对量子力学互补性诠释的理解(一)
量子力学的基本原理解读

量子力学的基本原理解读量子力学是一门描述微观物质行为的物理学理论,它基于一系列的基本原理。
本文将对量子力学的基本原理进行解读,以帮助读者更好地理解这一领域。
一、波粒二象性原理量子力学的首要原理是波粒二象性原理,即微观粒子既可以表现为粒子,又可以表现为波动。
根据这个原理,微观粒子的运动既具有粒子性质,如位置和动量,又具有波动性质,如频率和幅度。
这一原理的提出打破了经典物理学的基础,引发了量子力学的诞生。
二、不确定性原理不确定性原理是量子力学的第二个基本原理,由海森堡提出。
它表明,在测量微观粒子的位置和动量时,存在一种不确定性,即无法同时准确测量粒子的位置和动量。
更准确地说,位置的精确度越高,动量的精确度就越低,反之亦然。
这种不确定性与波粒二象性原理密切相关,揭示了微观世界中的测量局限性。
三、叠加原理叠加原理表明,当一个系统可以处于多种互相排斥的状态时,量子力学允许这个系统同时处于多个状态的叠加态。
这意味着,系统可以处于多个状态的线性叠加,而在测量之前,我们无法确定其具体状态,只能给出以某种概率出现在不同状态的可能性。
当进行测量时,系统会坍缩到其中一个确定的状态上。
四、量子纠缠量子纠缠是量子力学中一项重要的原理,它描述了两个或多个粒子之间存在着一种纠缠的状态。
当两个粒子处于纠缠态时,它们之间的状态彼此关联,无论它们之间的距离有多远。
这意味着通过观测一个粒子,可以瞬间影响到另一个处于纠缠态的粒子,即所谓的“量子的即时作用”。
这一原理在量子通信和量子计算领域发挥着重要作用。
五、量子隧穿效应量子隧穿效应是量子力学的一个引人注目的现象,它描述了量子粒子可以穿越势垒的现象。
经典物理学认为,只有当粒子具有足够的能量时,才能越过势垒。
然而,在量子力学中,即使粒子能量低于势垒高度,也存在一定概率穿越势垒的现象。
这一效应在核聚变、半导体器件等领域具有重要应用。
综上所述,量子力学的基本原理包括波粒二象性原理、不确定性原理、叠加原理、量子纠缠以及量子隧穿效应。
量子力学的哲学解释

单一性(Unity) 多数性(Plurality) 总体性(Allness) 实在性(Reality) 否定性(Negation) 限制性(Limitation) 依附性与存在性(of Inherence and Subsistence) 因果性与依存性(of Causality and Dependence) 交互性(of Community) 可能性--不可能性(Possibility-Impossibilit) 存在性--非存在性(Existence-None) 必然性--不必然性(Necessity-Contingency)
对于自然界中同一类结果,必须尽可能归之于同一种原因; 物体的属性,凡既不能增强也不能减弱者,又为我们实验所
能及的范围内的一切物体所具有者,就应视为所有物体的普 遍属性; 在实验哲学中,我们必须把那些从各种现象中运用一般归纳 而导出的命题看做是完全正确的,或者是非常接近正确的; 虽然可能想象出任何与之相反的假说,但是没有出现其他现 象足以使之更为正确或者出现例外之前,仍然应当给予如此 的对待。
EPR佯谬
A. Einstein, Boris Podolsky, Nathan Rosen (1935): “Can Quantum Mechanical Description of Reality Be Considered Complete?”, Physics Review
如果一个物理理论对物理实在的描述是完备的,那么物理实 在的每个要素都必须在其中有它的对应量,即完备性判据。 当我们不对体系进行任何干扰,却能确定地预言某个物理量 的值时,必定存在着一个物理实在的要素对应于这个物理量, 即实在性判据。EPR认为,量子力学不满足这些判据,所以 是不完备的。
关于量子力学完备性的争论

关于量子力学完备性的争论物理0901李娜20090922049自量子力学建立以来,对于量子力学的物理解释和哲学意义,一直存在着严重的分歧和激烈的争论。
其中以玻尔为代表的哥本哈根学派和爱因斯坦学派之间的争论最为世人所关注。
海森伯的‘测不准关系’和玻尔的‘互补原理’构成了量子力学哥本哈根学派诠释的两大主要支柱。
自1927年后,逐渐为大多数物理学家所接受。
被称为量子力学的‘正统’解释。
其要点有以下四个方面;(1)可观察量是建立理论的基础和依据。
人们无法直接观察到原子、电子、光子的行为,而只能在人工安排的特殊条件下对微观客体的行为和特性做出实验观测,从而得出各种观测结果之间关系的规律。
但是在人们用特意安排的实验仪器观察微观客体时,就不可避免地要产生干扰,因而可观察量表现出的正是实验环境中的客体的行为和性质,这使量子现象具有主体与客体的不可分性。
爱因斯坦对玻尔的这一观点持有异议。
他指出“是理论决定我们能够观察到的东西”“只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。
当我们宣称我们能够观察某种新事物时,我们实际上应当是说:虽然我们就要提出同旧规律不一致的新的自然规律,可是我们仍然假定,这些现存的规律-----包括从现象到我们的意识这整个途径-----以这样的方式起作用,使我们可以依靠它们,从而才可以谈论‘观察到的结果。
’”爱因斯坦这一观点是符合科学研究的实际,是非常正确的,因为他强调理论,即反映物质的本质和规律的认识,而不是强调“可观察量”。
统一力学认为玻尔关于“可观察量是建立理论的基础和依据”的观点,是本末倒置的、片面的观点。
因为,物质是质和量的统一,物质既没有无质的量,也没有无量的质。
物理学既要研究物质的本质理论,又要研究物质的量的数值。
物质运动的基本规律,需要一定的数学表达式。
所以数学是物理研究过程中不可缺少的工具。
但是物理首先要讲有关物质的本质和物质之间的必然联系的道理,即认清物质的本质和规律是首要的工作。
该如何理解互补原理

第十四章:互补原理,是这个世界对我们的深情呵护!——灵遁者上一章内容我们讲了波粒二象性,这一章讲互补原理。
其实互补原理可以说是波粒二象性的阐述。
两者相辅相成,所以这也是我要讲将两个章节连在一起讲的原因。
这个世界需要深情以待,无论它所表现的形式是什么样的。
因为痛苦与快乐是人类的感觉,不是它的感觉。
就像左面的这副图,假若选择辨识少女的轮廓,则能够观赏到少女的图像,假若选择辨识老妇的轮廓,则能够观赏到老妇的图像。
类似地,在量子力学里,假若选择做粒子实验,则会观测到粒子,假若选择做波动实验,则会观测到波动,但是,绝不能同时观测到粒子与波动。
但最新的研究显示,就是上一章提到的。
在2015年人类获得首张图像,光同时显现波动性和粒子性。
一直以来,人们从未直接观测到粒子在同一时刻表现出波和粒子的形态。
2015年3月2日,来自洛桑联邦理工学院的研究者们发表了他们的新发现。
我们都知道在量子力学里,互补原理是尼尔斯·玻尔于1927年提出的一个基础原理,是哥本哈根诠释的基石。
在不同学术领域,互补原理常被用来解释迥然不同的现象,对于这些用法,互补原理蕴含的意义大不相同,所根据的操作机制也完全不同。
概念而言,微观物体具有波动性或粒子性,有时会表现出波动性,有时会表现出粒子性。
波动性指的是波动所具有的波长与频率,意味着它在空间方面具有延伸性。
粒子性指的是粒子总是可以被观测到其在某时间与某空间的明确位置与动量的性质。
当描述微观物体的量子行为时,必须同时思考其波动性与粒子性。
互补原理阐明,不能用单独一种概念来完备地描述整体量子现象,为了完备地描述整体量子现象,必须将分别描述波动性、粒子性的概念都囊括在内。
这两种概念可以视为同一个硬币的两面。
按照玻尔的说法,微观物体的波动性与粒子性互补。
所以洛桑联邦理工学院的研究者们同时观测到波粒二象性的这种“矛盾”并不惊讶。
波动性和粒子性在更高层次是统一的,这是量子力学的共识。
根据位置-动量不确定性原理,在描述微观物体的量子行为时,位置的不确定性越小,则动量的不确定性越大;反之亦然。
量子力学诠释问题(一)

量⼦⼒学诠释问题(⼀)量⼦⼒学诠释问题(⼀)作者:孙昌璞( 中国⼯程物理研究院研究⽣院北京北京计算科学研究中⼼)1 引⾔:量⼦⼒学的⼆元结构和其发展的⼆元状态上世纪⼆⼗年代,海森伯(Werner Karl Heisenberg)、薛定谔(Erwin Schrödinger) 和玻恩(Max Born)等⼈创⽴了量⼦⼒学,奠定了⼈类认识微观世界的科学基础,直接推动了核能、激光和半导体等现代技术的创新,深刻地变⾰了⼈类社会的⽣活⽅式。
量⼦⼒学成功地预⾔了各种物理效应并解释了诸多⽅⾯科学实验,成为当代物质科学发展的基⽯。
然⽽,作为量⼦⼒学核⼼观念的波函数在实际中的意义如何,⾃爱因斯坦(Albert Einstein) 和玻尔(Niels Bohr) 旷世之争以来,⼈们众说纷纭,各执⼀词,并⽆共识。
可以说,直到今天,量⼦⼒学发展还是处在⼀种令⼈尴尬的⼆元状态:在应⽤⽅⾯⼀路⾼歌猛进,在基础概念⽅⾯却莫衷⼀是。
这种⼆元状态,看上去⼗分之不协调。
对此有⼈以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的⼯具主义观点处之以举重若轻。
然⽽,对待量⼦⼒学诠释严肃的科学态度应该是⾸先厘清量⼦⼒学诠释中哪⼀部分观念导致了基本应⽤⽅⾯的“⾼歌猛进”,哪⼀部分观念导致了理解诠释⽅⾯的“莫衷⼀是”。
对量⼦⼒学诠释不分清楚彼此、逻辑上倒因为果的情绪化评价,会在概念上混淆是⾮,误导量⼦理论与技术的真正创新。
⽆怪乎,有⼈以“量⼦”的名义为认识论中“意识可以脱离物质”的明显错误⽽张⽬,其根源就是每个⼈⼼⽬中有不同的量⼦⼒学诠释。
我个⼈认为,这样⼀个⼆元状态主要是由于附加在玻恩⼏率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量⼦⼒学所必需的,是它产⽣了不服从薛定谔⽅程⼳正演化的波包塌缩,使得量⼦⼒学⼆元化了。
今天,虽然波包塌缩概念⼴被争议,它导致的后选择“技术”却被⼴泛地应⽤于量⼦信息技术的各个⽅⾯,如线性光学量⼦计算和量⼦离物传态的某些实验演⽰。
量子力学的解释与哲学问题

量子力学的解释与哲学问题量子力学是描述微观世界中粒子行为的理论框架,它在物理学领域有着重要的地位。
然而,尽管量子力学在实验上非常成功,但其解释仍然引发了一系列关于现实本质和哲学问题的讨论。
本文将讨论量子力学的解释以及与之相关的哲学问题。
一、双重性实验与波粒二象性量子力学揭示了微观粒子既具有粒子性又具有波动性的双重性。
双缝干涉实验是量子力学中的一个经典实验,它展示了光子和电子等粒子可以表现出波动性,而不仅仅是经典粒子的行为。
然而,当我们进行观测时,这些粒子的波动性似乎会崩塌为粒子性。
这种现象引发了解释上的困惑。
二、量子纠缠与超距作用量子纠缠是指两个或多个粒子之间存在密切联系,以至于一个粒子的状态的改变会即时影响到另一个粒子的状态,即使它们之间的距离很远。
这种现象与我们日常经验中的因果关系不符,引发了许多哲学问题。
爱因斯坦曾将这一现象称为“鬼魅般的遥远作用”,并对其产生了质疑。
三、测量问题与波函数坍缩在量子力学中,测量会导致被测系统的波函数坍缩为其中一个测量结果,伴随着一个确定的概率。
然而,到目前为止,科学界仍无法给出波函数坍缩的具体机制。
这引发了一系列关于测量的本质以及观察者在测量过程中的作用的哲学问题。
四、量子力学解释的多元性量子力学的解释并不唯一。
目前存在几种主要的解释学派,如哥本哈根学派、多世界学派和退耦合学派等。
这些解释对于量子力学的基本原理有着不同的诠释和解释,但都无法完全解决上述的哲学问题。
这也使得量子力学的解释成为一个活跃且有争议的研究领域。
五、测不准关系与确定性根据海森堡测不准关系,我们无法同时准确地确定粒子的位置和动量,或者能量和时间等一对共轭变量。
这揭示了微观世界具有一定的不确定性和模糊性。
然而,这与我们日常经验中认为的决定论世界观存在冲突,进一步加深了对量子力学解释的哲学思考。
六、意识的角色与思维实验某些思维实验,如薛定谔的猫和环形实验等,旨在探讨观察者的角色和意识的作用。
这些实验在哲学上引发了关于主观性、客观性以及意识的本质等问题的思考,进一步挑战了我们对于量子力学解释的认识。
量子力学的哥本哈根诠释

波函数坍缩指的是某些量子力学体系与外界发生某些作用 后波函数发生突变,变为其中一个本征态或有限个具有相 同本征值的本征态的线性组合的现象。波函数坍缩可以用 来解释为何在单次测量中被测定的物理量的值是确定的 (虽然多次测量中每次测量值可能都不同)。坍缩后的波 函数对应于测量到的本征值的本征态。波函数牵涉到一个 事件会走向各种可能的结果的几率。可是当其中一种结果 变为事实,其它的结果就不可能存在于真实世界。
在某一些量子物理理论中,波函数的坍缩是量子系统遵守 量子物理定律的两种方法之一。波函数坍塌的真实性并没 有被完全地确定;科学家一直在争论,波函数坍缩是这个 世界的自然现象之一,还是仅是属于某个现象的一部份。
薛定谔的猫是指将一只猫放入一个配备了放射性物质,辐射
探测器(盖革计数器)统的波函数 会是各占一半几率的活猫与
死猫,目不忍睹地混杂在一起:
而当观察者一掀开盒盖,想要观察到底猫是活的还是死的,
这时候,波函数 立刻会坍缩成活猫波函数
或死猫
波函数
。假若猫是死的,我们可以说猫是被观察者的
观察这动作杀死的。
薛定谔的倒霉猫
自然的推论:当它们都被锁在箱子里时,因为我们没有观 察,所以那个原子处在衰变/不衰变的叠加状态。因为原 子的状态不确定,所以猫的状态也不确定,只有当我们打 开箱子察看,事情才最终定论:要么猫躺在箱子里死掉了, 要么它活蹦乱跳地“喵呜”直叫。问题是,当我们没有打 开箱子之前,这只猫处在什么状态?似乎唯一的可能就是, 它和我们的原子一样处在叠加态,这只猫当时陷于一种死 /活的混合。 一只猫同时又是死的又是活的?它处在不死不活的叠加态? 这未免和常识太过冲突,同时在生物学角度来讲也是奇谈 怪论。如果打开箱子出来一只活猫,那么要是它能说话, 它会不会描述那种死/活叠加的奇异感受?恐怕不太可能。 换言之,薛定谔猫概念的提出是为了解决爱因斯坦的相对 论所带来的祖母悖论,即平行宇宙之说。
对量子力学互补性诠释的理解

对量子力学互补性诠释的理解1.互补性释的逻辑结构与互性诠释不同的其它诠释的逻辑结是,先设计出某种本实在的模式,再将种本体实在与量子学中的某种符号联系起来,然后将种符号按量子力学演绎的理论结与观察结果对照来解释子现象和量子理论。
在些解释中,观察结果不是为解释的根据,而是作量子力学演绎的结果。
如变量理论先假设有果决定性的亚量子层的隐量的本体实在,再将种本体实在隐变量的统平均与量子力学中的可观察量系起来,量子力学的理论值就代着隐变量的统计平均演化结果,它与统计性的结果相对,这样隐变量理论就将观察果和量子力学的描述解释为客体的变量的统计平均的表现和对这种统平均的变化规律的描述。
统计系综释则先假设统计分布具有实在的客性,它代表着微观客体的状态特征,量子力学描述中的波函数的模方就表示客体这种统计分布,波动方程的解的模与观察结果的统计布相一致,表示着体的统计分布状态。
互性诠释不从一个预先的本体在模式的假设出发,而是直接对察结果进行分析和解,然后从这种对观察结果分析中推出客体的实特点和对它进行描述的符号的义。
当然,从一般设能演绎出一个唯的结果,而从观察结果只推出客体实在的某些本质特,不会得出唯一确定的实在模式对它描述的符号的完全定的意义。
因为观察结果可以各种不同的符号系统描述,即只有一套符号,其学演算过程也无法与实的物理过程一一对应,而只能演算结果与观察结果对应,所以虽然观察是唯一确定的,但关于它描述和解释却可以有多种。
这说明释具有一定的灵活性,允许各种不同的关于实在假设,但这些假设的实在并就是真实的实在,只是在某些方面反映着观察结果所表征的实在互补性诠释通过对观察结果的认识点和描述的语义方面的分,找到对客体和谐致的互补描述方式,再从这描述中找出客体的实在特点,而不先给出一种实在的模式或图景互补性诠释从观察到的原的稳定性和辐射光谱的不连续性表征的量子性出发,量子公设作为其理的出发点来构建对具有量性的原子客体的合理描。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对量子力学互补性诠释的理解(一)量子力学在本世纪二十年代就形成了其形式系统,然而它的物理意义,亦即对它的解释却一直众说纷纭,时至今日仍是物理学家和哲学家关注的一个中心问题。
虽然在其体系形成后不久,玻尔就在玻恩的几率诠释和海森堡的测不准原理基础上,提出了系统一贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有人能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句子和事例性的说明之中,而没有任何现成的条条款款,这就使得无论接受它的还是反对它的人都给出了各式各样不同的理解,所以互补含义亟需澄清。
关于量子力学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、几率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也首先需要正确理解互补性诠释。
1.互补性诠释的逻辑结构与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。
在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。
如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。
统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。
互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。
当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。
因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。
这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。
互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。
互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。
量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客体的作用。
在经典物理中,仪器对客体的作用比客体本身的物理量小得可以忽略,即使不能忽略也能通过对过程的分析将它剔除,但在对原子客体的观察中,仪器对客体的作用与客体的物理量相比拟,其作用过程又是非连续的,所以不可能将仪器的作用剔除,这样,观察结果中就必然包含了观察仪器的作用,而不是代表客体本身的现象,对客体的描述也必然只能是观察下的客体的描述,而不可能是对没有观察的孤立客体本身的描述,所以对客体的任何描述都依赖一定的观察,没有观察,就没有可描述的确定的现象,即使没有对应于客体本身的观察,也必然存在与之相关的其它客体的观察。
这不是说,没有观察,现象世界就不存在,而是说,没有观察,确定的客体就不存在,没有观察,世界上可以发生许多事件,但我们却不能确定对它们的描述。
观察对描述的重要性和观察中仪器对原子客体的作用的不可分性是原子现象及其描述的特殊性之所在。
正是观察的特殊性带来了概念的定义和描述上的新特点,从而带来描述方式的根本改变和实在的新特点。
在对原子客体的观察中,仪器与客体间的不可剔除的相互作用,使得对客体的时空确定和态的确定间成为互斥的。
当我们通过一种仪器如刚性标尺和时钟对客体进行时空的观察和确定时,观察中仪器的作用和对时空的确定条件,排斥对客体的态进行定义,因为这种确定时空的仪器对客体的作用所带来的客体的态的改变是无法确定的,从而客体在另一种确定它的态的仪器下所确定的对态的定义的条件被破坏,而不再可能对时空观察下的客体进行态的定义。
当我们利用另一种仪器对客体的能量和动量进行观察和定义时,由于仪器与客体相互作用的时间的不确定性,使得对客体的时空确定成为不可能。
客体的时空标示和态的描述间的互斥,不仅在于时空观察带来的态的不可控制的改变,而且也是定义客体两种属性的条件的互斥的表现。
态的定义要求消除除态的观察外的任何观察的外来干扰,而时空的观察必包含有对客体的干扰,两种描述所代表的定义的理想化和观察的理想化的互斥,使得它们不能再统一在一种描述图景中对客体进行时空中的因果描述,只能对客体进行这两种互斥的描述。
因为它们都是对客体的描述,并且只有两种描述一起才能构成对客体的全面描述,所以二者是互补的。
这就是对原子客体的互补性描述方式。
量子公设所蕴涵的仪器与客体的不可避免的相互作用是互补性诠释的一个逻辑起点,作用量子的公式所包含的波粒二象性是互补性诠释的另一逻辑起点。
时空和能量动量描述的互补性意味着经典的粒子图象和波动图象都不完全适于原子客体,它们只是诠释两种原子现象的不同尝试。
在这种诠释中,经典概念的局限性以互补的方式表现出来。
在粒子图象中,因果要求的满足必伴随对时空描述的放弃;在波动图象中,时空传播规律的描述必伴随因果描述的放弃而只能代之以统计的考虑。
如果我们不把时空描述和因果描述看作互补的而坚持经典的时空概念,我们就必会面对光和物质有时表现象波有时又象粒子的矛盾,所以,光和物质粒子的本性不是经典描述的粒子或波,而是时空和因果的互补描述的波粒二象性,即其时空描述遵循波动的叠加规律、其因果描述遵循粒子的守恒定律的两种图象的互补。
任何将客体看作经典波或经典粒子的解释都是行不通的。
如薛定谔将原子客体看作经典电磁波的电磁波解释,就遇到波包的扩散、波是位形空间而不是真实空间的波以及波函数与测量与所选择的非对易的可观察量有关等问题,这些问题恰恰反映了经典波概念对原子客体描述的局限性。
统计系综诠释虽把原子客体看作粒子,但却不是经典的能够对它作时空描述的粒子,而是只能对粒子系综的统计规律进行描述的粒子,因果描述和时空描述的互补性被包含在系综的能量、动量和时间空间的统计散差具有反比性的特殊统计性中。
隐变量理论虽然为量子力学描述建立了一个亚量子层的因果描述,但它对可观察的量子层的描述与量子力学的统计描述完全一样,而且在其亚量子层的因果描述中也加入了与经典描述不同的隐变量与测量的相关性。
所以,因果描述和时空描述的互补性是不可避免的,用经典的粒子图象或波动图象来解释所有原子现象都会遇到逻辑困难,因而必须将它们加以修正并使它们互补起来。
2.对量子力学描述的统计性的理解统计性是量子力学描述的一个基本特点,统计或几率概念是量子理论的基本概念,理解它是理解量子力学的关键所在,各种诠释的主要分歧也在于此。
按照互补性诠释,统计性是量子性的必然结果,或者说统计性是逻辑地包含在量子概念之中的。
因为作用量子的存在本身就意味着原子过程不再是因果连续的,而是非连续的个体性过程,对于这种过程不可能进行因果描述,而只能对个体事件进行统计描述,而且量子公设还意味着观察对原子客体状态的不可控制的改变,从而使我们无法通过观察建立起客体运动变化的因果规律。
量子概念中所蕴涵的时空的确定和能量动量的确定间的互斥关系,也使我们不可能给出客体的一个初始状态而对客体进行因果性的描述和预言,所以,量子性必意味着描述的统计性,对非连续的原子过程只能进行几率描述。
描述恰当地反映了原子过程的非连续的变化的可能性而不是因果连续变化的必然性,它对原子客体的物理量的描述不再是具有唯一确定值,而是按一定的统计分布具有一系列的值,这些值及其统计分布就是对原子客体的这一物理属性的描述,而量子力学对原子客体的物理量的值谱和统计分布的变化规律的描述就是对原子客体的统计变化规律的描述。
这种由量子公设带来的统计描述也必然包含描述的互补性,只有通过时空描述和能量动量描述的互补性才能理解对原子客体的统计描述的这些特点。
量子力学描述中波函数按薛定谔方程随时间的演化,往往给人一种感觉,它就是对客体的态或客体的统计性(或趋向性)的因果变化的描述。
其实,薛氏方程并不能满足人们对因果描述的追寻,虽然我们可以从波函数中找到关于客体的所有属性的描述,但是波函数的随时间的演化并不代表客体的状态的因果变化,因为波函数与客体的行为并无对应关系,只有波函数的模方才代表客体的几率,波动方程只是以恰当的数学形式包含了对客体满足叠加原理的波动属性的描述,而这种描述的合理性是以客体作为粒子出现的几率对波函数的诠释来达到的,波动方程的解不是描述代表客体的波,而是描述代表客体的粒子的几率,波动方程描述中对量子描述的互补性就表现在这里。
所以波动方程并不表示对客体的因果描述,而是以波动描述形式对粒子几率进行描述的波-粒互补性的表现。
3.对测不准关系的理解测不准关系是量子力学中的一个重要内容,它是量子力学形式体系的一个直接数学结论,所以接受量子力学的人都能接受它,但对于这个数学公式的理解却千差万别。
由于测不准关系表现为对物理量的测量的限制关系,所以,不少早期的量子力学教科书把它作为量子力学的一个核心内容和逻辑基础或操作基础,但是,正如KarlR.Popper所指出的,从薛定谔方程可导出测不准关系而从测不准关系导不出薛氏方程,这说明测不准关系应是某种基础的推论。
在互补性诠释看来,测不准关系是量子公设所蕴涵的波粒二象性的结果,它表现的是经典概念的可定义的精确度间的互补关系。
玻尔从关于作用量子的基本公式ET=Iλ=h出发,从其中所蕴涵的经典概念的矛盾推出关于这些经典概念的可定义的最大精确度间的普遍反比关系即测不准关系,从而使这个关系代表了时空和因果描述间的互补性的一种简单的符号化表示,测不准关系中共轭物理量的测量精确度间的反比关系恰当地反映了两物理量的互斥互补关系。
海森堡把他所发现的测不准关系看作是对经典概念的适用性的限制和对经典物理量的可确定程度的限制,并且正是由于这种不确定性导致因果律的失效和量子力学的统计描述,这种解释带有明显的操作论和实证论倾向,是一种只讲其然而不讲其所以然的解释。