图2所示,小车在水平面上 如图2所示, 以加速度a向左做匀加速直线运动, 以加速度a向左做匀加速直线运动,车厢 内用OA、OB两根细绳系住一个质量为m 内用OA、OB两根细绳系住一个质量为m OA 两根细绳系住一个质量为 的物体,OA与竖直方向的夹角为 的物体,OA与竖直方向的夹角为θ,OB 是水平的. OA、OB两绳的拉力F 是水平的.求OA、OB两绳的拉力FT1和FT2 两绳的拉力 的大小. 的大小. 图 2
F + 2mg 3
4.极限分析法 在处理临界问题时,一般用极限法, 在处理临界问题时,一般用极限法,特别是当某 些题目的条件比较隐蔽、物理过程又比较复杂时. 些题目的条件比较隐蔽、物理过程又比较复杂时. 【例5】如图5所示,质量为M的木板 如图5所示,质量为M 上放着一质量为m的木块, 上放着一质量为m的木块,木块与木板 间的动摩擦因数为μ1, 木板与水平 地面间的动摩擦因数为μ2.若要将木 板从木块下抽出,则加在木板上的力 板从木块下抽出, F至少为多大? 至少为多大? 图 5

牛顿运动定律的综合应用

牛顿运动定律的综合应用

3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运

高一物理牛顿运动定律解题技巧

高一物理牛顿运动定律解题技巧

牛顿运动定律的解题技巧常用的方法:一、整体法★★:整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统内部某些物体的受力和运动时,一般可采用整体法.二、隔离法★★:隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)内某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.注:整体与隔离具有共同的加速度,根据牛二定律,分别建立关系式,再联合求解。

三、等效法:在一些物理问题中,一个过程的发展,一个状态的确定,往往是由多个因素决定的,若某量的作用与另一些量的作用相同,则它们可以互相替换,经过替换使原来不明显的规律变得明显简单。

这种用一些量代替另一些量的方法叫等效法,如分力与合力可以互相代替。

运用等效法的前提是等效。

四、极限法极限法是把某个物理量推向极端,即极大或极小,极左或极右,并依此做出科学的推理分析,从而给出判断或一般结论。

极限法在进行某些物理过程的分析时,具有独特作用,恰当运用极限法能提高解题效率,使问题化难为易,化繁为简思路灵活,判断准确。

五、作图法作图法是根据题意把抽象的复杂的物理过程有针对性的表示成物理图示或示意图,将物理问题化成一个几何问题,通过几何知识求解。

作图法的优点是直观形象,便于定性分析,也可定量计算。

六、图象法图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间关系变为几何关系求解。

对某些问题有独特的优势。

动力学的常见问题:TB TA B A 2解之得g m M m M a A 42sin +-=α,g m M m M a B 42sin 2+-=α 讨论:(1)当m M 2sin >α时,0>A a ,其方向与假设的正方向相同;(2)当m M 2sin =α时,0==B A a a ,两物体处于平衡状态;(3)当m M 2sin <α时,0<A a ,0<B a ,其方向与假设的正方向相反,即A 物体的加速度方向沿斜面向上,B 物体的加速度方向竖直向下。

牛顿第二定律的性质(2)

牛顿第二定律的性质(2)
牛顿第二定律的性质:
1:瞬时性:加速度和力的关系是瞬时对应, a与 F同时产生,同时变化,同时消失;
2:矢量性:加速度的方向总与合外力方向相同;
3:独立性(或相对性):当物体受到几个力的 作用时,可把物体的加速度看成是各个力单 独作用时所产生的分加速度的合成;
4:牛顿运动定律的适应范围:是对宏观、低速 物体而言;
动态分析问题
雨滴从高空由静止落下,若雨滴 下落时空气对其的阻力随雨滴 下落的速度增大而增大, 试正确 做出反映雨滴下落运动速度随 时间变化情况的图象
v
t
临界问题
1.如图所示,质量为m的小 球用细绳挂在倾角为37°的光 滑斜面顶端,斜面静止时, 绳与斜面平行,现斜面向左 加速运动。 (1)当a1=g时,细绳对 小球的拉力多大? (2)当a2=2g呢?
则当将两物体由静
止释放后,弹簧秤
的读数是多少?
M1
M2
传送带问题
学习重点、难点、疑点、突破 水平传送带问题的演示与分析 传送带问题的实例分析 传送带问题总结
难点与疑点:
难点:传送带与物体运动的牵制。关键是受 力分析和情景分析 疑点:牛顿第二定律中a是物体对地加速度,运 动学公式中S是物体对地的位移,这一点必须 明确。
A
B
例3:一传送带装置示意如图,传送带与地面倾 角为37 °,以4m/s的速度匀速运行,在传送带 的低端A处无初速地放一个质量为0.5kg的物 体,它与传送带间动摩擦因素μ=0.8,A、B间长 度为25m, 求:
(1)说明物体的运动性质(相对地面)
(2)物体从A到B的时间为多少? (sin37° =0.6)
Tcosθ-Nsinθ=ma Tsinθ+Ncosθ=mg解得 T=mgsinθ+macosθ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用牛顿运动定律解题
的方法和步骤
Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-
§3.4应用牛顿运动定律解题的方法和步骤
应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。

解题的基本步骤如下:
(1)选取隔离体,即确定研究对象
一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。

有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。

有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。

在选取隔离体时,采用整体法还是隔离法要灵活运用。

如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有两种方法,一种是
将两物体隔离,得方程为 另—种方法是将整个系统作为研究对象,得方程为 显然,如果只求系统的加速度,则第二种方法好;如果
还要求绳的张力,则需采用前一种方法。

(2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。

①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。

并配合作物体的受力示意图。

大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。

这m
图3-4-1
就决定了分析受力的顺序。

如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。

②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。

一般情况下选取合力,如物体在斜面上
受到重力,一般不说它受到下滑力和垂直面的两个力。

在—些特
殊情况下,物体其合力不能先确定,则可用两分力来代替它,如
图3-4-2横杆左端所接铰链对它的力方向不能明确之前,可用水
平和竖直方向上的两个分力来表示,最后再求出这两个分力的合
力来。

③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。

要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。

④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。

在列方程解题时,对一对相互作用力一般采用同一字线表示。

在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一对相互作用力处理。

(3)分析物体运动状态及其变化
①运用牛顿定律解题主要是分析物体运动的加速度a ,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a 而求物体所受的力。

图3-4-2
②针对不同的运动形式和运用不同的公式,在分析物体运动状态时有不同的要求。

对于静力学的问题,其加速度为零,速度为零或常量;对于牛顿运动定律问题,主要是分析加速度,要注意其瞬时性,匀变速运动可任取一点分析,变加速运动则必须找到对应点分析;如果是运用动量定理或动能定理,则必须分析物体所受的力的冲量或所做的功,还要分析运动始末两态的动量或动能。

③要注意物体运动的加速度与速度的大小方向的关系,也要注意两者大小不一定同时为零,如竖直上抛的最高点,速度为零加速度不为零,在振动的平衡位置速度最大加速度为零;两者的方向也不一定相同,如加速上升,两者方向相同,减速上升,两者方向相反。

④对于由几个物体组成的连接体的运动,要分析各个物体的加速度。

各个物体的加速
度之间的关系的求法是:一般假设各物体初速为零,由公式2/2at s =,再由各物体的位
移的比值找出它们加速度之间的关系来。

如图3-4-3,显然有212s s =,故有 2//2121==s s a a ,
所以 212a a =
图3-4-4, θtg s s a a ==2121
故有
如图3-4-5设32321,m m m m m <+>,我们以地球为
参照物,三者的加速度如图所示,为了找出三个加速度 图3-4-3
图3-4-4
m和3m的运动,使绳有沿动滑轮边沿的加速度a',根据有关的大小的关系,我们设由于2
相对运动规律有
两式相减消去a'得到三个加速度之间的关系式为
⑤若不知加速度a的方向,则可事先假设加速度的方向,按假设算出来的加速度若为正,则说明假设正确;若计算出来的加速度为负,则不能简单地认为加速度的方向与假设的方向相反,一般情况下,应该换一个方向重新计算,因为运动方向不同时,物体所受的力有可能不同,特别是有摩擦力的时候。

(4)建立坐标系
①通常我们采用惯性坐标系,一般不加申明就以地球为参照物,有时为了方便,采用非惯性坐标系。

②坐标也有瞬时性,如圆锥摆所建立的坐标就是指某一瞬间的。

③通常采用直角坐标系,对曲线运动常用自然坐标,即取切向和法向为两坐标轴的方向,切向加速度反映了速度大小的变化,法向加速度反映了速度方向的变化。

④选取坐标轴,最好能以加速度方向为一轴的方向,这样可以使方程较为简洁;如果由于解题需要而两轴都不与加速度同向,则要注意将加速度依坐标分解列入方程。

(5)列方程和解方程
①根据物理意义列出方程,对于正交坐标,一般是对每一个隔离体列出一组坐标数的方程。

②出于解题的需要,一般是方程数与未知数的个数相等,若方程数少于未知数的个数,则要注意题目的隐含条件,或者用特殊方法可以解出。

③不同的题型要注意有不同的解法,有些题目可以一次性的列出方程,有些题目必须走一步看一步,逐步推出结论。

(6)验算作答
①验算是必不可少的一步,要根据物理意义和题设条件剔除多余的根。

②为了快速检验,可以采用检验答案的量纲的方法。

③正负符号在物理问题中有广泛的应用,要特别注意正负号的物理意义。

相关文档
最新文档