三菱plc控制步进电机编程
步进电机的三菱PLC控制

步进电机的三菱P L C控制Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】摘要:设计一种基于PLC的步进电机控制系统, 通过微型变速箱将步进电机角位移转化为直线位移, 进而带动直线伸缩机构运行。
该系统结构简单、性能稳定、经济价值和使用效果突出, 能够满足毫米级精确位移的使用需求。
关键词: PLC; 步进电机; 驱动器; 脉冲;方向。
目录第1章绪论设计背景步进电动机已成为除直流电动机和交流电动机以外的第三类电动机,传统电动机作为机电能量转换装置,在人类的生产和生活进入电气化过程中起着关键的作用。
可是在人类社会进入自动化时代的今天,传统电动机的功能已不能满足工厂自动化和办公自动化等各种运动控制系统的要求。
为适应这些要求,发展了一系列新的具备控制功能的电动机系统,其中较有自己特点,且应用十分广泛的一类便是步进电动机。
步进电动机的发展与计算机工业密切相关。
自从步进电动机在计算机外围设备中取代小型直流电动机以后,使其设备的性能提高,很快地促进了步进电动机的发展。
另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电动机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。
任何一种产品成熟的过程,基本上都是规格品种逐步统一和简化的过程。
现在,步进电动机的发展已归结为单段式结构的磁阻式、混合式和爪极结构的永磁式三类。
爪极电机价格便宜,性能指标不高,混合式和磁阻式主要作为高分辨率电动机,由于混合式步进电动机具有控制功率小,运行平稳性较好而逐步处于主导地位。
最典型的产品是二相8极50齿的电动机,步距角°/°(全步/半步);还有五相10极50齿和一些转子100齿的二相和五相步进电动机,五相电动机主要用于运行性能较高的场合。
到目前,工业发达国家的磁阻式步进电动机已极少见[1]。
PLC的脉冲输出控制步进电机的实用方法

断电复位方可有效。 步进电机的型号是86BYG402,其相电流选4A,拨位
开关1 2 3 4设定值为1111。细分数根据实际应用的精度 要求来选取。
(3)PLC与步进电机驱动器的硬件连接 可编程序控制器PLC与步进电机驱动器的连接如图4
2.期刊论文 胡佳丽.闫宝瑞.张安震.李庆春.何亚东.信春玲 S7-200 PLC在伺服电机位置控制中的应用 -自动化仪
表2009,30(12)
为了探究如何更方便、准确地实现位置控制,确保其位置控制的精度,探讨了基于西门子S7-200系列PLC和Copley系列伺服系统的位置控制方法.通过 介绍系统软硬件构成及其特点,详细论述了PLC系统通过高速脉冲输出、EM253位置控制模块以及自由口通信这三种方式控制伺服电机,以实现绝对运动、 相对运动等;同时对它们进行了一系列的比较.实验证明,三种控制方式各有其不同的应用场合,对类似的工业控制具有一定的借鉴参考意义.
1234 1000 100l 1010 1011 1100 1101 11lO 1111
相电流 2.25A 2.50A 2.75A 3.OOA 3.25A 3.50A 3.75A 4.00A
表2 细分设定【位7 8 9 10)
7 8 9 10 0000 0001 oolO 0011 0100 0101 0110 0111
在图4中将可编程序控制器的脉冲输出端yo的公共端como和输出点y10的公共端com4皆与可编程序控表1相电流设定i位12341234相电流1234相电流0000025a1000225a0001050a100l250a0010075a1010275a00111ooa10113ooa0100125a1100325a0101150a1101350a0110175a11lo375a01112ooa1111400a表2细分设定位7891078910细分数789lo细分数0000110001800012100l20oolo410lo32001151011400100611005001018110l01101011101280111161111256制器的24v地即com相连步进电机驱动器的输入信号公共端与可编程序控制器plc的24v电源相连plc的脉冲输出端yo外接18k的限流电阻连接至步进脉冲输入信号cpplc的输出点y10用于控制步进电机的旋转方wc咖024vsh204硼步进电机驱动器fxlhomtc删0ptp18置yot一c卜一cp18置y10dir图4plc与步进电机驱动器的连接向外接18k的限流电阻连接至方向电平输入端dir
PLC控制步进电机的实例(图与程序)

态已已
X已
源
个
·
源
X已
意已已已
个个
个
个
·
·
B善
·
B善
-控已已已 个个个 个 个个个 · ·F而状状大 F而状状-
个 ·V大 用ND ·源大 源- B大 B个
善D而V源在
善D而V相在 个
D明引成已
-意已已已在 X已
意已已已
D明引成已
已个
D明引成已
-意已已已在 X引
意已已已
B 意已已已
善
在 D明引成已
个
个 个个个
个 个
P程点
善
在个
个
·
善D而V源在
FX引脉
个
·FX P程点
引已已确画Z
个
·P程脉大 P程脉-
D相而大 D相而-
个
·
善D而V源在如
意态
D明引成已
D明引成已
个
·
X已
源
X引
B
善
在个
·
善
在个
·
个
·
D明引成已
善
在个
·意态
D明引成已
Y已
已已
D明引成已
-意已已已 个
·
源B
X引 善 点
在 D明引成已
三菱实用定位控制程序案例

三菱实用定位控制程序案例
首先,看这篇文章需要具备定位的基础知识,知道步进电机怎么通过脉冲去控制的。
下面是电机的示意图,plc通过Y0发脉冲,Y7控制电机的方向。
X2是正极限,X4是负极限,X3是原点回归。
控制由触摸屏去控制,控制的功能键如下
M0是手自动切换开关,M1是启动按钮,再自动状态下,按下M1,电机会走到位置1,再走到位置2,再走到位置3,再到4,再到5,然后回到第一步,不断循环。
M2
是停止的按钮,按下去后动作停止,M3是正转点动控制,M4是反转点动控制,M5是原点回归启动,按下原点回归,电机能够自动回到原点X3。
下面我们开始写程序,先写手动控制的程序,两个对应的M点分别控制输出正转和反转,把正反极限写入。
PLC控制步进电机的系统设计(毕业设计)

摘要本文主要阐述了三相三拍步进电动机结构和步进电机原理,以及对步进电机的调速和正反转的研究。
采用PLC基本逻辑指令和常用指令的方法对步进电机调速很正反转控制。
步进电机是一种将脉冲信号转换成直线位移或角位移的执行元件。
步进电机的输出位移量与输入脉冲个数成正比,其速度与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。
所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。
步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。
SummaryThis paper describes the structure of three-phase three-beat stepper motors and stepper motor principle,and the stepper motor speed control and reversing research. Using PLC basic logic instructions and common method of instruction is reversing the stepper motor speed control.Stepper motor is a pulse signal into a linear displacement or angular displacement of the actuator.The output of the stepper motor displacement is proportional to the number of input pulses,the speed and unit time input pulses (ie pulse frequency)is proportional to its steering and pulse distribution phase stepper motor winding phase sequence of the.So long as the control command pulse number, frequency and phase sequence of the motor windings are energized,the output can be controlled stepper motor displacement, velocity and direction.Stepper motor has good control performance, and its start,stop,reverse and other changes in the way of any operation can be completed within a few pulses, and the availability of high control accuracy,and have been widely used。
PLC高速脉冲输出控制步进电机

PLC高速脉冲输出控制步进电机1. 背景介绍步进电机是一种常见的电动机类型,它具有精准的位置控制和高速运动的特点。
在很多工业自动化应用中,步进电机常常需要与PLC(可编程逻辑控制器)配合使用,以实现精准的位置控制和高速脉冲输出。
本文档将介绍如何通过PLC实现高速脉冲输出控制步进电机的方法和步骤。
2. 所需材料在开始之前,我们需要准备以下材料:•PLC控制器•步进电机驱动器•步进电机•连接线•电源请确保以上材料齐全并符合各自的规格要求。
3. PLC高速脉冲输出控制步进电机的步骤步骤一:连接电源和PLC控制器首先,将电源连接到PLC控制器上。
确保电源的电压和PLC控制器的额定电压匹配。
然后将PLC控制器的电源线连接到电源上,并确保连接牢固。
步骤二:连接步进电机驱动器和PLC控制器将步进电机驱动器的电源线连接到电源上,并确保连接牢固。
然后,将步进电机驱动器的控制线连接到PLC控制器上,确保连接正确。
步骤三:连接步进电机和步进电机驱动器将步进电机的线束连接到步进电机驱动器上,确保连接正确。
根据步进电机的规格要求,选择正确的接线方法。
步骤四:PLC编程在PLC编程软件中进行编程,以实现高速脉冲输出控制步进电机。
以下是一个简单的PLC编程示例:BEGINVARmotor_output: BOOL := FALSE; -- 步进电机控制信号pulse_delay: TIME := T#10MS; -- 脉冲延迟时间,控制步进电机的速度END_VAR-- 主程序WHILE TRUE DO-- 输出一个脉冲信号控制步进电机运动motor_output := NOT motor_output;DELAY pulse_delay; -- 延迟一段时间,控制步进电机的速度END_WHILE;END;以上的PLC程序实现了一个简单的高速脉冲输出控制步进电机的功能。
在主程序中,通过循环不断地输出一个脉冲信号来控制步进电机的运动,同时通过调整延迟时间来控制步进电机的速度。
三菱PLC和步进电机实现二维位置控制

三菱PLC和步进电机实现二维位置控制作者:付宁宁来源:《电子世界》2013年第16期【摘要】本文详细阐述了三菱FX2N型PLC驱动步进电机的方法,并给出了PLC和步进电机的实际接线以及梯形图程序,在实际运行中效果良好,具有一定的实用价值。
【关键词】PLC;步进电机;梯形图;位置控制一、前言步进电机是将控制脉冲信号变换成角位移或是直线位移的一种特殊电机,它控制灵活、运行可靠、性能好、误差不会长期累积,适用于数字加工设备、自动生产线、自动控制仪表、计算机及办公自动化设备甚至家用电器中。
由PLC和步进电机组成的位值控制系统,是一种常见的控制系统。
但是由于以往PLC的控制指令简单,因此要实现位置控制仍旧是一件较为复杂的事情。
现在,随着计算机技术的发展,PLC技术也得到了长足的进步,许多厂家的PLC均已发展了和步进电机配套的指令,使位置控制变得极其容易。
二、工作原理步进电机的输出位移量与输入脉冲个数成正比,其速度与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。
所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移、速度和方向。
步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可以在少数脉冲内完成,且可获得较高的控制精度,因此得到了广泛的应用。
步进电机位置控制系统以三菱FX2N为控制单元,以步进电机驱动器为驱动单元,以三相步进电机为执行单元。
通过PLC控制发出脉冲的个数,从而控制步进电机的运转角度,实现对位置的精确控制。
PLC控制步进电机结构图1所示。
三、FX2N的脉冲输出指令在FX2N型PLC中,为了和标准的步进电机驱动器配合使用,在其内部专门设计了一条速度及位置控制指令(PLSY FNC57)。
利用这条指令,FX2N型PLC可以输出两路脉冲,分别控制两台步进电机,很方便地实现二维位置控制。
该指令在应用过程中需要指定以下端口和操作数为位置控制专用,其助记符、功能、操作数、程序部如表1所示。
三菱plc控制步进电机编程知识讲解

三菱p l c控制步进电
机编程
三菱plc控制步进电机编程
控制要求,PLC发出脉冲信号Y0和方向信号Y10,假设步进电机转一周需要plc发出1000个脉冲,且要求在1S 左右转动一周,现在要求步进电机正转5周,停5s,再反转5周,停5s,如此循环。
三菱PLC指令PLSR K400 D0 K3500 Y0 这里K400、D0、K3500各是指什么
匀加减速指令,在指令中可以设置脉冲的最大频率、脉冲总数、加减速时间和脉冲输出点。
通过设置加减速时间来实现匀加速。
如果脉冲加方向的脉冲模式也需要另外控制方向点。
针对指定的最高频率,进行定加速,在达到所指定的输出脉冲数后,进行定减速
k400为最高频率,D0中内容为总输出的脉冲数,K3500加减速时间单位为ms,y0为输出点
如 DDRVI K999999 K200 Y0 Y3
那么 DDRVI 是相对定位 K999999是无限就是一直转 K200是速度 Y0是脉冲输出地址 Y3是方向PLC控制步进电机正反转的程序和梯形图?
一种是双脉冲的!一路正,一路反。
一种是脉冲加方向的!一个口给脉冲!另外一个接通就正转,不接通就反转。
欧姆龙EE-SX670A传感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三菱plc控制步进电机编程
控制要求,PLC发出脉冲信号Y0和方向信号Y10,假设步进电机转一周需要plc发出1000个脉冲,且要求在1S 左右转动一周,现在要求步进电机正转5周,停5s,再反转5周,停5s,如此循环。
三菱PLC指令PLSR K400 D0 K3500 Y0 这里K400、D0、K3500各是指什么
匀加减速指令,在指令中可以设置脉冲的最大频率、脉冲总数、加减速时间和脉冲输出点。
通过设置
加减速时间来实现匀加速。
如果脉冲加方向的脉冲模式也需要另外控制方向点。
针对指定的最高频率,进行定加速,在达到所指定的输出脉冲数后,进行定减速
k400为最高频率,D0中内容为总输出的脉冲数,K3500加减速时间单位为ms,y0为输出点
如DDRVI K999999 K200 Y0 Y3
那么DDRVI 是相对定位K999999是无限就是一直转K200是速度Y0是脉冲输出地址Y3是方向PLC控制步进电机正反转的程序和梯形图?
一种是双脉冲的!一路正,一路反。
一种是脉冲加方向的!一个口给脉冲!另外一个接通就正转,不接通就反转。
欧姆龙EE-SX670A传感器
型号项目种类标准型L型T型紧密安装型
NPN
EE-SX670
EE-SX670A
EE-SX470
EE-SX671
EE-SX671A
EE-SX471
EE-SX672
EE-SX672A
EE-SX472
EE-SX673
EE-SX673A
EE-SX473
EE-SX674
EE-SX674A
EE-SX474 PNP
EE-SX670P
EE-SX670R
EE-SX470P
EE-SX671P
EE-SX671R
EE-SX471P
EE-SX672P
EE-SX672R
EE-SX472P
EE-SX673P
EE-SX673R
EE-SX473P
EE-SX674P
EE-SX674R
EE-SX474P
检测距离5mm(凹槽宽度)
标准检测距离不透明体2×0.8mm以上
应差距离0.025mm
光源(最大发光波
长)
GaAs红外发光二级管(940nm)
显示灯*1 如光时灯亮(红色)(A型、R型为遮光时灯亮)电源电压DC5~24V±10% 脉动(p-p)10%以下
消耗电流35mA以下(NPN型)、30mA以下(PNP型)
控制输出
NPN型:NPN集电极开路输出DC5~24V 100mA以下
残留电压0.8V以下(负载电流100mA时)残留电压0.4V以下(负载电流40mA 时)
PNP型:PNP集电极开路输出DC5~24V 50mA以下
残留电压1.3V以下(负载电流50mA时)
应答频率* 21kHz以上(平均值:3kHz)
使用环境照度受光面照度荧光灯1,000lx以下
环境温度动作时:-25~+55℃保存时:-30~+80℃(不结冰)环境湿度动作时:5~85%RH 保存时:5~95%RH (不结露)
振动(耐久) 20~2,000Hz (最大加速度100m/s2 )
复振幅1.5mm X、Y、Z各方向2h(4min周期)
冲击(耐久) 500m/s2 X、Y、Z各方向3次
保护构造IEC规格IP50
连接方式接插件式(能直接插焊)
质量(捆包状态)约3.1g 约3g 约2.4g 约2.3g 约3g
材质
外壳
聚碳酸酯保护罩
投.受光
部。